// SPDX-License-Identifier: GPL-2.0-only
#include <linux/module.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include "uncore.h"
#include "uncore_discovery.h"
static bool uncore_no_discover;
module_param(uncore_no_discover, bool, 0);
MODULE_PARM_DESC(uncore_no_discover, "Don't enable the Intel uncore PerfMon discovery mechanism "
"(default: enable the discovery mechanism).");
struct intel_uncore_type *empty_uncore[] = { NULL, };
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
struct intel_uncore_type **uncore_mmio_uncores = empty_uncore;
static bool pcidrv_registered;
struct pci_driver *uncore_pci_driver;
/* The PCI driver for the device which the uncore doesn't own. */
struct pci_driver *uncore_pci_sub_driver;
/* pci bus to socket mapping */
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
struct pci_extra_dev *uncore_extra_pci_dev;
int __uncore_max_dies;
/* mask of cpus that collect uncore events */
static cpumask_t uncore_cpu_mask;
/* constraint for the fixed counter */
static struct event_constraint uncore_constraint_fixed =
EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
struct event_constraint uncore_constraint_empty =
EVENT_CONSTRAINT(0, 0, 0);
MODULE_LICENSE("GPL");
int uncore_pcibus_to_dieid(struct pci_bus *bus)
{
struct pci2phy_map *map;
int die_id = -1;
raw_spin_lock(&pci2phy_map_lock);
list_for_each_entry(map, &pci2phy_map_head, list) {
if (map->segment == pci_domain_nr(bus)) {
die_id = map->pbus_to_dieid[bus->number];
break;
}
}
raw_spin_unlock(&pci2phy_map_lock);
return die_id;
}
int uncore_die_to_segment(int die)
{
struct pci_bus *bus = NULL;
/* Find first pci bus which attributes to specified die. */
while ((bus = pci_find_next_bus(bus)) &&
(die != uncore_pcibus_to_dieid(bus)))
;
return bus ? pci_domain_nr(bus) : -EINVAL;
}
static void uncore_free_pcibus_map(void)
{
struct pci2phy_map *map, *tmp;
list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
list_del(&map->list);
kfree(map);
}
}
struct pci2phy_map *__find_pci2phy_map(int segment)
{
struct pci2phy_map *map, *alloc = NULL;
int i;
lockdep_assert_held(&pci2phy_map_lock);
lookup:
list_for_each_entry(map, &pci2phy_map_head, list) {
if (map->segment == segment)
goto end;
}
if (!alloc) {
raw_spin_unlock(&pci2phy_map_lock);
alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
raw_spin_lock(&pci2phy_map_lock);
if (!alloc)
return NULL;
goto lookup;
}
map = alloc;
alloc = NULL;
map->segment = segment;
for (i = 0; i < 256; i++)
map->pbus_to_dieid[i] = -1;
list_add_tail(&map->list, &pci2phy_map_head);
end:
kfree(alloc);
return map;
}
ssize_t uncore_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct uncore_event_desc *event =
container_of(attr, struct uncore_event_desc, attr);
return sprintf(buf, "%s", event->config);
}
struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
{
unsigned int dieid = topology_logical_die_id(cpu);
/*
* The unsigned check also catches the '-1' return value for non
* existent mappings in the topology map.
*/
return dieid < uncore_max_dies() ? pmu->boxes[dieid] : NULL;
}
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
{
u64 count;
rdmsrl(event->hw.event_base, count);
return count;
}
void uncore_mmio_exit_box(struct intel_uncore_box *box)
{
if (box->io_addr)
iounmap(box->io_addr);
}
u64 uncore_mmio_read_counter(struct intel_uncore_box *box,
struct perf_event *event)
{
if (!box->io_addr)
return 0;
if (!uncore_mmio_is_valid_offset(box, event->hw.event_base))
return 0;
return readq(box->io_addr + event->hw.event_base);
}
/*
* generic get constraint function for shared match/mask registers.
*/
struct event_constraint *
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_extra_reg *er;
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
unsigned long flags;
bool ok = false;
/*
* reg->alloc can be set due to existing state, so for fake box we
* need to ignore this, otherwise we might fail to allocate proper
* fake state for this extra reg constraint.
*/
if (reg1->idx == EXTRA_REG_NONE ||
(!uncore_box_is_fake(box) && reg1->alloc))
return NULL;
er = &box->shared_regs[reg1->idx];
raw_spin_lock_irqsave(&er->lock, flags);
if (!atomic_read(&er->ref) ||
(er->config1 == reg1->config && er->config2 == reg2->config)) {
atomic_inc(&er->ref);
er->config1 = reg1->config;
er->config2 = reg2->config;
ok = true;
}
raw_spin_unlock_irqrestore(&er->lock, flags);
if (ok) {
if (!uncore_box_is_fake(box))
reg1->alloc = 1;
return NULL;
}
return &uncore_constraint_empty;
}
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_extra_reg *er;
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
/*
* Only put constraint if extra reg was actually allocated. Also
* takes care of event which do not use an extra shared reg.
*
* Also, if this is a fake box we shouldn't touch any event state
* (reg->alloc) and we don't care about leaving inconsistent box
* state either since it will be thrown out.
*/
if (uncore_box_is_fake(box) || !reg1->alloc)
return;
er = &box->shared_regs[reg1->idx];
atomic_dec(&er->ref);
reg1->alloc = 0;
}
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
{
struct intel_uncore_extra_reg *er;
unsigned long flags;
u64 config;
er = &box->shared_regs[idx];
raw_spin_lock_irqsave(&er->lock, flags);
config = er->config;
raw_spin_unlock_irqrestore(&er->lock, flags);
return config;
}
static void uncore_assign_hw_event(struct intel_uncore_box *box,
struct perf_event *event, int idx)
{
struct hw_perf_event *hwc = &event->hw;
hwc->idx = idx;
hwc->last_tag = ++box->tags[idx];
if (uncore_pmc_fixed(hwc->idx)) {
hwc->event_base = uncore_fixed_ctr(box);
hwc->config_base = uncore_fixed_ctl(box);
return;
}
hwc->config_base = uncore_event_ctl(box, hwc->idx);
hwc->event_base = uncore_perf_ctr(box, hwc->idx);
}
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
{
u64 prev_count, new_count, delta;
int shift;
if (uncore_pmc_freerunning(event->hw.idx))
shift = 64 - uncore_freerunning_bits(box, event);
else if (uncore_pmc_fixed(event->hw.idx))
shift = 64 - uncore_fixed_ctr_bits(box);
else
shift = 64 - uncore_perf_ctr_bits(box);
/* the hrtimer might modify the previous event value */
again:
prev_count = local64_read(&event->hw.prev_count);
new_count = uncore_read_counter(box, event);
if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
goto again;
delta = (new_count << shift) - (prev_count << shift);
delta >>= shift;
local64_add(delta, &event->count);
}
/*
* The overflow interrupt is unavailable for SandyBridge-EP, is broken
* for SandyBridge. So we use hrtimer to periodically poll the counter
* to avoid overflow.
*/
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
{
struct intel_uncore_box *box;
struct perf_event *event;
unsigned long flags;
int bit;
box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
if (!box->n_active || box->cpu != smp_processor_id())
return HRTIMER_NORESTART;
/*
* disable local interrupt to prevent uncore_pmu_event_start/stop
* to interrupt the update process
*/
local_irq_save(flags);
/*
* handle boxes with an active event list as opposed to active
* counters
*/
list_for_each_entry(event, &box->active_list, active_entry) {
uncore_perf_event_update(box, event);
}
for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
uncore_perf_event_update(box, box->events[bit]);
local_irq_restore(flags);
hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
return HRTIMER_RESTART;
}
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
{
hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
HRTIMER_MODE_REL_PINNED);
}
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
{
hrtimer_cancel(&box->hrtimer);
}
static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
{
hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
box->hrtimer.function = uncore_pmu_hrtimer;
}
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type,
int node)
{
int i, size, numshared = type->num_shared_regs ;
struct intel_uncore_box *box;
size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg);
box = kzalloc_node(size, GFP_KERNEL, node);
if (!box)
return NULL;
for (i = 0; i < numshared; i++)
raw_spin_lock_init(&box->shared_regs[i].lock);
uncore_pmu_init_hrtimer(box);
box->cpu = -1;
box->dieid = -1;
/* set default hrtimer timeout */
box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
INIT_LIST_HEAD(&box->active_list);
return box;
}
/*
* Using uncore_pmu_event_init pmu event_init callback
* as a detection point for uncore events.
*/
static int uncore_pmu_event_init(struct perf_event *event);
static bool is_box_event(struct intel_uncore_box *box, struct perf_event *event)
{
return &box->pmu->pmu == event->pmu;
}
static int
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader,
bool dogrp)
{
struct perf_event *event;
int n, max_count;
max_count = box->pmu->type->num_counters;
if (box->pmu->type->fixed_ctl)
max_count++;
if (box->n_events >= max_count)
return -EINVAL;
n = box->n_events;
if (is_box_event(box, leader)) {
box->event_list[n] = leader;
n++;
}
if (!dogrp)
return n;
for_each_sibling_event(event, leader) {
if (!is_box_event(box, event) ||
event->state <= PERF_EVENT_STATE_OFF)
continue;
if (n >= max_count)
return -EINVAL;
box->event_list[n] = event;
n++;
}
return n;
}
static struct event_constraint *
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_type *type = box->pmu->type;
struct event_constraint *c;
if (type->ops->get_constraint) {
c = type->ops->get_constraint(box, event);
if (c)
return c;
}
if (event->attr.config == UNCORE_FIXED_EVENT)
return &uncore_constraint_fixed;
if (type->constraints) {
for_each_event_constraint(c, type->constraints) {
if ((event->hw.config & c->cmask) == c->code)
return c;
}
}
return &type->unconstrainted;
}
static void uncore_put_event_constraint(struct intel_uncore_box *box,
struct perf_event *event)
{
if (box->pmu->type->ops->put_constraint)
box->pmu->type->ops->put_constraint(box, event);
}
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
{
unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
struct event_constraint *c;
int i, wmin, wmax, ret = 0;
struct hw_perf_event *hwc;
bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);
for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
c = uncore_get_event_constraint(box, box->event_list[i]);
box->event_constraint[i] = c;
wmin = min(wmin, c->weight);
wmax = max(wmax, c->weight);
}
/* fastpath, try to reuse previous register */
for (i = 0; i < n; i++) {
hwc = &box->event_list[i]->hw;
c = box->event_constraint[i];
/* never assigned */
if (hwc->idx == -1)
break;
/* constraint still honored */
if (!test_bit(hwc->idx, c->idxmsk))
break;
/* not already used */
if (test_bit(hwc->idx, used_mask))
break;
__set_bit(hwc->idx, used_mask);
if (assign)
assign[i] = hwc->idx;
}
/* slow path */
if (i != n)
ret = perf_assign_events(box->event_constraint, n,
wmin, wmax, n, assign);
if (!assign || ret) {
for (i = 0; i < n; i++)
uncore_put_event_constraint(box, box->event_list[i]);
}
return ret ? -EINVAL : 0;
}
void uncore_pmu_event_start(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
int idx = event->hw.idx;
if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
return;
/*
* Free running counter is read-only and always active.
* Use the current counter value as start point.
* There is no overflow interrupt for free running counter.
* Use hrtimer to periodically poll the counter to avoid overflow.
*/
if (uncore_pmc_freerunning(event->hw.idx)) {
list_add_tail(&event->active_entry, &box->active_list);
local64_set(&event->hw.prev_count,
uncore_read_counter(box, event));
if (box->n_active++ == 0)
uncore_pmu_start_hrtimer(box);
return;
}
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
event->hw.state = 0;
box->events[idx] = event;
box->n_active++;
__set_bit(idx, box->active_mask);
local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
uncore_enable_event(box, event);
if (box->n_active == 1)
uncore_pmu_start_hrtimer(box);
}
void uncore_pmu_event_stop(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
struct hw_perf_event *hwc = &event->hw;
/* Cannot disable free running counter which is read-only */
if (uncore_pmc_freerunning(hwc->idx)) {
list_del(&event->active_entry);
if (--box->n_active == 0)
uncore_pmu_cancel_hrtimer(box);
uncore_perf_event_update(box, event);
return;
}
if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
uncore_disable_event(box, event);
box->n_active--;
box->events[hwc->idx] = NULL;
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
hwc->state |= PERF_HES_STOPPED;
if (box->n_active == 0)
uncore_pmu_cancel_hrtimer(box);
}
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
/*
* Drain the remaining delta count out of a event
* that we are disabling:
*/
uncore_perf_event_update(box, event);
hwc->state |= PERF_HES_UPTODATE;
}
}
int uncore_pmu_event_add(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
struct hw_perf_event *hwc = &event->hw;
int assign[UNCORE_PMC_IDX_MAX];
int i, n, ret;
if (!box)
return -ENODEV;
/*
* The free funning counter is assigned in event_init().
* The free running counter event and free running counter
* are 1:1 mapped. It doesn't need to be tracked in event_list.
*/
if (uncore_pmc_freerunning(hwc->idx)) {
if (flags & PERF_EF_START)
uncore_pmu_event_start(event, 0);
return 0;
}
ret = n = uncore_collect_events(box, event, false);
if (ret < 0)
return ret;
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (!(flags & PERF_EF_START))
hwc->state |= PERF_HES_ARCH;
ret = uncore_assign_events(box, assign, n);
if (ret)
return ret;
/* save events moving to new counters */
for (i = 0; i < box->n_events; i++) {
event = box->event_list[i];
hwc = &event->hw;
if (hwc->idx == assign[i] &&
hwc->last_tag == box->tags[assign[i]])
continue;
/*
* Ensure we don't accidentally enable a stopped
* counter simply because we rescheduled.
*/
if (hwc->state & PERF_HES_STOPPED)
hwc->state |= PERF_HES_ARCH;
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
}
/* reprogram moved events into new counters */
for (i = 0; i < n; i++) {
event = box->event_list[i];
hwc = &event->hw;
if (hwc->idx != assign[i] ||
hwc->last_tag != box->tags[assign[i]])
uncore_assign_hw_event(box, event, assign[i]);
else if (i < box->n_events)
continue;
if (hwc->state & PERF_HES_ARCH)
continue;
uncore_pmu_event_start(event, 0);
}
box->n_events = n;
return 0;
}
void uncore_pmu_event_del(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
int i;
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
/*
* The event for free running counter is not tracked by event_list.
* It doesn't need to force event->hw.idx = -1 to reassign the counter.
* Because the event and the free running counter are 1:1 mapped.
*/
if (uncore_pmc_freerunning(event->hw.idx))
return;
for (i = 0; i < box->n_events; i++) {
if (event == box->event_list[i]) {
uncore_put_event_constraint(box, event);
for (++i; i < box->n_events; i++)
box->event_list[i - 1] = box->event_list[i];
--box->n_events;
break;
}
}
event->hw.idx = -1;
event->hw.last_tag = ~0ULL;
}
void uncore_pmu_event_read(struct perf_event *event)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
uncore_perf_event_update(box, event);
}
/*
* validation ensures the group can be loaded onto the
* PMU if it was the only group available.
*/
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
struct perf_event *event)
{
struct perf_event *leader = event->group_leader;
struct intel_uncore_box *fake_box;
int ret = -EINVAL, n;
/* The free running counter is always active. */
if (uncore_pmc_freerunning(event->hw.idx))
return 0;
fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
if (!fake_box)
return -ENOMEM;
fake_box->pmu = pmu;
/*
* the event is not yet connected with its
* siblings therefore we must first collect
* existing siblings, then add the new event
* before we can simulate the scheduling
*/
n = uncore_collect_events(fake_box, leader, true);
if (n < 0)
goto out;
fake_box->n_events = n;
n = uncore_collect_events(fake_box, event, false);
if (n < 0)
goto out;
fake_box->n_events = n;
ret = uncore_assign_events(fake_box, NULL, n);
out:
kfree(fake_box);
return ret;
}
static int uncore_pmu_event_init(struct perf_event *event)
{
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
struct hw_perf_event *hwc = &event->hw;
int ret;
if (event->attr.type != event->pmu->type)
return -ENOENT;
pmu = uncore_event_to_pmu(event);
/* no device found for this pmu */
if (pmu->func_id < 0)
return -ENOENT;
/* Sampling not supported yet */
if (hwc->sample_period)
return -EINVAL;
/*
* Place all uncore events for a particular physical package
* onto a single cpu
*/
if (event->cpu < 0)
return -EINVAL;
box = uncore_pmu_to_box(pmu, event->cpu);
if (!box || box->cpu < 0)
return -EINVAL;
event->cpu = box->cpu;
event->pmu_private = box;
event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
event->hw.idx = -1;
event->hw.last_tag = ~0ULL;
event->hw.extra_reg.idx = EXTRA_REG_NONE;
event->hw.branch_reg.idx = EXTRA_REG_NONE;
if (event->attr.config == UNCORE_FIXED_EVENT) {
/* no fixed counter */
if (!pmu->type->fixed_ctl)
return -EINVAL;
/*
* if there is only one fixed counter, only the first pmu
* can access the fixed counter
*/
if (pmu->type->single_fixed && pmu->pmu_idx > 0)
return -EINVAL;
/* fixed counters have event field hardcoded to zero */
hwc->config = 0ULL;
} else if (is_freerunning_event(event)) {
hwc->config = event->attr.config;
if (!check_valid_freerunning_event(box, event))
return -EINVAL;
event->hw.idx = UNCORE_PMC_IDX_FREERUNNING;
/*
* The free running counter event and free running counter
* are always 1:1 mapped.
* The free running counter is always active.
* Assign the free running counter here.
*/
event->hw.event_base = uncore_freerunning_counter(box, event);
} else {
hwc->config = event->attr.config &
(pmu->type->event_mask | ((u64)pmu->type->event_mask_ext << 32));
if (pmu->type->ops->hw_config) {
ret = pmu->type->ops->hw_config(box, event);
if (ret)
return ret;
}
}
if (event->group_leader != event)
ret = uncore_validate_group(pmu, event);
else
ret = 0;
return ret;
}
static void uncore_pmu_enable(struct pmu *pmu)
{
struct intel_uncore_pmu *uncore_pmu;
struct intel_uncore_box *box;
uncore_pmu = container_of(pmu, struct intel_uncore_pmu, pmu);
box = uncore_pmu_to_box(uncore_pmu, smp_processor_id());
if (!box)
return;
if (uncore_pmu->type->ops->enable_box)
uncore_pmu->type->ops->enable_box(box);
}
static void uncore_pmu_disable(struct pmu *pmu)
{
struct intel_uncore_pmu *uncore_pmu;
struct intel_uncore_box *box;
uncore_pmu = container_of(pmu, struct intel_uncore_pmu, pmu);
box = uncore_pmu_to_box(uncore_pmu, smp_processor_id());
if (!box)
return;
if (uncore_pmu->type->ops->disable_box)
uncore_pmu->type->ops->disable_box(box);
}
static ssize_t uncore_get_attr_cpumask(struct device *dev,
struct device_attribute *attr, char *buf)
{
return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
}
static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);
static struct attribute *uncore_pmu_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static const struct attribute_group uncore_pmu_attr_group = {
.attrs = uncore_pmu_attrs,
};
void uncore_get_alias_name(char *pmu_name, struct intel_uncore_pmu *pmu)
{
struct intel_uncore_type *type = pmu->type;
if (type->num_boxes == 1)
sprintf(pmu_name, "uncore_type_%u", type->type_id);
else {
sprintf(pmu_name, "uncore_type_%u_%d",
type->type_id, type->box_ids[pmu->pmu_idx]);
}
}
static void uncore_get_pmu_name(struct intel_uncore_pmu *pmu)
{
struct intel_uncore_type *type = pmu->type;
/*
* No uncore block name in discovery table.
* Use uncore_type_&typeid_&boxid as name.
*/
if (!type->name) {
uncore_get_alias_name(pmu->name, pmu);
return;
}
if (type->num_boxes == 1) {
if (strlen(type->name) > 0)
sprintf(pmu->name, "uncore_%s", type->name);
else
sprintf(pmu->name, "uncore");
} else {
/*
* Use the box ID from the discovery table if applicable.
*/
sprintf(pmu->name, "uncore_%s_%d", type->name,
type->box_ids ? type->box_ids[pmu->pmu_idx] : pmu->pmu_idx);
}
}
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
{
int ret;
if (!pmu->type->pmu) {
pmu->pmu = (struct pmu) {
.attr_groups = pmu->type->attr_groups,
.task_ctx_nr = perf_invalid_context,
.pmu_enable = uncore_pmu_enable,
.pmu_disable = uncore_pmu_disable,
.event_init = uncore_pmu_event_init,
.add = uncore_pmu_event_add,
.del = uncore_pmu_event_del,
.start = uncore_pmu_event_start,
.stop = uncore_pmu_event_stop,
.read = uncore_pmu_event_read,
.module = THIS_MODULE,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
.attr_update = pmu->type->attr_update,
};
} else {
pmu->pmu = *pmu->type->pmu;
pmu->pmu.attr_groups = pmu->type->attr_groups;
pmu->pmu.attr_update = pmu->type->attr_update;
}
uncore_get_pmu_name(pmu);
ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
if (!ret)
pmu->registered = true;
return ret;
}
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
{
if (!pmu->registered)
return;
perf_pmu_unregister(&pmu->pmu);
pmu->registered = false;
}
static void uncore_free_boxes(struct intel_uncore_pmu *pmu)
{
int die;
for (die = 0; die < uncore_max_dies(); die++)
kfree(pmu->boxes[die]);
kfree(pmu->boxes);
}
static void uncore_type_exit(struct intel_uncore_type *type)
{
struct intel_uncore_pmu *pmu = type->pmus;
int i;
if (type->cleanup_mapping)
type->cleanup_mapping(type);
if (pmu) {
for (i = 0; i < type->num_boxes; i++, pmu++) {
uncore_pmu_unregister(pmu);
uncore_free_boxes(pmu);
}
kfree(type->pmus);
type->pmus = NULL;
}
if (type->box_ids) {
kfree(type->box_ids);
type->box_ids = NULL;
}
kfree(type->events_group);
type->events_group = NULL;
}
static void uncore_types_exit(struct intel_uncore_type **types)
{
for (; *types; types++)
uncore_type_exit(*types);
}
static int __init uncore_type_init(struct intel_uncore_type *type, bool setid)
{
struct intel_uncore_pmu *pmus;
size_t size;
int i, j;
pmus = kcalloc(type->num_boxes, sizeof(*pmus), GFP_KERNEL);
if (!pmus)
return -ENOMEM;
size = uncore_max_dies() * sizeof(struct intel_uncore_box *);
for (i = 0; i < type->num_boxes; i++) {
pmus[i].func_id = setid ? i : -1;
pmus[i].pmu_idx = i;
pmus[i].type = type;
pmus[i].boxes = kzalloc(size, GFP_KERNEL);
if (!pmus[i].boxes)
goto err;
}
type->pmus = pmus;
type->unconstrainted = (struct event_constraint)
__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
0, type->num_counters, 0, 0);
if (type->event_descs) {
struct {
struct attribute_group group;
struct attribute *attrs[];
} *attr_group;
for (i = 0; type->event_descs[i].attr.attr.name; i++);
attr_group = kzalloc(struct_size(attr_group, attrs, i + 1),
GFP_KERNEL);
if (!attr_group)
goto err;
attr_group->group.name = "events";
attr_group->group.attrs = attr_group->attrs;
for (j = 0; j < i; j++)
attr_group->attrs[j] = &type->event_descs[j].attr.attr;
type->events_group = &attr_group->group;
}
type->pmu_group = &uncore_pmu_attr_group;
if (type->set_mapping)
type->set_mapping(type);
return 0;
err:
for (i = 0; i < type->num_boxes; i++)
kfree(pmus[i].boxes);
kfree(pmus);
return -ENOMEM;
}
static int __init
uncore_types_init(struct intel_uncore_type **types, bool setid)
{
int ret;
for (; *types; types++) {
ret = uncore_type_init(*types, setid);
if (ret)
return ret;
}
return 0;
}
/*
* Get the die information of a PCI device.
* @pdev: The PCI device.
* @die: The die id which the device maps to.
*/
static int uncore_pci_get_dev_die_info(struct pci_dev *pdev, int *die)
{
*die = uncore_pcibus_to_dieid(pdev->bus);
if (*die < 0)
return -EINVAL;
return 0;
}
static struct intel_uncore_pmu *
uncore_pci_find_dev_pmu_from_types(struct pci_dev *pdev)
{
struct intel_uncore_type **types = uncore_pci_uncores;
struct intel_uncore_type *type;
u64 box_ctl;
int i, die;
for (; *types; types++) {
type = *types;
for (die = 0; die < __uncore_max_dies; die++) {
for (i = 0; i < type->num_boxes; i++) {
if (!type->box_ctls[die])
continue;
box_ctl = type->box_ctls[die] + type->pci_offsets[i];
if (pdev->devfn == UNCORE_DISCOVERY_PCI_DEVFN(box_ctl) &&
pdev->bus->number == UNCORE_DISCOVERY_PCI_BUS(box_ctl) &&
pci_domain_nr(pdev->bus) == UNCORE_DISCOVERY_PCI_DOMAIN(box_ctl))
return &type->pmus[i];
}
}
}
return NULL;
}
/*
* Find the PMU of a PCI device.
* @pdev: The PCI device.
* @ids: The ID table of the available PCI devices with a PMU.
* If NULL, search the whole uncore_pci_uncores.
*/
static struct intel_uncore_pmu *
uncore_pci_find_dev_pmu(struct pci_dev *pdev, const struct pci_device_id *ids)
{
struct intel_uncore_pmu *pmu = NULL;
struct intel_uncore_type *type;
kernel_ulong_t data;
unsigned int devfn;
if (!ids)
return uncore_pci_find_dev_pmu_from_types(pdev);
while (ids && ids->vendor) {
if ((ids->vendor == pdev->vendor) &&
(ids->device == pdev->device)) {
data = ids->driver_data;
devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(data),
UNCORE_PCI_DEV_FUNC(data));
if (devfn == pdev->devfn) {
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(data)];
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(data)];
break;
}
}
ids++;
}
return pmu;
}
/*
* Register the PMU for a PCI device
* @pdev: The PCI device.
* @type: The corresponding PMU type of the device.
* @pmu: The corresponding PMU of the device.
* @die: The die id which the device maps to.
*/
static int uncore_pci_pmu_register(struct pci_dev *pdev,
struct intel_uncore_type *type,
struct intel_uncore_pmu *pmu,
int die)
{
struct intel_uncore_box *box;
int ret;
if (WARN_ON_ONCE(pmu->boxes[die] != NULL))
return -EINVAL;
box = uncore_alloc_box(type, NUMA_NO_NODE);
if (!box)
return -ENOMEM;
if (pmu->func_id < 0)
pmu->func_id = pdev->devfn;
else
WARN_ON_ONCE(pmu->func_id != pdev->devfn);
atomic_inc(&box->refcnt);
box->dieid = die;
box->pci_dev = pdev;
box->pmu = pmu;
uncore_box_init(box);
pmu->boxes[die] = box;
if (atomic_inc_return(&pmu->activeboxes) > 1)
return 0;
/* First active box registers the pmu */
ret = uncore_pmu_register(pmu);
if (ret) {
pmu->boxes[die] = NULL;
uncore_box_exit(box);
kfree(box);
}
return ret;
}
/*
* add a pci uncore device
*/
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu = NULL;
int die, ret;
ret = uncore_pci_get_dev_die_info(pdev, &die);
if (ret)
return ret;
if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
uncore_extra_pci_dev[die].dev[idx] = pdev;
pci_set_drvdata(pdev, NULL);
return 0;
}
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
/*
* Some platforms, e.g. Knights Landing, use a common PCI device ID
* for multiple instances of an uncore PMU device type. We should check
* PCI slot and func to indicate the uncore box.
*/
if (id->driver_data & ~0xffff) {
struct pci_driver *pci_drv = to_pci_driver(pdev->dev.driver);
pmu = uncore_pci_find_dev_pmu(pdev, pci_drv->id_table);
if (pmu == NULL)
return -ENODEV;
} else {
/*
* for performance monitoring unit with multiple boxes,
* each box has a different function id.
*/
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
}
ret = uncore_pci_pmu_register(pdev, type, pmu, die);
pci_set_drvdata(pdev, pmu->boxes[die]);
return ret;
}
/*
* Unregister the PMU of a PCI device
* @pmu: The corresponding PMU is unregistered.
* @die: The die id which the device maps to.
*/
static void uncore_pci_pmu_unregister(struct intel_uncore_pmu *pmu, int die)
{
struct intel_uncore_box *box = pmu->boxes[die];
pmu->boxes[die] = NULL;
if (atomic_dec_return(&pmu->activeboxes) == 0)
uncore_pmu_unregister(pmu);
uncore_box_exit(box);
kfree(box);
}
static void uncore_pci_remove(struct pci_dev *pdev)
{
struct intel_uncore_box *box;
struct intel_uncore_pmu *pmu;
int i, die;
if (uncore_pci_get_dev_die_info(pdev, &die))
return;
box = pci_get_drvdata(pdev);
if (!box) {
for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
if (uncore_extra_pci_dev[die].dev[i] == pdev) {
uncore_extra_pci_dev[die].dev[i] = NULL;
break;
}
}
WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
return;
}
pmu = box->pmu;
pci_set_drvdata(pdev, NULL);
uncore_pci_pmu_unregister(pmu, die);
}
static int uncore_bus_notify(struct notifier_block *nb,
unsigned long action, void *data,
const struct pci_device_id *ids)
{
struct device *dev = data;
struct pci_dev *pdev = to_pci_dev(dev);
struct intel_uncore_pmu *pmu;
int die;
/* Unregister the PMU when the device is going to be deleted. */
if (action != BUS_NOTIFY_DEL_DEVICE)
return NOTIFY_DONE;
pmu = uncore_pci_find_dev_pmu(pdev, ids);
if (!pmu)
return NOTIFY_DONE;
if (uncore_pci_get_dev_die_info(pdev, &die))
return NOTIFY_DONE;
uncore_pci_pmu_unregister(pmu, die);
return NOTIFY_OK;
}
static int uncore_pci_sub_bus_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
return uncore_bus_notify(nb, action, data,
uncore_pci_sub_driver->id_table);
}
static struct notifier_block uncore_pci_sub_notifier = {
.notifier_call = uncore_pci_sub_bus_notify,
};
static void uncore_pci_sub_driver_init(void)
{
const struct pci_device_id *ids = uncore_pci_sub_driver->id_table;
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct pci_dev *pci_sub_dev;
bool notify = false;
unsigned int devfn;
int die;
while (ids && ids->vendor) {
pci_sub_dev = NULL;
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(ids->driver_data)];
/*
* Search the available device, and register the
* corresponding PMU.
*/
while ((pci_sub_dev = pci_get_device(PCI_VENDOR_ID_INTEL,
ids->device, pci_sub_dev))) {
devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(ids->driver_data),
UNCORE_PCI_DEV_FUNC(ids->driver_data));
if (devfn != pci_sub_dev->devfn)
continue;
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(ids->driver_data)];
if (!pmu)
continue;
if (uncore_pci_get_dev_die_info(pci_sub_dev, &die))
continue;
if (!uncore_pci_pmu_register(pci_sub_dev, type, pmu,
die))
notify = true;
}
ids++;
}
if (notify && bus_register_notifier(&pci_bus_type, &uncore_pci_sub_notifier))
notify = false;
if (!notify)
uncore_pci_sub_driver = NULL;
}
static int uncore_pci_bus_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
return uncore_bus_notify(nb, action, data, NULL);
}
static struct notifier_block uncore_pci_notifier = {
.notifier_call = uncore_pci_bus_notify,
};
static void uncore_pci_pmus_register(void)
{
struct intel_uncore_type **types = uncore_pci_uncores;
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct pci_dev *pdev;
u64 box_ctl;
int i, die;
for (; *types; types++) {
type = *types;
for (die = 0; die < __uncore_max_dies; die++) {
for (i = 0; i < type->num_boxes; i++) {
if (!type->box_ctls[die])
continue;
box_ctl = type->box_ctls[die] + type->pci_offsets[i];
pdev = pci_get_domain_bus_and_slot(UNCORE_DISCOVERY_PCI_DOMAIN(box_ctl),
UNCORE_DISCOVERY_PCI_BUS(box_ctl),
UNCORE_DISCOVERY_PCI_DEVFN(box_ctl));
if (!pdev)
continue;
pmu = &type->pmus[i];
uncore_pci_pmu_register(pdev, type, pmu, die);
}
}
}
bus_register_notifier(&pci_bus_type, &uncore_pci_notifier);
}
static int __init uncore_pci_init(void)
{
size_t size;
int ret;
size = uncore_max_dies() * sizeof(struct pci_extra_dev);
uncore_extra_pci_dev = kzalloc(size, GFP_KERNEL);
if (!uncore_extra_pci_dev) {
ret = -ENOMEM;
goto err;
}
ret = uncore_types_init(uncore_pci_uncores, false);
if (ret)
goto errtype;
if (uncore_pci_driver) {
uncore_pci_driver->probe = uncore_pci_probe;
uncore_pci_driver->remove = uncore_pci_remove;
ret = pci_register_driver(uncore_pci_driver);
if (ret)
goto errtype;
} else
uncore_pci_pmus_register();
if (uncore_pci_sub_driver)
uncore_pci_sub_driver_init();
pcidrv_registered = true;
return 0;
errtype:
uncore_types_exit(uncore_pci_uncores);
kfree(uncore_extra_pci_dev);
uncore_extra_pci_dev = NULL;
uncore_free_pcibus_map();
err:
uncore_pci_uncores = empty_uncore;
return ret;
}
static void uncore_pci_exit(void)
{
if (pcidrv_registered) {
pcidrv_registered = false;
if (uncore_pci_sub_driver)
bus_unregister_notifier(&pci_bus_type, &uncore_pci_sub_notifier);
if (uncore_pci_driver)
pci_unregister_driver(uncore_pci_driver);
else
bus_unregister_notifier(&pci_bus_type, &uncore_pci_notifier);
uncore_types_exit(uncore_pci_uncores);
kfree(uncore_extra_pci_dev);
uncore_free_pcibus_map();
}
}
static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu,
int new_cpu)
{
struct intel_uncore_pmu *pmu = type->pmus;
struct intel_uncore_box *box;
int i, die;
die = topology_logical_die_id(old_cpu < 0 ? new_cpu : old_cpu);
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[die];
if (!box)
continue;
if (old_cpu < 0) {
WARN_ON_ONCE(box->cpu != -1);
box->cpu = new_cpu;
continue;
}
WARN_ON_ONCE(box->cpu != old_cpu);
box->cpu = -1;
if (new_cpu < 0)
continue;
uncore_pmu_cancel_hrtimer(box);
perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu);
box->cpu = new_cpu;
}
}
static void uncore_change_context(struct intel_uncore_type **uncores,
int old_cpu, int new_cpu)
{
for (; *uncores; uncores++)
uncore_change_type_ctx(*uncores, old_cpu, new_cpu);
}
static void uncore_box_unref(struct intel_uncore_type **types, int id)
{
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
int i;
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[id];
if (box && atomic_dec_return(&box->refcnt) == 0)
uncore_box_exit(box);
}
}
}
static int uncore_event_cpu_offline(unsigned int cpu)
{
int die, target;
/* Check if exiting cpu is used for collecting uncore events */
if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
goto unref;
/* Find a new cpu to collect uncore events */
target = cpumask_any_but(topology_die_cpumask(cpu), cpu);
/* Migrate uncore events to the new target */
if (target < nr_cpu_ids)
cpumask_set_cpu(target, &uncore_cpu_mask);
else
target = -1;
uncore_change_context(uncore_msr_uncores, cpu, target);
uncore_change_context(uncore_mmio_uncores, cpu, target);
uncore_change_context(uncore_pci_uncores, cpu, target);
unref:
/* Clear the references */
die = topology_logical_die_id(cpu);
uncore_box_unref(uncore_msr_uncores, die);
uncore_box_unref(uncore_mmio_uncores, die);
return 0;
}
static int allocate_boxes(struct intel_uncore_type **types,
unsigned int die, unsigned int cpu)
{
struct intel_uncore_box *box, *tmp;
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
LIST_HEAD(allocated);
int i;
/* Try to allocate all required boxes */
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
if (pmu->boxes[die])
continue;
box = uncore_alloc_box(type, cpu_to_node(cpu));
if (!box)
goto cleanup;
box->pmu = pmu;
box->dieid = die;
list_add(&box->active_list, &allocated);
}
}
/* Install them in the pmus */
list_for_each_entry_safe(box, tmp, &allocated, active_list) {
list_del_init(&box->active_list);
box->pmu->boxes[die] = box;
}
return 0;
cleanup:
list_for_each_entry_safe(box, tmp, &allocated, active_list) {
list_del_init(&box->active_list);
kfree(box);
}
return -ENOMEM;
}
static int uncore_box_ref(struct intel_uncore_type **types,
int id, unsigned int cpu)
{
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
int i, ret;
ret = allocate_boxes(types, id, cpu);
if (ret)
return ret;
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[id];
if (box && atomic_inc_return(&box->refcnt) == 1)
uncore_box_init(box);
}
}
return 0;
}
static int uncore_event_cpu_online(unsigned int cpu)
{
int die, target, msr_ret, mmio_ret;
die = topology_logical_die_id(cpu);
msr_ret = uncore_box_ref(uncore_msr_uncores, die, cpu);
mmio_ret = uncore_box_ref(uncore_mmio_uncores, die, cpu);
if (msr_ret && mmio_ret)
return -ENOMEM;
/*
* Check if there is an online cpu in the package
* which collects uncore events already.
*/
target = cpumask_any_and(&uncore_cpu_mask, topology_die_cpumask(cpu));
if (target < nr_cpu_ids)
return 0;
cpumask_set_cpu(cpu, &uncore_cpu_mask);
if (!msr_ret)
uncore_change_context(uncore_msr_uncores, -1, cpu);
if (!mmio_ret)
uncore_change_context(uncore_mmio_uncores, -1, cpu);
uncore_change_context(uncore_pci_uncores, -1, cpu);
return 0;
}
static int __init type_pmu_register(struct intel_uncore_type *type)
{
int i, ret;
for (i = 0; i < type->num_boxes; i++) {
ret = uncore_pmu_register(&type->pmus[i]);
if (ret)
return ret;
}
return 0;
}
static int __init uncore_msr_pmus_register(void)
{
struct intel_uncore_type **types = uncore_msr_uncores;
int ret;
for (; *types; types++) {
ret = type_pmu_register(*types);
if (ret)
return ret;
}
return 0;
}
static int __init uncore_cpu_init(void)
{
int ret;
ret = uncore_types_init(uncore_msr_uncores, true);
if (ret)
goto err;
ret = uncore_msr_pmus_register();
if (ret)
goto err;
return 0;
err:
uncore_types_exit(uncore_msr_uncores);
uncore_msr_uncores = empty_uncore;
return ret;
}
static int __init uncore_mmio_init(void)
{
struct intel_uncore_type **types = uncore_mmio_uncores;
int ret;
ret = uncore_types_init(types, true);
if (ret)
goto err;
for (; *types; types++) {
ret = type_pmu_register(*types);
if (ret)
goto err;
}
return 0;
err:
uncore_types_exit(uncore_mmio_uncores);
uncore_mmio_uncores = empty_uncore;
return ret;
}
struct intel_uncore_init_fun {
void (*cpu_init)(void);
int (*pci_init)(void);
void (*mmio_init)(void);
bool use_discovery;
};
static const struct intel_uncore_init_fun nhm_uncore_init __initconst = {
.cpu_init = nhm_uncore_cpu_init,
};
static const struct intel_uncore_init_fun snb_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = snb_uncore_pci_init,
};
static const struct intel_uncore_init_fun ivb_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = ivb_uncore_pci_init,
};
static const struct intel_uncore_init_fun hsw_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = hsw_uncore_pci_init,
};
static const struct intel_uncore_init_fun bdw_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = bdw_uncore_pci_init,
};
static const struct intel_uncore_init_fun snbep_uncore_init __initconst = {
.cpu_init = snbep_uncore_cpu_init,
.pci_init = snbep_uncore_pci_init,
};
static const struct intel_uncore_init_fun nhmex_uncore_init __initconst = {
.cpu_init = nhmex_uncore_cpu_init,
};
static const struct intel_uncore_init_fun ivbep_uncore_init __initconst = {
.cpu_init = ivbep_uncore_cpu_init,
.pci_init = ivbep_uncore_pci_init,
};
static const struct intel_uncore_init_fun hswep_uncore_init __initconst = {
.cpu_init = hswep_uncore_cpu_init,
.pci_init = hswep_uncore_pci_init,
};
static const struct intel_uncore_init_fun bdx_uncore_init __initconst = {
.cpu_init = bdx_uncore_cpu_init,
.pci_init = bdx_uncore_pci_init,
};
static const struct intel_uncore_init_fun knl_uncore_init __initconst = {
.cpu_init = knl_uncore_cpu_init,
.pci_init = knl_uncore_pci_init,
};
static const struct intel_uncore_init_fun skl_uncore_init __initconst = {
.cpu_init = skl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun skx_uncore_init __initconst = {
.cpu_init = skx_uncore_cpu_init,
.pci_init = skx_uncore_pci_init,
};
static const struct intel_uncore_init_fun icl_uncore_init __initconst = {
.cpu_init = icl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun tgl_uncore_init __initconst = {
.cpu_init = tgl_uncore_cpu_init,
.mmio_init = tgl_uncore_mmio_init,
};
static const struct intel_uncore_init_fun tgl_l_uncore_init __initconst = {
.cpu_init = tgl_uncore_cpu_init,
.mmio_init = tgl_l_uncore_mmio_init,
};
static const struct intel_uncore_init_fun rkl_uncore_init __initconst = {
.cpu_init = tgl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun adl_uncore_init __initconst = {
.cpu_init = adl_uncore_cpu_init,
.mmio_init = adl_uncore_mmio_init,
};
static const struct intel_uncore_init_fun mtl_uncore_init __initconst = {
.cpu_init = mtl_uncore_cpu_init,
.mmio_init = adl_uncore_mmio_init,
};
static const struct intel_uncore_init_fun icx_uncore_init __initconst = {
.cpu_init = icx_uncore_cpu_init,
.pci_init = icx_uncore_pci_init,
.mmio_init = icx_uncore_mmio_init,
};
static const struct intel_uncore_init_fun snr_uncore_init __initconst = {
.cpu_init = snr_uncore_cpu_init,
.pci_init = snr_uncore_pci_init,
.mmio_init = snr_uncore_mmio_init,
};
static const struct intel_uncore_init_fun spr_uncore_init __initconst = {
.cpu_init = spr_uncore_cpu_init,
.pci_init = spr_uncore_pci_init,
.mmio_init = spr_uncore_mmio_init,
.use_discovery = true,
};
static const struct intel_uncore_init_fun generic_uncore_init __initconst = {
.cpu_init = intel_uncore_generic_uncore_cpu_init,
.pci_init = intel_uncore_generic_uncore_pci_init,
.mmio_init = intel_uncore_generic_uncore_mmio_init,
};
static const struct x86_cpu_id intel_uncore_match[] __initconst = {
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EP, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EP, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &snb_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &ivb_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &hsw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &hsw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &hsw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &bdw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &bdw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &snbep_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EX, &nhmex_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EX, &nhmex_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ivbep_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &hswep_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &bdx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &bdx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &knl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &knl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &skx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &icl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &icl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &icl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &icx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &icx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &tgl_l_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &tgl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rkl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &adl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &adl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, &adl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &adl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &adl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &adl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, &mtl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, &mtl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &spr_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &spr_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &snr_uncore_init),
{},
};
MODULE_DEVICE_TABLE(x86cpu, intel_uncore_match);
static int __init intel_uncore_init(void)
{
const struct x86_cpu_id *id;
struct intel_uncore_init_fun *uncore_init;
int pret = 0, cret = 0, mret = 0, ret;
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
return -ENODEV;
__uncore_max_dies =
topology_max_packages() * topology_max_die_per_package();
id = x86_match_cpu(intel_uncore_match);
if (!id) {
if (!uncore_no_discover && intel_uncore_has_discovery_tables())
uncore_init = (struct intel_uncore_init_fun *)&generic_uncore_init;
else
return -ENODEV;
} else {
uncore_init = (struct intel_uncore_init_fun *)id->driver_data;
if (uncore_no_discover && uncore_init->use_discovery)
return -ENODEV;
if (uncore_init->use_discovery && !intel_uncore_has_discovery_tables())
return -ENODEV;
}
if (uncore_init->pci_init) {
pret = uncore_init->pci_init();
if (!pret)
pret = uncore_pci_init();
}
if (uncore_init->cpu_init) {
uncore_init->cpu_init();
cret = uncore_cpu_init();
}
if (uncore_init->mmio_init) {
uncore_init->mmio_init();
mret = uncore_mmio_init();
}
if (cret && pret && mret) {
ret = -ENODEV;
goto free_discovery;
}
/* Install hotplug callbacks to setup the targets for each package */
ret = cpuhp_setup_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE,
"perf/x86/intel/uncore:online",
uncore_event_cpu_online,
uncore_event_cpu_offline);
if (ret)
goto err;
return 0;
err:
uncore_types_exit(uncore_msr_uncores);
uncore_types_exit(uncore_mmio_uncores);
uncore_pci_exit();
free_discovery:
intel_uncore_clear_discovery_tables();
return ret;
}
module_init(intel_uncore_init);
static void __exit intel_uncore_exit(void)
{
cpuhp_remove_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE);
uncore_types_exit(uncore_msr_uncores);
uncore_types_exit(uncore_mmio_uncores);
uncore_pci_exit();
intel_uncore_clear_discovery_tables();
}
module_exit(intel_uncore_exit);