Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | /* * Copyright (c) 2014 Samsung Electronics Co., Ltd * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <linux/err.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/mutex.h> #include <drm/drm_atomic_state_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_encoder.h> #include <drm/drm_of.h> #include <drm/drm_print.h> #include "drm_crtc_internal.h" /** * DOC: overview * * &struct drm_bridge represents a device that hangs on to an encoder. These are * handy when a regular &drm_encoder entity isn't enough to represent the entire * encoder chain. * * A bridge is always attached to a single &drm_encoder at a time, but can be * either connected to it directly, or through a chain of bridges:: * * [ CRTC ---> ] Encoder ---> Bridge A ---> Bridge B * * Here, the output of the encoder feeds to bridge A, and that furthers feeds to * bridge B. Bridge chains can be arbitrarily long, and shall be fully linear: * Chaining multiple bridges to the output of a bridge, or the same bridge to * the output of different bridges, is not supported. * * &drm_bridge, like &drm_panel, aren't &drm_mode_object entities like planes, * CRTCs, encoders or connectors and hence are not visible to userspace. They * just provide additional hooks to get the desired output at the end of the * encoder chain. */ /** * DOC: display driver integration * * Display drivers are responsible for linking encoders with the first bridge * in the chains. This is done by acquiring the appropriate bridge with * devm_drm_of_get_bridge(). Once acquired, the bridge shall be attached to the * encoder with a call to drm_bridge_attach(). * * Bridges are responsible for linking themselves with the next bridge in the * chain, if any. This is done the same way as for encoders, with the call to * drm_bridge_attach() occurring in the &drm_bridge_funcs.attach operation. * * Once these links are created, the bridges can participate along with encoder * functions to perform mode validation and fixup (through * drm_bridge_chain_mode_valid() and drm_atomic_bridge_chain_check()), mode * setting (through drm_bridge_chain_mode_set()), enable (through * drm_atomic_bridge_chain_pre_enable() and drm_atomic_bridge_chain_enable()) * and disable (through drm_atomic_bridge_chain_disable() and * drm_atomic_bridge_chain_post_disable()). Those functions call the * corresponding operations provided in &drm_bridge_funcs in sequence for all * bridges in the chain. * * For display drivers that use the atomic helpers * drm_atomic_helper_check_modeset(), * drm_atomic_helper_commit_modeset_enables() and * drm_atomic_helper_commit_modeset_disables() (either directly in hand-rolled * commit check and commit tail handlers, or through the higher-level * drm_atomic_helper_check() and drm_atomic_helper_commit_tail() or * drm_atomic_helper_commit_tail_rpm() helpers), this is done transparently and * requires no intervention from the driver. For other drivers, the relevant * DRM bridge chain functions shall be called manually. * * Bridges also participate in implementing the &drm_connector at the end of * the bridge chain. Display drivers may use the drm_bridge_connector_init() * helper to create the &drm_connector, or implement it manually on top of the * connector-related operations exposed by the bridge (see the overview * documentation of bridge operations for more details). */ /** * DOC: special care dsi * * The interaction between the bridges and other frameworks involved in * the probing of the upstream driver and the bridge driver can be * challenging. Indeed, there's multiple cases that needs to be * considered: * * - The upstream driver doesn't use the component framework and isn't a * MIPI-DSI host. In this case, the bridge driver will probe at some * point and the upstream driver should try to probe again by returning * EPROBE_DEFER as long as the bridge driver hasn't probed. * * - The upstream driver doesn't use the component framework, but is a * MIPI-DSI host. The bridge device uses the MIPI-DCS commands to be * controlled. In this case, the bridge device is a child of the * display device and when it will probe it's assured that the display * device (and MIPI-DSI host) is present. The upstream driver will be * assured that the bridge driver is connected between the * &mipi_dsi_host_ops.attach and &mipi_dsi_host_ops.detach operations. * Therefore, it must run mipi_dsi_host_register() in its probe * function, and then run drm_bridge_attach() in its * &mipi_dsi_host_ops.attach hook. * * - The upstream driver uses the component framework and is a MIPI-DSI * host. The bridge device uses the MIPI-DCS commands to be * controlled. This is the same situation than above, and can run * mipi_dsi_host_register() in either its probe or bind hooks. * * - The upstream driver uses the component framework and is a MIPI-DSI * host. The bridge device uses a separate bus (such as I2C) to be * controlled. In this case, there's no correlation between the probe * of the bridge and upstream drivers, so care must be taken to avoid * an endless EPROBE_DEFER loop, with each driver waiting for the * other to probe. * * The ideal pattern to cover the last item (and all the others in the * MIPI-DSI host driver case) is to split the operations like this: * * - The MIPI-DSI host driver must run mipi_dsi_host_register() in its * probe hook. It will make sure that the MIPI-DSI host sticks around, * and that the driver's bind can be called. * * - In its probe hook, the bridge driver must try to find its MIPI-DSI * host, register as a MIPI-DSI device and attach the MIPI-DSI device * to its host. The bridge driver is now functional. * * - In its &struct mipi_dsi_host_ops.attach hook, the MIPI-DSI host can * now add its component. Its bind hook will now be called and since * the bridge driver is attached and registered, we can now look for * and attach it. * * At this point, we're now certain that both the upstream driver and * the bridge driver are functional and we can't have a deadlock-like * situation when probing. */ static DEFINE_MUTEX(bridge_lock); static LIST_HEAD(bridge_list); /** * drm_bridge_add - add the given bridge to the global bridge list * * @bridge: bridge control structure */ void drm_bridge_add(struct drm_bridge *bridge) { mutex_init(&bridge->hpd_mutex); mutex_lock(&bridge_lock); list_add_tail(&bridge->list, &bridge_list); mutex_unlock(&bridge_lock); } EXPORT_SYMBOL(drm_bridge_add); static void drm_bridge_remove_void(void *bridge) { drm_bridge_remove(bridge); } /** * devm_drm_bridge_add - devm managed version of drm_bridge_add() * * @dev: device to tie the bridge lifetime to * @bridge: bridge control structure * * This is the managed version of drm_bridge_add() which automatically * calls drm_bridge_remove() when @dev is unbound. * * Return: 0 if no error or negative error code. */ int devm_drm_bridge_add(struct device *dev, struct drm_bridge *bridge) { drm_bridge_add(bridge); return devm_add_action_or_reset(dev, drm_bridge_remove_void, bridge); } EXPORT_SYMBOL(devm_drm_bridge_add); /** * drm_bridge_remove - remove the given bridge from the global bridge list * * @bridge: bridge control structure */ void drm_bridge_remove(struct drm_bridge *bridge) { mutex_lock(&bridge_lock); list_del_init(&bridge->list); mutex_unlock(&bridge_lock); mutex_destroy(&bridge->hpd_mutex); } EXPORT_SYMBOL(drm_bridge_remove); static struct drm_private_state * drm_bridge_atomic_duplicate_priv_state(struct drm_private_obj *obj) { struct drm_bridge *bridge = drm_priv_to_bridge(obj); struct drm_bridge_state *state; state = bridge->funcs->atomic_duplicate_state(bridge); return state ? &state->base : NULL; } static void drm_bridge_atomic_destroy_priv_state(struct drm_private_obj *obj, struct drm_private_state *s) { struct drm_bridge_state *state = drm_priv_to_bridge_state(s); struct drm_bridge *bridge = drm_priv_to_bridge(obj); bridge->funcs->atomic_destroy_state(bridge, state); } static const struct drm_private_state_funcs drm_bridge_priv_state_funcs = { .atomic_duplicate_state = drm_bridge_atomic_duplicate_priv_state, .atomic_destroy_state = drm_bridge_atomic_destroy_priv_state, }; /** * drm_bridge_attach - attach the bridge to an encoder's chain * * @encoder: DRM encoder * @bridge: bridge to attach * @previous: previous bridge in the chain (optional) * @flags: DRM_BRIDGE_ATTACH_* flags * * Called by a kms driver to link the bridge to an encoder's chain. The previous * argument specifies the previous bridge in the chain. If NULL, the bridge is * linked directly at the encoder's output. Otherwise it is linked at the * previous bridge's output. * * If non-NULL the previous bridge must be already attached by a call to this * function. * * Note that bridges attached to encoders are auto-detached during encoder * cleanup in drm_encoder_cleanup(), so drm_bridge_attach() should generally * *not* be balanced with a drm_bridge_detach() in driver code. * * RETURNS: * Zero on success, error code on failure */ int drm_bridge_attach(struct drm_encoder *encoder, struct drm_bridge *bridge, struct drm_bridge *previous, enum drm_bridge_attach_flags flags) { int ret; if (!encoder || !bridge) return -EINVAL; if (previous && (!previous->dev || previous->encoder != encoder)) return -EINVAL; if (bridge->dev) return -EBUSY; bridge->dev = encoder->dev; bridge->encoder = encoder; if (previous) list_add(&bridge->chain_node, &previous->chain_node); else list_add(&bridge->chain_node, &encoder->bridge_chain); if (bridge->funcs->attach) { ret = bridge->funcs->attach(bridge, flags); if (ret < 0) goto err_reset_bridge; } if (bridge->funcs->atomic_reset) { struct drm_bridge_state *state; state = bridge->funcs->atomic_reset(bridge); if (IS_ERR(state)) { ret = PTR_ERR(state); goto err_detach_bridge; } drm_atomic_private_obj_init(bridge->dev, &bridge->base, &state->base, &drm_bridge_priv_state_funcs); } return 0; err_detach_bridge: if (bridge->funcs->detach) bridge->funcs->detach(bridge); err_reset_bridge: bridge->dev = NULL; bridge->encoder = NULL; list_del(&bridge->chain_node); #ifdef CONFIG_OF DRM_ERROR("failed to attach bridge %pOF to encoder %s: %d\n", bridge->of_node, encoder->name, ret); #else DRM_ERROR("failed to attach bridge to encoder %s: %d\n", encoder->name, ret); #endif return ret; } EXPORT_SYMBOL(drm_bridge_attach); void drm_bridge_detach(struct drm_bridge *bridge) { if (WARN_ON(!bridge)) return; if (WARN_ON(!bridge->dev)) return; if (bridge->funcs->atomic_reset) drm_atomic_private_obj_fini(&bridge->base); if (bridge->funcs->detach) bridge->funcs->detach(bridge); list_del(&bridge->chain_node); bridge->dev = NULL; } /** * DOC: bridge operations * * Bridge drivers expose operations through the &drm_bridge_funcs structure. * The DRM internals (atomic and CRTC helpers) use the helpers defined in * drm_bridge.c to call bridge operations. Those operations are divided in * three big categories to support different parts of the bridge usage. * * - The encoder-related operations support control of the bridges in the * chain, and are roughly counterparts to the &drm_encoder_helper_funcs * operations. They are used by the legacy CRTC and the atomic modeset * helpers to perform mode validation, fixup and setting, and enable and * disable the bridge automatically. * * The enable and disable operations are split in * &drm_bridge_funcs.pre_enable, &drm_bridge_funcs.enable, * &drm_bridge_funcs.disable and &drm_bridge_funcs.post_disable to provide * finer-grained control. * * Bridge drivers may implement the legacy version of those operations, or * the atomic version (prefixed with atomic\_), in which case they shall also * implement the atomic state bookkeeping operations * (&drm_bridge_funcs.atomic_duplicate_state, * &drm_bridge_funcs.atomic_destroy_state and &drm_bridge_funcs.reset). * Mixing atomic and non-atomic versions of the operations is not supported. * * - The bus format negotiation operations * &drm_bridge_funcs.atomic_get_output_bus_fmts and * &drm_bridge_funcs.atomic_get_input_bus_fmts allow bridge drivers to * negotiate the formats transmitted between bridges in the chain when * multiple formats are supported. Negotiation for formats is performed * transparently for display drivers by the atomic modeset helpers. Only * atomic versions of those operations exist, bridge drivers that need to * implement them shall thus also implement the atomic version of the * encoder-related operations. This feature is not supported by the legacy * CRTC helpers. * * - The connector-related operations support implementing a &drm_connector * based on a chain of bridges. DRM bridges traditionally create a * &drm_connector for bridges meant to be used at the end of the chain. This * puts additional burden on bridge drivers, especially for bridges that may * be used in the middle of a chain or at the end of it. Furthermore, it * requires all operations of the &drm_connector to be handled by a single * bridge, which doesn't always match the hardware architecture. * * To simplify bridge drivers and make the connector implementation more * flexible, a new model allows bridges to unconditionally skip creation of * &drm_connector and instead expose &drm_bridge_funcs operations to support * an externally-implemented &drm_connector. Those operations are * &drm_bridge_funcs.detect, &drm_bridge_funcs.get_modes, * &drm_bridge_funcs.get_edid, &drm_bridge_funcs.hpd_notify, * &drm_bridge_funcs.hpd_enable and &drm_bridge_funcs.hpd_disable. When * implemented, display drivers shall create a &drm_connector instance for * each chain of bridges, and implement those connector instances based on * the bridge connector operations. * * Bridge drivers shall implement the connector-related operations for all * the features that the bridge hardware support. For instance, if a bridge * supports reading EDID, the &drm_bridge_funcs.get_edid shall be * implemented. This however doesn't mean that the DDC lines are wired to the * bridge on a particular platform, as they could also be connected to an I2C * controller of the SoC. Support for the connector-related operations on the * running platform is reported through the &drm_bridge.ops flags. Bridge * drivers shall detect which operations they can support on the platform * (usually this information is provided by ACPI or DT), and set the * &drm_bridge.ops flags for all supported operations. A flag shall only be * set if the corresponding &drm_bridge_funcs operation is implemented, but * an implemented operation doesn't necessarily imply that the corresponding * flag will be set. Display drivers shall use the &drm_bridge.ops flags to * decide which bridge to delegate a connector operation to. This mechanism * allows providing a single static const &drm_bridge_funcs instance in * bridge drivers, improving security by storing function pointers in * read-only memory. * * In order to ease transition, bridge drivers may support both the old and * new models by making connector creation optional and implementing the * connected-related bridge operations. Connector creation is then controlled * by the flags argument to the drm_bridge_attach() function. Display drivers * that support the new model and create connectors themselves shall set the * %DRM_BRIDGE_ATTACH_NO_CONNECTOR flag, and bridge drivers shall then skip * connector creation. For intermediate bridges in the chain, the flag shall * be passed to the drm_bridge_attach() call for the downstream bridge. * Bridge drivers that implement the new model only shall return an error * from their &drm_bridge_funcs.attach handler when the * %DRM_BRIDGE_ATTACH_NO_CONNECTOR flag is not set. New display drivers * should use the new model, and convert the bridge drivers they use if * needed, in order to gradually transition to the new model. */ /** * drm_bridge_chain_mode_fixup - fixup proposed mode for all bridges in the * encoder chain * @bridge: bridge control structure * @mode: desired mode to be set for the bridge * @adjusted_mode: updated mode that works for this bridge * * Calls &drm_bridge_funcs.mode_fixup for all the bridges in the * encoder chain, starting from the first bridge to the last. * * Note: the bridge passed should be the one closest to the encoder * * RETURNS: * true on success, false on failure */ bool drm_bridge_chain_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_encoder *encoder; if (!bridge) return true; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (!bridge->funcs->mode_fixup) continue; if (!bridge->funcs->mode_fixup(bridge, mode, adjusted_mode)) return false; } return true; } EXPORT_SYMBOL(drm_bridge_chain_mode_fixup); /** * drm_bridge_chain_mode_valid - validate the mode against all bridges in the * encoder chain. * @bridge: bridge control structure * @info: display info against which the mode shall be validated * @mode: desired mode to be validated * * Calls &drm_bridge_funcs.mode_valid for all the bridges in the encoder * chain, starting from the first bridge to the last. If at least one bridge * does not accept the mode the function returns the error code. * * Note: the bridge passed should be the one closest to the encoder. * * RETURNS: * MODE_OK on success, drm_mode_status Enum error code on failure */ enum drm_mode_status drm_bridge_chain_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct drm_encoder *encoder; if (!bridge) return MODE_OK; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { enum drm_mode_status ret; if (!bridge->funcs->mode_valid) continue; ret = bridge->funcs->mode_valid(bridge, info, mode); if (ret != MODE_OK) return ret; } return MODE_OK; } EXPORT_SYMBOL(drm_bridge_chain_mode_valid); /** * drm_bridge_chain_disable - disables all bridges in the encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.disable op for all the bridges in the encoder * chain, starting from the last bridge to the first. These are called before * calling the encoder's prepare op. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_disable(struct drm_bridge *bridge) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->disable) iter->funcs->disable(iter); if (iter == bridge) break; } } EXPORT_SYMBOL(drm_bridge_chain_disable); /** * drm_bridge_chain_post_disable - cleans up after disabling all bridges in the * encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.post_disable op for all the bridges in the * encoder chain, starting from the first bridge to the last. These are called * after completing the encoder's prepare op. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_post_disable(struct drm_bridge *bridge) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->post_disable) bridge->funcs->post_disable(bridge); } } EXPORT_SYMBOL(drm_bridge_chain_post_disable); /** * drm_bridge_chain_mode_set - set proposed mode for all bridges in the * encoder chain * @bridge: bridge control structure * @mode: desired mode to be set for the encoder chain * @adjusted_mode: updated mode that works for this encoder chain * * Calls &drm_bridge_funcs.mode_set op for all the bridges in the * encoder chain, starting from the first bridge to the last. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->mode_set) bridge->funcs->mode_set(bridge, mode, adjusted_mode); } } EXPORT_SYMBOL(drm_bridge_chain_mode_set); /** * drm_bridge_chain_pre_enable - prepares for enabling all bridges in the * encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.pre_enable op for all the bridges in the encoder * chain, starting from the last bridge to the first. These are called * before calling the encoder's commit op. * * Note: the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_pre_enable(struct drm_bridge *bridge) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->pre_enable) iter->funcs->pre_enable(iter); if (iter == bridge) break; } } EXPORT_SYMBOL(drm_bridge_chain_pre_enable); /** * drm_bridge_chain_enable - enables all bridges in the encoder chain * @bridge: bridge control structure * * Calls &drm_bridge_funcs.enable op for all the bridges in the encoder * chain, starting from the first bridge to the last. These are called * after completing the encoder's commit op. * * Note that the bridge passed should be the one closest to the encoder */ void drm_bridge_chain_enable(struct drm_bridge *bridge) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->enable) bridge->funcs->enable(bridge); } } EXPORT_SYMBOL(drm_bridge_chain_enable); /** * drm_atomic_bridge_chain_disable - disables all bridges in the encoder chain * @bridge: bridge control structure * @old_state: old atomic state * * Calls &drm_bridge_funcs.atomic_disable (falls back on * &drm_bridge_funcs.disable) op for all the bridges in the encoder chain, * starting from the last bridge to the first. These are called before calling * &drm_encoder_helper_funcs.atomic_disable * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_disable(struct drm_bridge *bridge, struct drm_atomic_state *old_state) { struct drm_encoder *encoder; struct drm_bridge *iter; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->funcs->atomic_disable) { struct drm_bridge_state *old_bridge_state; old_bridge_state = drm_atomic_get_old_bridge_state(old_state, iter); if (WARN_ON(!old_bridge_state)) return; iter->funcs->atomic_disable(iter, old_bridge_state); } else if (iter->funcs->disable) { iter->funcs->disable(iter); } if (iter == bridge) break; } } EXPORT_SYMBOL(drm_atomic_bridge_chain_disable); static void drm_atomic_bridge_call_post_disable(struct drm_bridge *bridge, struct drm_atomic_state *old_state) { if (old_state && bridge->funcs->atomic_post_disable) { struct drm_bridge_state *old_bridge_state; old_bridge_state = drm_atomic_get_old_bridge_state(old_state, bridge); if (WARN_ON(!old_bridge_state)) return; bridge->funcs->atomic_post_disable(bridge, old_bridge_state); } else if (bridge->funcs->post_disable) { bridge->funcs->post_disable(bridge); } } /** * drm_atomic_bridge_chain_post_disable - cleans up after disabling all bridges * in the encoder chain * @bridge: bridge control structure * @old_state: old atomic state * * Calls &drm_bridge_funcs.atomic_post_disable (falls back on * &drm_bridge_funcs.post_disable) op for all the bridges in the encoder chain, * starting from the first bridge to the last. These are called after completing * &drm_encoder_helper_funcs.atomic_disable * * If a bridge sets @pre_enable_prev_first, then the @post_disable for that * bridge will be called before the previous one to reverse the @pre_enable * calling direction. * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_post_disable(struct drm_bridge *bridge, struct drm_atomic_state *old_state) { struct drm_encoder *encoder; struct drm_bridge *next, *limit; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { limit = NULL; if (!list_is_last(&bridge->chain_node, &encoder->bridge_chain)) { next = list_next_entry(bridge, chain_node); if (next->pre_enable_prev_first) { /* next bridge had requested that prev * was enabled first, so disabled last */ limit = next; /* Find the next bridge that has NOT requested * prev to be enabled first / disabled last */ list_for_each_entry_from(next, &encoder->bridge_chain, chain_node) { if (next->pre_enable_prev_first) { next = list_prev_entry(next, chain_node); limit = next; break; } } /* Call these bridges in reverse order */ list_for_each_entry_from_reverse(next, &encoder->bridge_chain, chain_node) { if (next == bridge) break; drm_atomic_bridge_call_post_disable(next, old_state); } } } drm_atomic_bridge_call_post_disable(bridge, old_state); if (limit) /* Jump all bridges that we have already post_disabled */ bridge = limit; } } EXPORT_SYMBOL(drm_atomic_bridge_chain_post_disable); static void drm_atomic_bridge_call_pre_enable(struct drm_bridge *bridge, struct drm_atomic_state *old_state) { if (old_state && bridge->funcs->atomic_pre_enable) { struct drm_bridge_state *old_bridge_state; old_bridge_state = drm_atomic_get_old_bridge_state(old_state, bridge); if (WARN_ON(!old_bridge_state)) return; bridge->funcs->atomic_pre_enable(bridge, old_bridge_state); } else if (bridge->funcs->pre_enable) { bridge->funcs->pre_enable(bridge); } } /** * drm_atomic_bridge_chain_pre_enable - prepares for enabling all bridges in * the encoder chain * @bridge: bridge control structure * @old_state: old atomic state * * Calls &drm_bridge_funcs.atomic_pre_enable (falls back on * &drm_bridge_funcs.pre_enable) op for all the bridges in the encoder chain, * starting from the last bridge to the first. These are called before calling * &drm_encoder_helper_funcs.atomic_enable * * If a bridge sets @pre_enable_prev_first, then the pre_enable for the * prev bridge will be called before pre_enable of this bridge. * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_pre_enable(struct drm_bridge *bridge, struct drm_atomic_state *old_state) { struct drm_encoder *encoder; struct drm_bridge *iter, *next, *limit; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { if (iter->pre_enable_prev_first) { next = iter; limit = bridge; list_for_each_entry_from_reverse(next, &encoder->bridge_chain, chain_node) { if (next == bridge) break; if (!next->pre_enable_prev_first) { /* Found first bridge that does NOT * request prev to be enabled first */ limit = list_prev_entry(next, chain_node); break; } } list_for_each_entry_from(next, &encoder->bridge_chain, chain_node) { /* Call requested prev bridge pre_enable * in order. */ if (next == iter) /* At the first bridge to request prev * bridges called first. */ break; drm_atomic_bridge_call_pre_enable(next, old_state); } } drm_atomic_bridge_call_pre_enable(iter, old_state); if (iter->pre_enable_prev_first) /* Jump all bridges that we have already pre_enabled */ iter = limit; if (iter == bridge) break; } } EXPORT_SYMBOL(drm_atomic_bridge_chain_pre_enable); /** * drm_atomic_bridge_chain_enable - enables all bridges in the encoder chain * @bridge: bridge control structure * @old_state: old atomic state * * Calls &drm_bridge_funcs.atomic_enable (falls back on * &drm_bridge_funcs.enable) op for all the bridges in the encoder chain, * starting from the first bridge to the last. These are called after completing * &drm_encoder_helper_funcs.atomic_enable * * Note: the bridge passed should be the one closest to the encoder */ void drm_atomic_bridge_chain_enable(struct drm_bridge *bridge, struct drm_atomic_state *old_state) { struct drm_encoder *encoder; if (!bridge) return; encoder = bridge->encoder; list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) { if (bridge->funcs->atomic_enable) { struct drm_bridge_state *old_bridge_state; old_bridge_state = drm_atomic_get_old_bridge_state(old_state, bridge); if (WARN_ON(!old_bridge_state)) return; bridge->funcs->atomic_enable(bridge, old_bridge_state); } else if (bridge->funcs->enable) { bridge->funcs->enable(bridge); } } } EXPORT_SYMBOL(drm_atomic_bridge_chain_enable); static int drm_atomic_bridge_check(struct drm_bridge *bridge, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { if (bridge->funcs->atomic_check) { struct drm_bridge_state *bridge_state; int ret; bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state, bridge); if (WARN_ON(!bridge_state)) return -EINVAL; ret = bridge->funcs->atomic_check(bridge, bridge_state, crtc_state, conn_state); if (ret) return ret; } else if (bridge->funcs->mode_fixup) { if (!bridge->funcs->mode_fixup(bridge, &crtc_state->mode, &crtc_state->adjusted_mode)) return -EINVAL; } return 0; } static int select_bus_fmt_recursive(struct drm_bridge *first_bridge, struct drm_bridge *cur_bridge, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 out_bus_fmt) { unsigned int i, num_in_bus_fmts = 0; struct drm_bridge_state *cur_state; struct drm_bridge *prev_bridge; u32 *in_bus_fmts; int ret; prev_bridge = drm_bridge_get_prev_bridge(cur_bridge); cur_state = drm_atomic_get_new_bridge_state(crtc_state->state, cur_bridge); /* * If bus format negotiation is not supported by this bridge, let's * pass MEDIA_BUS_FMT_FIXED to the previous bridge in the chain and * hope that it can handle this situation gracefully (by providing * appropriate default values). */ if (!cur_bridge->funcs->atomic_get_input_bus_fmts) { if (cur_bridge != first_bridge) { ret = select_bus_fmt_recursive(first_bridge, prev_bridge, crtc_state, conn_state, MEDIA_BUS_FMT_FIXED); if (ret) return ret; } /* * Driver does not implement the atomic state hooks, but that's * fine, as long as it does not access the bridge state. */ if (cur_state) { cur_state->input_bus_cfg.format = MEDIA_BUS_FMT_FIXED; cur_state->output_bus_cfg.format = out_bus_fmt; } return 0; } /* * If the driver implements ->atomic_get_input_bus_fmts() it * should also implement the atomic state hooks. */ if (WARN_ON(!cur_state)) return -EINVAL; in_bus_fmts = cur_bridge->funcs->atomic_get_input_bus_fmts(cur_bridge, cur_state, crtc_state, conn_state, out_bus_fmt, &num_in_bus_fmts); if (!num_in_bus_fmts) return -ENOTSUPP; else if (!in_bus_fmts) return -ENOMEM; if (first_bridge == cur_bridge) { cur_state->input_bus_cfg.format = in_bus_fmts[0]; cur_state->output_bus_cfg.format = out_bus_fmt; kfree(in_bus_fmts); return 0; } for (i = 0; i < num_in_bus_fmts; i++) { ret = select_bus_fmt_recursive(first_bridge, prev_bridge, crtc_state, conn_state, in_bus_fmts[i]); if (ret != -ENOTSUPP) break; } if (!ret) { cur_state->input_bus_cfg.format = in_bus_fmts[i]; cur_state->output_bus_cfg.format = out_bus_fmt; } kfree(in_bus_fmts); return ret; } /* * This function is called by &drm_atomic_bridge_chain_check() just before * calling &drm_bridge_funcs.atomic_check() on all elements of the chain. * It performs bus format negotiation between bridge elements. The negotiation * happens in reverse order, starting from the last element in the chain up to * @bridge. * * Negotiation starts by retrieving supported output bus formats on the last * bridge element and testing them one by one. The test is recursive, meaning * that for each tested output format, the whole chain will be walked backward, * and each element will have to choose an input bus format that can be * transcoded to the requested output format. When a bridge element does not * support transcoding into a specific output format -ENOTSUPP is returned and * the next bridge element will have to try a different format. If none of the * combinations worked, -ENOTSUPP is returned and the atomic modeset will fail. * * This implementation is relying on * &drm_bridge_funcs.atomic_get_output_bus_fmts() and * &drm_bridge_funcs.atomic_get_input_bus_fmts() to gather supported * input/output formats. * * When &drm_bridge_funcs.atomic_get_output_bus_fmts() is not implemented by * the last element of the chain, &drm_atomic_bridge_chain_select_bus_fmts() * tries a single format: &drm_connector.display_info.bus_formats[0] if * available, MEDIA_BUS_FMT_FIXED otherwise. * * When &drm_bridge_funcs.atomic_get_input_bus_fmts() is not implemented, * &drm_atomic_bridge_chain_select_bus_fmts() skips the negotiation on the * bridge element that lacks this hook and asks the previous element in the * chain to try MEDIA_BUS_FMT_FIXED. It's up to bridge drivers to decide what * to do in that case (fail if they want to enforce bus format negotiation, or * provide a reasonable default if they need to support pipelines where not * all elements support bus format negotiation). */ static int drm_atomic_bridge_chain_select_bus_fmts(struct drm_bridge *bridge, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_connector *conn = conn_state->connector; struct drm_encoder *encoder = bridge->encoder; struct drm_bridge_state *last_bridge_state; unsigned int i, num_out_bus_fmts = 0; struct drm_bridge *last_bridge; u32 *out_bus_fmts; int ret = 0; last_bridge = list_last_entry(&encoder->bridge_chain, struct drm_bridge, chain_node); last_bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state, last_bridge); if (last_bridge->funcs->atomic_get_output_bus_fmts) { const struct drm_bridge_funcs *funcs = last_bridge->funcs; /* * If the driver implements ->atomic_get_output_bus_fmts() it * should also implement the atomic state hooks. */ if (WARN_ON(!last_bridge_state)) return -EINVAL; out_bus_fmts = funcs->atomic_get_output_bus_fmts(last_bridge, last_bridge_state, crtc_state, conn_state, &num_out_bus_fmts); if (!num_out_bus_fmts) return -ENOTSUPP; else if (!out_bus_fmts) return -ENOMEM; } else { num_out_bus_fmts = 1; out_bus_fmts = kmalloc(sizeof(*out_bus_fmts), GFP_KERNEL); if (!out_bus_fmts) return -ENOMEM; if (conn->display_info.num_bus_formats && conn->display_info.bus_formats) out_bus_fmts[0] = conn->display_info.bus_formats[0]; else out_bus_fmts[0] = MEDIA_BUS_FMT_FIXED; } for (i = 0; i < num_out_bus_fmts; i++) { ret = select_bus_fmt_recursive(bridge, last_bridge, crtc_state, conn_state, out_bus_fmts[i]); if (ret != -ENOTSUPP) break; } kfree(out_bus_fmts); return ret; } static void drm_atomic_bridge_propagate_bus_flags(struct drm_bridge *bridge, struct drm_connector *conn, struct drm_atomic_state *state) { struct drm_bridge_state *bridge_state, *next_bridge_state; struct drm_bridge *next_bridge; u32 output_flags = 0; bridge_state = drm_atomic_get_new_bridge_state(state, bridge); /* No bridge state attached to this bridge => nothing to propagate. */ if (!bridge_state) return; next_bridge = drm_bridge_get_next_bridge(bridge); /* * Let's try to apply the most common case here, that is, propagate * display_info flags for the last bridge, and propagate the input * flags of the next bridge element to the output end of the current * bridge when the bridge is not the last one. * There are exceptions to this rule, like when signal inversion is * happening at the board level, but that's something drivers can deal * with from their &drm_bridge_funcs.atomic_check() implementation by * simply overriding the flags value we've set here. */ if (!next_bridge) { output_flags = conn->display_info.bus_flags; } else { next_bridge_state = drm_atomic_get_new_bridge_state(state, next_bridge); /* * No bridge state attached to the next bridge, just leave the * flags to 0. */ if (next_bridge_state) output_flags = next_bridge_state->input_bus_cfg.flags; } bridge_state->output_bus_cfg.flags = output_flags; /* * Propagate the output flags to the input end of the bridge. Again, it's * not necessarily what all bridges want, but that's what most of them * do, and by doing that by default we avoid forcing drivers to * duplicate the "dummy propagation" logic. */ bridge_state->input_bus_cfg.flags = output_flags; } /** * drm_atomic_bridge_chain_check() - Do an atomic check on the bridge chain * @bridge: bridge control structure * @crtc_state: new CRTC state * @conn_state: new connector state * * First trigger a bus format negotiation before calling * &drm_bridge_funcs.atomic_check() (falls back on * &drm_bridge_funcs.mode_fixup()) op for all the bridges in the encoder chain, * starting from the last bridge to the first. These are called before calling * &drm_encoder_helper_funcs.atomic_check() * * RETURNS: * 0 on success, a negative error code on failure */ int drm_atomic_bridge_chain_check(struct drm_bridge *bridge, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_connector *conn = conn_state->connector; struct drm_encoder *encoder; struct drm_bridge *iter; int ret; if (!bridge) return 0; ret = drm_atomic_bridge_chain_select_bus_fmts(bridge, crtc_state, conn_state); if (ret) return ret; encoder = bridge->encoder; list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) { int ret; /* * Bus flags are propagated by default. If a bridge needs to * tweak the input bus flags for any reason, it should happen * in its &drm_bridge_funcs.atomic_check() implementation such * that preceding bridges in the chain can propagate the new * bus flags. */ drm_atomic_bridge_propagate_bus_flags(iter, conn, crtc_state->state); ret = drm_atomic_bridge_check(iter, crtc_state, conn_state); if (ret) return ret; if (iter == bridge) break; } return 0; } EXPORT_SYMBOL(drm_atomic_bridge_chain_check); /** * drm_bridge_detect - check if anything is attached to the bridge output * @bridge: bridge control structure * * If the bridge supports output detection, as reported by the * DRM_BRIDGE_OP_DETECT bridge ops flag, call &drm_bridge_funcs.detect for the * bridge and return the connection status. Otherwise return * connector_status_unknown. * * RETURNS: * The detection status on success, or connector_status_unknown if the bridge * doesn't support output detection. */ enum drm_connector_status drm_bridge_detect(struct drm_bridge *bridge) { if (!(bridge->ops & DRM_BRIDGE_OP_DETECT)) return connector_status_unknown; return bridge->funcs->detect(bridge); } EXPORT_SYMBOL_GPL(drm_bridge_detect); /** * drm_bridge_get_modes - fill all modes currently valid for the sink into the * @connector * @bridge: bridge control structure * @connector: the connector to fill with modes * * If the bridge supports output modes retrieval, as reported by the * DRM_BRIDGE_OP_MODES bridge ops flag, call &drm_bridge_funcs.get_modes to * fill the connector with all valid modes and return the number of modes * added. Otherwise return 0. * * RETURNS: * The number of modes added to the connector. */ int drm_bridge_get_modes(struct drm_bridge *bridge, struct drm_connector *connector) { if (!(bridge->ops & DRM_BRIDGE_OP_MODES)) return 0; return bridge->funcs->get_modes(bridge, connector); } EXPORT_SYMBOL_GPL(drm_bridge_get_modes); /** * drm_bridge_get_edid - get the EDID data of the connected display * @bridge: bridge control structure * @connector: the connector to read EDID for * * If the bridge supports output EDID retrieval, as reported by the * DRM_BRIDGE_OP_EDID bridge ops flag, call &drm_bridge_funcs.get_edid to * get the EDID and return it. Otherwise return NULL. * * RETURNS: * The retrieved EDID on success, or NULL otherwise. */ struct edid *drm_bridge_get_edid(struct drm_bridge *bridge, struct drm_connector *connector) { if (!(bridge->ops & DRM_BRIDGE_OP_EDID)) return NULL; return bridge->funcs->get_edid(bridge, connector); } EXPORT_SYMBOL_GPL(drm_bridge_get_edid); /** * drm_bridge_hpd_enable - enable hot plug detection for the bridge * @bridge: bridge control structure * @cb: hot-plug detection callback * @data: data to be passed to the hot-plug detection callback * * Call &drm_bridge_funcs.hpd_enable if implemented and register the given @cb * and @data as hot plug notification callback. From now on the @cb will be * called with @data when an output status change is detected by the bridge, * until hot plug notification gets disabled with drm_bridge_hpd_disable(). * * Hot plug detection is supported only if the DRM_BRIDGE_OP_HPD flag is set in * bridge->ops. This function shall not be called when the flag is not set. * * Only one hot plug detection callback can be registered at a time, it is an * error to call this function when hot plug detection is already enabled for * the bridge. */ void drm_bridge_hpd_enable(struct drm_bridge *bridge, void (*cb)(void *data, enum drm_connector_status status), void *data) { if (!(bridge->ops & DRM_BRIDGE_OP_HPD)) return; mutex_lock(&bridge->hpd_mutex); if (WARN(bridge->hpd_cb, "Hot plug detection already enabled\n")) goto unlock; bridge->hpd_cb = cb; bridge->hpd_data = data; if (bridge->funcs->hpd_enable) bridge->funcs->hpd_enable(bridge); unlock: mutex_unlock(&bridge->hpd_mutex); } EXPORT_SYMBOL_GPL(drm_bridge_hpd_enable); /** * drm_bridge_hpd_disable - disable hot plug detection for the bridge * @bridge: bridge control structure * * Call &drm_bridge_funcs.hpd_disable if implemented and unregister the hot * plug detection callback previously registered with drm_bridge_hpd_enable(). * Once this function returns the callback will not be called by the bridge * when an output status change occurs. * * Hot plug detection is supported only if the DRM_BRIDGE_OP_HPD flag is set in * bridge->ops. This function shall not be called when the flag is not set. */ void drm_bridge_hpd_disable(struct drm_bridge *bridge) { if (!(bridge->ops & DRM_BRIDGE_OP_HPD)) return; mutex_lock(&bridge->hpd_mutex); if (bridge->funcs->hpd_disable) bridge->funcs->hpd_disable(bridge); bridge->hpd_cb = NULL; bridge->hpd_data = NULL; mutex_unlock(&bridge->hpd_mutex); } EXPORT_SYMBOL_GPL(drm_bridge_hpd_disable); /** * drm_bridge_hpd_notify - notify hot plug detection events * @bridge: bridge control structure * @status: output connection status * * Bridge drivers shall call this function to report hot plug events when they * detect a change in the output status, when hot plug detection has been * enabled by drm_bridge_hpd_enable(). * * This function shall be called in a context that can sleep. */ void drm_bridge_hpd_notify(struct drm_bridge *bridge, enum drm_connector_status status) { mutex_lock(&bridge->hpd_mutex); if (bridge->hpd_cb) bridge->hpd_cb(bridge->hpd_data, status); mutex_unlock(&bridge->hpd_mutex); } EXPORT_SYMBOL_GPL(drm_bridge_hpd_notify); #ifdef CONFIG_OF /** * of_drm_find_bridge - find the bridge corresponding to the device node in * the global bridge list * * @np: device node * * RETURNS: * drm_bridge control struct on success, NULL on failure */ struct drm_bridge *of_drm_find_bridge(struct device_node *np) { struct drm_bridge *bridge; mutex_lock(&bridge_lock); list_for_each_entry(bridge, &bridge_list, list) { if (bridge->of_node == np) { mutex_unlock(&bridge_lock); return bridge; } } mutex_unlock(&bridge_lock); return NULL; } EXPORT_SYMBOL(of_drm_find_bridge); #endif MODULE_AUTHOR("Ajay Kumar <ajaykumar.rs@samsung.com>"); MODULE_DESCRIPTION("DRM bridge infrastructure"); MODULE_LICENSE("GPL and additional rights"); |