Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 | // SPDX-License-Identifier: GPL-2.0 /* * Performance event support for the System z CPU-measurement Sampling Facility * * Copyright IBM Corp. 2013, 2018 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> */ #define KMSG_COMPONENT "cpum_sf" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/perf_event.h> #include <linux/percpu.h> #include <linux/pid.h> #include <linux/notifier.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/moduleparam.h> #include <asm/cpu_mf.h> #include <asm/irq.h> #include <asm/debug.h> #include <asm/timex.h> /* Minimum number of sample-data-block-tables: * At least one table is required for the sampling buffer structure. * A single table contains up to 511 pointers to sample-data-blocks. */ #define CPUM_SF_MIN_SDBT 1 /* Number of sample-data-blocks per sample-data-block-table (SDBT): * A table contains SDB pointers (8 bytes) and one table-link entry * that points to the origin of the next SDBT. */ #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) /* Maximum page offset for an SDBT table-link entry: * If this page offset is reached, a table-link entry to the next SDBT * must be added. */ #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) static inline int require_table_link(const void *sdbt) { return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; } /* Minimum and maximum sampling buffer sizes: * * This number represents the maximum size of the sampling buffer taking * the number of sample-data-block-tables into account. Note that these * numbers apply to the basic-sampling function only. * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if * the diagnostic-sampling function is active. * * Sampling buffer size Buffer characteristics * --------------------------------------------------- * 64KB == 16 pages (4KB per page) * 1 page for SDB-tables * 15 pages for SDBs * * 32MB == 8192 pages (4KB per page) * 16 pages for SDB-tables * 8176 pages for SDBs */ static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; struct sf_buffer { unsigned long *sdbt; /* Sample-data-block-table origin */ /* buffer characteristics (required for buffer increments) */ unsigned long num_sdb; /* Number of sample-data-blocks */ unsigned long num_sdbt; /* Number of sample-data-block-tables */ unsigned long *tail; /* last sample-data-block-table */ }; struct aux_buffer { struct sf_buffer sfb; unsigned long head; /* index of SDB of buffer head */ unsigned long alert_mark; /* index of SDB of alert request position */ unsigned long empty_mark; /* mark of SDB not marked full */ unsigned long *sdb_index; /* SDB address for fast lookup */ unsigned long *sdbt_index; /* SDBT address for fast lookup */ }; struct cpu_hw_sf { /* CPU-measurement sampling information block */ struct hws_qsi_info_block qsi; /* CPU-measurement sampling control block */ struct hws_lsctl_request_block lsctl; struct sf_buffer sfb; /* Sampling buffer */ unsigned int flags; /* Status flags */ struct perf_event *event; /* Scheduled perf event */ struct perf_output_handle handle; /* AUX buffer output handle */ }; static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); /* Debug feature */ static debug_info_t *sfdbg; /* * sf_disable() - Switch off sampling facility */ static int sf_disable(void) { struct hws_lsctl_request_block sreq; memset(&sreq, 0, sizeof(sreq)); return lsctl(&sreq); } /* * sf_buffer_available() - Check for an allocated sampling buffer */ static int sf_buffer_available(struct cpu_hw_sf *cpuhw) { return !!cpuhw->sfb.sdbt; } /* * deallocate sampling facility buffer */ static void free_sampling_buffer(struct sf_buffer *sfb) { unsigned long *sdbt, *curr; if (!sfb->sdbt) return; sdbt = sfb->sdbt; curr = sdbt; /* Free the SDBT after all SDBs are processed... */ while (1) { if (!*curr || !sdbt) break; /* Process table-link entries */ if (is_link_entry(curr)) { curr = get_next_sdbt(curr); if (sdbt) free_page((unsigned long) sdbt); /* If the origin is reached, sampling buffer is freed */ if (curr == sfb->sdbt) break; else sdbt = curr; } else { /* Process SDB pointer */ if (*curr) { free_page(*curr); curr++; } } } debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__, (unsigned long)sfb->sdbt); memset(sfb, 0, sizeof(*sfb)); } static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) { struct hws_trailer_entry *te; unsigned long sdb; /* Allocate and initialize sample-data-block */ sdb = get_zeroed_page(gfp_flags); if (!sdb) return -ENOMEM; te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb); te->header.a = 1; /* Link SDB into the sample-data-block-table */ *sdbt = sdb; return 0; } /* * realloc_sampling_buffer() - extend sampler memory * * Allocates new sample-data-blocks and adds them to the specified sampling * buffer memory. * * Important: This modifies the sampling buffer and must be called when the * sampling facility is disabled. * * Returns zero on success, non-zero otherwise. */ static int realloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb, gfp_t gfp_flags) { int i, rc; unsigned long *new, *tail, *tail_prev = NULL; if (!sfb->sdbt || !sfb->tail) return -EINVAL; if (!is_link_entry(sfb->tail)) return -EINVAL; /* Append to the existing sampling buffer, overwriting the table-link * register. * The tail variables always points to the "tail" (last and table-link) * entry in an SDB-table. */ tail = sfb->tail; /* Do a sanity check whether the table-link entry points to * the sampling buffer origin. */ if (sfb->sdbt != get_next_sdbt(tail)) { debug_sprintf_event(sfdbg, 3, "%s: " "sampling buffer is not linked: origin %#lx" " tail %#lx\n", __func__, (unsigned long)sfb->sdbt, (unsigned long)tail); return -EINVAL; } /* Allocate remaining SDBs */ rc = 0; for (i = 0; i < num_sdb; i++) { /* Allocate a new SDB-table if it is full. */ if (require_table_link(tail)) { new = (unsigned long *) get_zeroed_page(gfp_flags); if (!new) { rc = -ENOMEM; break; } sfb->num_sdbt++; /* Link current page to tail of chain */ *tail = (unsigned long)(void *) new + 1; tail_prev = tail; tail = new; } /* Allocate a new sample-data-block. * If there is not enough memory, stop the realloc process * and simply use what was allocated. If this is a temporary * issue, a new realloc call (if required) might succeed. */ rc = alloc_sample_data_block(tail, gfp_flags); if (rc) { /* Undo last SDBT. An SDBT with no SDB at its first * entry but with an SDBT entry instead can not be * handled by the interrupt handler code. * Avoid this situation. */ if (tail_prev) { sfb->num_sdbt--; free_page((unsigned long) new); tail = tail_prev; } break; } sfb->num_sdb++; tail++; tail_prev = new = NULL; /* Allocated at least one SBD */ } /* Link sampling buffer to its origin */ *tail = (unsigned long) sfb->sdbt + 1; sfb->tail = tail; debug_sprintf_event(sfdbg, 4, "%s: new buffer" " settings: sdbt %lu sdb %lu\n", __func__, sfb->num_sdbt, sfb->num_sdb); return rc; } /* * allocate_sampling_buffer() - allocate sampler memory * * Allocates and initializes a sampling buffer structure using the * specified number of sample-data-blocks (SDB). For each allocation, * a 4K page is used. The number of sample-data-block-tables (SDBT) * are calculated from SDBs. * Also set the ALERT_REQ mask in each SDBs trailer. * * Returns zero on success, non-zero otherwise. */ static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) { int rc; if (sfb->sdbt) return -EINVAL; /* Allocate the sample-data-block-table origin */ sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!sfb->sdbt) return -ENOMEM; sfb->num_sdb = 0; sfb->num_sdbt = 1; /* Link the table origin to point to itself to prepare for * realloc_sampling_buffer() invocation. */ sfb->tail = sfb->sdbt; *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1; /* Allocate requested number of sample-data-blocks */ rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); if (rc) { free_sampling_buffer(sfb); debug_sprintf_event(sfdbg, 4, "%s: " "realloc_sampling_buffer failed with rc %i\n", __func__, rc); } else debug_sprintf_event(sfdbg, 4, "%s: tear %#lx dear %#lx\n", __func__, (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt); return rc; } static void sfb_set_limits(unsigned long min, unsigned long max) { struct hws_qsi_info_block si; CPUM_SF_MIN_SDB = min; CPUM_SF_MAX_SDB = max; memset(&si, 0, sizeof(si)); if (!qsi(&si)) CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); } static unsigned long sfb_max_limit(struct hw_perf_event *hwc) { return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR : CPUM_SF_MAX_SDB; } static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, struct hw_perf_event *hwc) { if (!sfb->sdbt) return SFB_ALLOC_REG(hwc); if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) return SFB_ALLOC_REG(hwc) - sfb->num_sdb; return 0; } static int sfb_has_pending_allocs(struct sf_buffer *sfb, struct hw_perf_event *hwc) { return sfb_pending_allocs(sfb, hwc) > 0; } static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) { /* Limit the number of SDBs to not exceed the maximum */ num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); if (num) SFB_ALLOC_REG(hwc) += num; } static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) { SFB_ALLOC_REG(hwc) = 0; sfb_account_allocs(num, hwc); } static void deallocate_buffers(struct cpu_hw_sf *cpuhw) { if (cpuhw->sfb.sdbt) free_sampling_buffer(&cpuhw->sfb); } static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) { unsigned long n_sdb, freq; size_t sample_size; /* Calculate sampling buffers using 4K pages * * 1. The sampling size is 32 bytes for basic sampling. This size * is the same for all machine types. Diagnostic * sampling uses auxlilary data buffer setup which provides the * memory for SDBs using linux common code auxiliary trace * setup. * * 2. Function alloc_sampling_buffer() sets the Alert Request * Control indicator to trigger a measurement-alert to harvest * sample-data-blocks (SDB). This is done per SDB. This * measurement alert interrupt fires quick enough to handle * one SDB, on very high frequency and work loads there might * be 2 to 3 SBDs available for sample processing. * Currently there is no need for setup alert request on every * n-th page. This is counterproductive as one IRQ triggers * a very high number of samples to be processed at one IRQ. * * 3. Use the sampling frequency as input. * Compute the number of SDBs and ensure a minimum * of CPUM_SF_MIN_SDB. Depending on frequency add some more * SDBs to handle a higher sampling rate. * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples * (one SDB) for every 10000 HZ frequency increment. * * 4. Compute the number of sample-data-block-tables (SDBT) and * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up * to 511 SDBs). */ sample_size = sizeof(struct hws_basic_entry); freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); /* If there is already a sampling buffer allocated, it is very likely * that the sampling facility is enabled too. If the event to be * initialized requires a greater sampling buffer, the allocation must * be postponed. Changing the sampling buffer requires the sampling * facility to be in the disabled state. So, account the number of * required SDBs and let cpumsf_pmu_enable() resize the buffer just * before the event is started. */ sfb_init_allocs(n_sdb, hwc); if (sf_buffer_available(cpuhw)) return 0; debug_sprintf_event(sfdbg, 3, "%s: rate %lu f %lu sdb %lu/%lu" " sample_size %lu cpuhw %p\n", __func__, SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc), sample_size, cpuhw); return alloc_sampling_buffer(&cpuhw->sfb, sfb_pending_allocs(&cpuhw->sfb, hwc)); } static unsigned long min_percent(unsigned int percent, unsigned long base, unsigned long min) { return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); } static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) { /* Use a percentage-based approach to extend the sampling facility * buffer. Accept up to 5% sample data loss. * Vary the extents between 1% to 5% of the current number of * sample-data-blocks. */ if (ratio <= 5) return 0; if (ratio <= 25) return min_percent(1, base, 1); if (ratio <= 50) return min_percent(1, base, 1); if (ratio <= 75) return min_percent(2, base, 2); if (ratio <= 100) return min_percent(3, base, 3); if (ratio <= 250) return min_percent(4, base, 4); return min_percent(5, base, 8); } static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) { unsigned long ratio, num; if (!OVERFLOW_REG(hwc)) return; /* The sample_overflow contains the average number of sample data * that has been lost because sample-data-blocks were full. * * Calculate the total number of sample data entries that has been * discarded. Then calculate the ratio of lost samples to total samples * per second in percent. */ ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); /* Compute number of sample-data-blocks */ num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); if (num) sfb_account_allocs(num, hwc); debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n", __func__, OVERFLOW_REG(hwc), ratio, num); OVERFLOW_REG(hwc) = 0; } /* extend_sampling_buffer() - Extend sampling buffer * @sfb: Sampling buffer structure (for local CPU) * @hwc: Perf event hardware structure * * Use this function to extend the sampling buffer based on the overflow counter * and postponed allocation extents stored in the specified Perf event hardware. * * Important: This function disables the sampling facility in order to safely * change the sampling buffer structure. Do not call this function * when the PMU is active. */ static void extend_sampling_buffer(struct sf_buffer *sfb, struct hw_perf_event *hwc) { unsigned long num, num_old; int rc; num = sfb_pending_allocs(sfb, hwc); if (!num) return; num_old = sfb->num_sdb; /* Disable the sampling facility to reset any states and also * clear pending measurement alerts. */ sf_disable(); /* Extend the sampling buffer. * This memory allocation typically happens in an atomic context when * called by perf. Because this is a reallocation, it is fine if the * new SDB-request cannot be satisfied immediately. */ rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC); if (rc) debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n", __func__, rc); if (sfb_has_pending_allocs(sfb, hwc)) debug_sprintf_event(sfdbg, 5, "%s: " "req %lu alloc %lu remaining %lu\n", __func__, num, sfb->num_sdb - num_old, sfb_pending_allocs(sfb, hwc)); } /* Number of perf events counting hardware events */ static atomic_t num_events; /* Used to avoid races in calling reserve/release_cpumf_hardware */ static DEFINE_MUTEX(pmc_reserve_mutex); #define PMC_INIT 0 #define PMC_RELEASE 1 #define PMC_FAILURE 2 static void setup_pmc_cpu(void *flags) { int err; struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf); err = 0; switch (*((int *) flags)) { case PMC_INIT: memset(cpusf, 0, sizeof(*cpusf)); err = qsi(&cpusf->qsi); if (err) break; cpusf->flags |= PMU_F_RESERVED; err = sf_disable(); if (err) pr_err("Switching off the sampling facility failed " "with rc %i\n", err); debug_sprintf_event(sfdbg, 5, "%s: initialized: cpuhw %p\n", __func__, cpusf); break; case PMC_RELEASE: cpusf->flags &= ~PMU_F_RESERVED; err = sf_disable(); if (err) { pr_err("Switching off the sampling facility failed " "with rc %i\n", err); } else deallocate_buffers(cpusf); debug_sprintf_event(sfdbg, 5, "%s: released: cpuhw %p\n", __func__, cpusf); break; } if (err) *((int *) flags) |= PMC_FAILURE; } static void release_pmc_hardware(void) { int flags = PMC_RELEASE; irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); on_each_cpu(setup_pmc_cpu, &flags, 1); } static int reserve_pmc_hardware(void) { int flags = PMC_INIT; on_each_cpu(setup_pmc_cpu, &flags, 1); if (flags & PMC_FAILURE) { release_pmc_hardware(); return -ENODEV; } irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); return 0; } static void hw_perf_event_destroy(struct perf_event *event) { /* Release PMC if this is the last perf event */ if (!atomic_add_unless(&num_events, -1, 1)) { mutex_lock(&pmc_reserve_mutex); if (atomic_dec_return(&num_events) == 0) release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } static void hw_init_period(struct hw_perf_event *hwc, u64 period) { hwc->sample_period = period; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, unsigned long rate) { return clamp_t(unsigned long, rate, si->min_sampl_rate, si->max_sampl_rate); } static u32 cpumsf_pid_type(struct perf_event *event, u32 pid, enum pid_type type) { struct task_struct *tsk; /* Idle process */ if (!pid) goto out; tsk = find_task_by_pid_ns(pid, &init_pid_ns); pid = -1; if (tsk) { /* * Only top level events contain the pid namespace in which * they are created. */ if (event->parent) event = event->parent; pid = __task_pid_nr_ns(tsk, type, event->ns); /* * See also 1d953111b648 * "perf/core: Don't report zero PIDs for exiting tasks". */ if (!pid && !pid_alive(tsk)) pid = -1; } out: return pid; } static void cpumsf_output_event_pid(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { u32 pid; struct perf_event_header header; struct perf_output_handle handle; /* * Obtain the PID from the basic-sampling data entry and * correct the data->tid_entry.pid value. */ pid = data->tid_entry.pid; /* Protect callchain buffers, tasks */ rcu_read_lock(); perf_prepare_sample(&header, data, event, regs); if (perf_output_begin(&handle, data, event, header.size)) goto out; /* Update the process ID (see also kernel/events/core.c) */ data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); perf_output_sample(&handle, &header, data, event); perf_output_end(&handle); out: rcu_read_unlock(); } static unsigned long getrate(bool freq, unsigned long sample, struct hws_qsi_info_block *si) { unsigned long rate; if (freq) { rate = freq_to_sample_rate(si, sample); rate = hw_limit_rate(si, rate); } else { /* The min/max sampling rates specifies the valid range * of sample periods. If the specified sample period is * out of range, limit the period to the range boundary. */ rate = hw_limit_rate(si, sample); /* The perf core maintains a maximum sample rate that is * configurable through the sysctl interface. Ensure the * sampling rate does not exceed this value. This also helps * to avoid throttling when pushing samples with * perf_event_overflow(). */ if (sample_rate_to_freq(si, rate) > sysctl_perf_event_sample_rate) { debug_sprintf_event(sfdbg, 1, "%s: " "Sampling rate exceeds maximum " "perf sample rate\n", __func__); rate = 0; } } return rate; } /* The sampling information (si) contains information about the * min/max sampling intervals and the CPU speed. So calculate the * correct sampling interval and avoid the whole period adjust * feedback loop. * * Since the CPU Measurement sampling facility can not handle frequency * calculate the sampling interval when frequency is specified using * this formula: * interval := cpu_speed * 1000000 / sample_freq * * Returns errno on bad input and zero on success with parameter interval * set to the correct sampling rate. * * Note: This function turns off freq bit to avoid calling function * perf_adjust_period(). This causes frequency adjustment in the common * code part which causes tremendous variations in the counter values. */ static int __hw_perf_event_init_rate(struct perf_event *event, struct hws_qsi_info_block *si) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; unsigned long rate; if (attr->freq) { if (!attr->sample_freq) return -EINVAL; rate = getrate(attr->freq, attr->sample_freq, si); attr->freq = 0; /* Don't call perf_adjust_period() */ SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; } else { rate = getrate(attr->freq, attr->sample_period, si); if (!rate) return -EINVAL; } attr->sample_period = rate; SAMPL_RATE(hwc) = rate; hw_init_period(hwc, SAMPL_RATE(hwc)); debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n", __func__, event->cpu, event->attr.sample_period, event->attr.freq, SAMPLE_FREQ_MODE(hwc)); return 0; } static int __hw_perf_event_init(struct perf_event *event) { struct cpu_hw_sf *cpuhw; struct hws_qsi_info_block si; struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; int cpu, err; /* Reserve CPU-measurement sampling facility */ err = 0; if (!atomic_inc_not_zero(&num_events)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) err = -EBUSY; else atomic_inc(&num_events); mutex_unlock(&pmc_reserve_mutex); } event->destroy = hw_perf_event_destroy; if (err) goto out; /* Access per-CPU sampling information (query sampling info) */ /* * The event->cpu value can be -1 to count on every CPU, for example, * when attaching to a task. If this is specified, use the query * sampling info from the current CPU, otherwise use event->cpu to * retrieve the per-CPU information. * Later, cpuhw indicates whether to allocate sampling buffers for a * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). */ memset(&si, 0, sizeof(si)); cpuhw = NULL; if (event->cpu == -1) qsi(&si); else { /* Event is pinned to a particular CPU, retrieve the per-CPU * sampling structure for accessing the CPU-specific QSI. */ cpuhw = &per_cpu(cpu_hw_sf, event->cpu); si = cpuhw->qsi; } /* Check sampling facility authorization and, if not authorized, * fall back to other PMUs. It is safe to check any CPU because * the authorization is identical for all configured CPUs. */ if (!si.as) { err = -ENOENT; goto out; } if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); err = -EBUSY; goto out; } /* Always enable basic sampling */ SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; /* Check if diagnostic sampling is requested. Deny if the required * sampling authorization is missing. */ if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { if (!si.ad) { err = -EPERM; goto out; } SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; } /* Check and set other sampling flags */ if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS) SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS; err = __hw_perf_event_init_rate(event, &si); if (err) goto out; /* Initialize sample data overflow accounting */ hwc->extra_reg.reg = REG_OVERFLOW; OVERFLOW_REG(hwc) = 0; /* Use AUX buffer. No need to allocate it by ourself */ if (attr->config == PERF_EVENT_CPUM_SF_DIAG) return 0; /* Allocate the per-CPU sampling buffer using the CPU information * from the event. If the event is not pinned to a particular * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling * buffers for each online CPU. */ if (cpuhw) /* Event is pinned to a particular CPU */ err = allocate_buffers(cpuhw, hwc); else { /* Event is not pinned, allocate sampling buffer on * each online CPU */ for_each_online_cpu(cpu) { cpuhw = &per_cpu(cpu_hw_sf, cpu); err = allocate_buffers(cpuhw, hwc); if (err) break; } } /* If PID/TID sampling is active, replace the default overflow * handler to extract and resolve the PIDs from the basic-sampling * data entries. */ if (event->attr.sample_type & PERF_SAMPLE_TID) if (is_default_overflow_handler(event)) event->overflow_handler = cpumsf_output_event_pid; out: return err; } static bool is_callchain_event(struct perf_event *event) { u64 sample_type = event->attr.sample_type; return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER); } static int cpumsf_pmu_event_init(struct perf_event *event) { int err; /* No support for taken branch sampling */ /* No support for callchain, stacks and registers */ if (has_branch_stack(event) || is_callchain_event(event)) return -EOPNOTSUPP; switch (event->attr.type) { case PERF_TYPE_RAW: if ((event->attr.config != PERF_EVENT_CPUM_SF) && (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) return -ENOENT; break; case PERF_TYPE_HARDWARE: /* Support sampling of CPU cycles in addition to the * counter facility. However, the counter facility * is more precise and, hence, restrict this PMU to * sampling events only. */ if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) return -ENOENT; if (!is_sampling_event(event)) return -ENOENT; break; default: return -ENOENT; } /* Check online status of the CPU to which the event is pinned */ if (event->cpu >= 0 && !cpu_online(event->cpu)) return -ENODEV; /* Force reset of idle/hv excludes regardless of what the * user requested. */ if (event->attr.exclude_hv) event->attr.exclude_hv = 0; if (event->attr.exclude_idle) event->attr.exclude_idle = 0; err = __hw_perf_event_init(event); if (unlikely(err)) if (event->destroy) event->destroy(event); return err; } static void cpumsf_pmu_enable(struct pmu *pmu) { struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); struct hw_perf_event *hwc; int err; if (cpuhw->flags & PMU_F_ENABLED) return; if (cpuhw->flags & PMU_F_ERR_MASK) return; /* Check whether to extent the sampling buffer. * * Two conditions trigger an increase of the sampling buffer for a * perf event: * 1. Postponed buffer allocations from the event initialization. * 2. Sampling overflows that contribute to pending allocations. * * Note that the extend_sampling_buffer() function disables the sampling * facility, but it can be fully re-enabled using sampling controls that * have been saved in cpumsf_pmu_disable(). */ if (cpuhw->event) { hwc = &cpuhw->event->hw; if (!(SAMPL_DIAG_MODE(hwc))) { /* * Account number of overflow-designated * buffer extents */ sfb_account_overflows(cpuhw, hwc); extend_sampling_buffer(&cpuhw->sfb, hwc); } /* Rate may be adjusted with ioctl() */ cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw); } /* (Re)enable the PMU and sampling facility */ cpuhw->flags |= PMU_F_ENABLED; barrier(); err = lsctl(&cpuhw->lsctl); if (err) { cpuhw->flags &= ~PMU_F_ENABLED; pr_err("Loading sampling controls failed: op %i err %i\n", 1, err); return; } /* Load current program parameter */ lpp(&S390_lowcore.lpp); debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i " "interval %#lx tear %#lx dear %#lx\n", __func__, cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed, cpuhw->lsctl.cd, cpuhw->lsctl.interval, cpuhw->lsctl.tear, cpuhw->lsctl.dear); } static void cpumsf_pmu_disable(struct pmu *pmu) { struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); struct hws_lsctl_request_block inactive; struct hws_qsi_info_block si; int err; if (!(cpuhw->flags & PMU_F_ENABLED)) return; if (cpuhw->flags & PMU_F_ERR_MASK) return; /* Switch off sampling activation control */ inactive = cpuhw->lsctl; inactive.cs = 0; inactive.cd = 0; err = lsctl(&inactive); if (err) { pr_err("Loading sampling controls failed: op %i err %i\n", 2, err); return; } /* Save state of TEAR and DEAR register contents */ err = qsi(&si); if (!err) { /* TEAR/DEAR values are valid only if the sampling facility is * enabled. Note that cpumsf_pmu_disable() might be called even * for a disabled sampling facility because cpumsf_pmu_enable() * controls the enable/disable state. */ if (si.es) { cpuhw->lsctl.tear = si.tear; cpuhw->lsctl.dear = si.dear; } } else debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n", __func__, err); cpuhw->flags &= ~PMU_F_ENABLED; } /* perf_exclude_event() - Filter event * @event: The perf event * @regs: pt_regs structure * @sde_regs: Sample-data-entry (sde) regs structure * * Filter perf events according to their exclude specification. * * Return non-zero if the event shall be excluded. */ static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, struct perf_sf_sde_regs *sde_regs) { if (event->attr.exclude_user && user_mode(regs)) return 1; if (event->attr.exclude_kernel && !user_mode(regs)) return 1; if (event->attr.exclude_guest && sde_regs->in_guest) return 1; if (event->attr.exclude_host && !sde_regs->in_guest) return 1; return 0; } /* perf_push_sample() - Push samples to perf * @event: The perf event * @sample: Hardware sample data * * Use the hardware sample data to create perf event sample. The sample * is the pushed to the event subsystem and the function checks for * possible event overflows. If an event overflow occurs, the PMU is * stopped. * * Return non-zero if an event overflow occurred. */ static int perf_push_sample(struct perf_event *event, struct hws_basic_entry *basic) { int overflow; struct pt_regs regs; struct perf_sf_sde_regs *sde_regs; struct perf_sample_data data; /* Setup perf sample */ perf_sample_data_init(&data, 0, event->hw.last_period); /* Setup pt_regs to look like an CPU-measurement external interrupt * using the Program Request Alert code. The regs.int_parm_long * field which is unused contains additional sample-data-entry related * indicators. */ memset(®s, 0, sizeof(regs)); regs.int_code = 0x1407; regs.int_parm = CPU_MF_INT_SF_PRA; sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; psw_bits(regs.psw).ia = basic->ia; psw_bits(regs.psw).dat = basic->T; psw_bits(regs.psw).wait = basic->W; psw_bits(regs.psw).pstate = basic->P; psw_bits(regs.psw).as = basic->AS; /* * Use the hardware provided configuration level to decide if the * sample belongs to a guest or host. If that is not available, * fall back to the following heuristics: * A non-zero guest program parameter always indicates a guest * sample. Some early samples or samples from guests without * lpp usage would be misaccounted to the host. We use the asn * value as an addon heuristic to detect most of these guest samples. * If the value differs from 0xffff (the host value), we assume to * be a KVM guest. */ switch (basic->CL) { case 1: /* logical partition */ sde_regs->in_guest = 0; break; case 2: /* virtual machine */ sde_regs->in_guest = 1; break; default: /* old machine, use heuristics */ if (basic->gpp || basic->prim_asn != 0xffff) sde_regs->in_guest = 1; break; } /* * Store the PID value from the sample-data-entry to be * processed and resolved by cpumsf_output_event_pid(). */ data.tid_entry.pid = basic->hpp & LPP_PID_MASK; overflow = 0; if (perf_exclude_event(event, ®s, sde_regs)) goto out; if (perf_event_overflow(event, &data, ®s)) { overflow = 1; event->pmu->stop(event, 0); } perf_event_update_userpage(event); out: return overflow; } static void perf_event_count_update(struct perf_event *event, u64 count) { local64_add(count, &event->count); } /* hw_collect_samples() - Walk through a sample-data-block and collect samples * @event: The perf event * @sdbt: Sample-data-block table * @overflow: Event overflow counter * * Walks through a sample-data-block and collects sampling data entries that are * then pushed to the perf event subsystem. Depending on the sampling function, * there can be either basic-sampling or combined-sampling data entries. A * combined-sampling data entry consists of a basic- and a diagnostic-sampling * data entry. The sampling function is determined by the flags in the perf * event hardware structure. The function always works with a combined-sampling * data entry but ignores the the diagnostic portion if it is not available. * * Note that the implementation focuses on basic-sampling data entries and, if * such an entry is not valid, the entire combined-sampling data entry is * ignored. * * The overflow variables counts the number of samples that has been discarded * due to a perf event overflow. */ static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, unsigned long long *overflow) { struct hws_trailer_entry *te; struct hws_basic_entry *sample; te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); sample = (struct hws_basic_entry *) *sdbt; while ((unsigned long *) sample < (unsigned long *) te) { /* Check for an empty sample */ if (!sample->def || sample->LS) break; /* Update perf event period */ perf_event_count_update(event, SAMPL_RATE(&event->hw)); /* Check whether sample is valid */ if (sample->def == 0x0001) { /* If an event overflow occurred, the PMU is stopped to * throttle event delivery. Remaining sample data is * discarded. */ if (!*overflow) { /* Check whether sample is consistent */ if (sample->I == 0 && sample->W == 0) { /* Deliver sample data to perf */ *overflow = perf_push_sample(event, sample); } } else /* Count discarded samples */ *overflow += 1; } else { debug_sprintf_event(sfdbg, 4, "%s: Found unknown" " sampling data entry: te->f %i" " basic.def %#4x (%p)\n", __func__, te->header.f, sample->def, sample); /* Sample slot is not yet written or other record. * * This condition can occur if the buffer was reused * from a combined basic- and diagnostic-sampling. * If only basic-sampling is then active, entries are * written into the larger diagnostic entries. * This is typically the case for sample-data-blocks * that are not full. Stop processing if the first * invalid format was detected. */ if (!te->header.f) break; } /* Reset sample slot and advance to next sample */ sample->def = 0; sample++; } } static inline __uint128_t __cdsg(__uint128_t *ptr, __uint128_t old, __uint128_t new) { asm volatile( " cdsg %[old],%[new],%[ptr]\n" : [old] "+d" (old), [ptr] "+QS" (*ptr) : [new] "d" (new) : "memory", "cc"); return old; } /* hw_perf_event_update() - Process sampling buffer * @event: The perf event * @flush_all: Flag to also flush partially filled sample-data-blocks * * Processes the sampling buffer and create perf event samples. * The sampling buffer position are retrieved and saved in the TEAR_REG * register of the specified perf event. * * Only full sample-data-blocks are processed. Specify the flash_all flag * to also walk through partially filled sample-data-blocks. It is ignored * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag * enforces the processing of full sample-data-blocks only (trailer entries * with the block-full-indicator bit set). */ static void hw_perf_event_update(struct perf_event *event, int flush_all) { unsigned long long event_overflow, sampl_overflow, num_sdb; union hws_trailer_header old, prev, new; struct hw_perf_event *hwc = &event->hw; struct hws_trailer_entry *te; unsigned long *sdbt; int done; /* * AUX buffer is used when in diagnostic sampling mode. * No perf events/samples are created. */ if (SAMPL_DIAG_MODE(&event->hw)) return; if (flush_all && SDB_FULL_BLOCKS(hwc)) flush_all = 0; sdbt = (unsigned long *) TEAR_REG(hwc); done = event_overflow = sampl_overflow = num_sdb = 0; while (!done) { /* Get the trailer entry of the sample-data-block */ te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); /* Leave loop if no more work to do (block full indicator) */ if (!te->header.f) { done = 1; if (!flush_all) break; } /* Check the sample overflow count */ if (te->header.overflow) /* Account sample overflows and, if a particular limit * is reached, extend the sampling buffer. * For details, see sfb_account_overflows(). */ sampl_overflow += te->header.overflow; /* Timestamps are valid for full sample-data-blocks only */ debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx " "overflow %llu timestamp %#llx\n", __func__, (unsigned long)sdbt, te->header.overflow, (te->header.f) ? trailer_timestamp(te) : 0ULL); /* Collect all samples from a single sample-data-block and * flag if an (perf) event overflow happened. If so, the PMU * is stopped and remaining samples will be discarded. */ hw_collect_samples(event, sdbt, &event_overflow); num_sdb++; /* Reset trailer (using compare-double-and-swap) */ /* READ_ONCE() 16 byte header */ prev.val = __cdsg(&te->header.val, 0, 0); do { old.val = prev.val; new.val = prev.val; new.f = 0; new.a = 1; new.overflow = 0; prev.val = __cdsg(&te->header.val, old.val, new.val); } while (prev.val != old.val); /* Advance to next sample-data-block */ sdbt++; if (is_link_entry(sdbt)) sdbt = get_next_sdbt(sdbt); /* Update event hardware registers */ TEAR_REG(hwc) = (unsigned long) sdbt; /* Stop processing sample-data if all samples of the current * sample-data-block were flushed even if it was not full. */ if (flush_all && done) break; } /* Account sample overflows in the event hardware structure */ if (sampl_overflow) OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + sampl_overflow, 1 + num_sdb); /* Perf_event_overflow() and perf_event_account_interrupt() limit * the interrupt rate to an upper limit. Roughly 1000 samples per * task tick. * Hitting this limit results in a large number * of throttled REF_REPORT_THROTTLE entries and the samples * are dropped. * Slightly increase the interval to avoid hitting this limit. */ if (event_overflow) { SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n", __func__, DIV_ROUND_UP(SAMPL_RATE(hwc), 10)); } if (sampl_overflow || event_overflow) debug_sprintf_event(sfdbg, 4, "%s: " "overflows: sample %llu event %llu" " total %llu num_sdb %llu\n", __func__, sampl_overflow, event_overflow, OVERFLOW_REG(hwc), num_sdb); } #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb) #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0) #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark) #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark) /* * Get trailer entry by index of SDB. */ static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, unsigned long index) { unsigned long sdb; index = AUX_SDB_INDEX(aux, index); sdb = aux->sdb_index[index]; return (struct hws_trailer_entry *)trailer_entry_ptr(sdb); } /* * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu * disabled. Collect the full SDBs in AUX buffer which have not reached * the point of alert indicator. And ignore the SDBs which are not * full. * * 1. Scan SDBs to see how much data is there and consume them. * 2. Remove alert indicator in the buffer. */ static void aux_output_end(struct perf_output_handle *handle) { unsigned long i, range_scan, idx; struct aux_buffer *aux; struct hws_trailer_entry *te; aux = perf_get_aux(handle); if (!aux) return; range_scan = AUX_SDB_NUM_ALERT(aux); for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { te = aux_sdb_trailer(aux, idx); if (!te->header.f) break; } /* i is num of SDBs which are full */ perf_aux_output_end(handle, i << PAGE_SHIFT); /* Remove alert indicators in the buffer */ te = aux_sdb_trailer(aux, aux->alert_mark); te->header.a = 0; debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n", __func__, i, range_scan, aux->head); } /* * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event * is first added to the CPU or rescheduled again to the CPU. It is called * with pmu disabled. * * 1. Reset the trailer of SDBs to get ready for new data. * 2. Tell the hardware where to put the data by reset the SDBs buffer * head(tear/dear). */ static int aux_output_begin(struct perf_output_handle *handle, struct aux_buffer *aux, struct cpu_hw_sf *cpuhw) { unsigned long range; unsigned long i, range_scan, idx; unsigned long head, base, offset; struct hws_trailer_entry *te; if (WARN_ON_ONCE(handle->head & ~PAGE_MASK)) return -EINVAL; aux->head = handle->head >> PAGE_SHIFT; range = (handle->size + 1) >> PAGE_SHIFT; if (range <= 1) return -ENOMEM; /* * SDBs between aux->head and aux->empty_mark are already ready * for new data. range_scan is num of SDBs not within them. */ debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld empty %ld\n", __func__, range, aux->head, aux->alert_mark, aux->empty_mark); if (range > AUX_SDB_NUM_EMPTY(aux)) { range_scan = range - AUX_SDB_NUM_EMPTY(aux); idx = aux->empty_mark + 1; for (i = 0; i < range_scan; i++, idx++) { te = aux_sdb_trailer(aux, idx); te->header.f = 0; te->header.a = 0; te->header.overflow = 0; } /* Save the position of empty SDBs */ aux->empty_mark = aux->head + range - 1; } /* Set alert indicator */ aux->alert_mark = aux->head + range/2 - 1; te = aux_sdb_trailer(aux, aux->alert_mark); te->header.a = 1; /* Reset hardware buffer head */ head = AUX_SDB_INDEX(aux, aux->head); base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; offset = head % CPUM_SF_SDB_PER_TABLE; cpuhw->lsctl.tear = base + offset * sizeof(unsigned long); cpuhw->lsctl.dear = aux->sdb_index[head]; debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld " "index %ld tear %#lx dear %#lx\n", __func__, aux->head, aux->alert_mark, aux->empty_mark, head / CPUM_SF_SDB_PER_TABLE, cpuhw->lsctl.tear, cpuhw->lsctl.dear); return 0; } /* * Set alert indicator on SDB at index @alert_index while sampler is running. * * Return true if successfully. * Return false if full indicator is already set by hardware sampler. */ static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, unsigned long long *overflow) { union hws_trailer_header old, prev, new; struct hws_trailer_entry *te; te = aux_sdb_trailer(aux, alert_index); /* READ_ONCE() 16 byte header */ prev.val = __cdsg(&te->header.val, 0, 0); do { old.val = prev.val; new.val = prev.val; *overflow = old.overflow; if (old.f) { /* * SDB is already set by hardware. * Abort and try to set somewhere * behind. */ return false; } new.a = 1; new.overflow = 0; prev.val = __cdsg(&te->header.val, old.val, new.val); } while (prev.val != old.val); return true; } /* * aux_reset_buffer() - Scan and setup SDBs for new samples * @aux: The AUX buffer to set * @range: The range of SDBs to scan started from aux->head * @overflow: Set to overflow count * * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is * marked as empty, check if it is already set full by the hardware sampler. * If yes, that means new data is already there before we can set an alert * indicator. Caller should try to set alert indicator to some position behind. * * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used * previously and have already been consumed by user space. Reset these SDBs * (clear full indicator and alert indicator) for new data. * If aux->alert_mark fall in this area, just set it. Overflow count is * recorded while scanning. * * SDBs between aux->head and aux->empty_mark are already reset at last time. * and ready for new samples. So scanning on this area could be skipped. * * Return true if alert indicator is set successfully and false if not. */ static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, unsigned long long *overflow) { unsigned long i, range_scan, idx, idx_old; union hws_trailer_header old, prev, new; unsigned long long orig_overflow; struct hws_trailer_entry *te; debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld " "empty %ld\n", __func__, range, aux->head, aux->alert_mark, aux->empty_mark); if (range <= AUX_SDB_NUM_EMPTY(aux)) /* * No need to scan. All SDBs in range are marked as empty. * Just set alert indicator. Should check race with hardware * sampler. */ return aux_set_alert(aux, aux->alert_mark, overflow); if (aux->alert_mark <= aux->empty_mark) /* * Set alert indicator on empty SDB. Should check race * with hardware sampler. */ if (!aux_set_alert(aux, aux->alert_mark, overflow)) return false; /* * Scan the SDBs to clear full and alert indicator used previously. * Start scanning from one SDB behind empty_mark. If the new alert * indicator fall into this range, set it. */ range_scan = range - AUX_SDB_NUM_EMPTY(aux); idx_old = idx = aux->empty_mark + 1; for (i = 0; i < range_scan; i++, idx++) { te = aux_sdb_trailer(aux, idx); /* READ_ONCE() 16 byte header */ prev.val = __cdsg(&te->header.val, 0, 0); do { old.val = prev.val; new.val = prev.val; orig_overflow = old.overflow; new.f = 0; new.overflow = 0; if (idx == aux->alert_mark) new.a = 1; else new.a = 0; prev.val = __cdsg(&te->header.val, old.val, new.val); } while (prev.val != old.val); *overflow += orig_overflow; } /* Update empty_mark to new position */ aux->empty_mark = aux->head + range - 1; debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld " "empty %ld\n", __func__, range_scan, idx_old, idx - 1, aux->empty_mark); return true; } /* * Measurement alert handler for diagnostic mode sampling. */ static void hw_collect_aux(struct cpu_hw_sf *cpuhw) { struct aux_buffer *aux; int done = 0; unsigned long range = 0, size; unsigned long long overflow = 0; struct perf_output_handle *handle = &cpuhw->handle; unsigned long num_sdb; aux = perf_get_aux(handle); if (WARN_ON_ONCE(!aux)) return; /* Inform user space new data arrived */ size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT; debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__, size >> PAGE_SHIFT); perf_aux_output_end(handle, size); num_sdb = aux->sfb.num_sdb; while (!done) { /* Get an output handle */ aux = perf_aux_output_begin(handle, cpuhw->event); if (handle->size == 0) { pr_err("The AUX buffer with %lu pages for the " "diagnostic-sampling mode is full\n", num_sdb); debug_sprintf_event(sfdbg, 1, "%s: AUX buffer used up\n", __func__); break; } if (WARN_ON_ONCE(!aux)) return; /* Update head and alert_mark to new position */ aux->head = handle->head >> PAGE_SHIFT; range = (handle->size + 1) >> PAGE_SHIFT; if (range == 1) aux->alert_mark = aux->head; else aux->alert_mark = aux->head + range/2 - 1; if (aux_reset_buffer(aux, range, &overflow)) { if (!overflow) { done = 1; break; } size = range << PAGE_SHIFT; perf_aux_output_end(&cpuhw->handle, size); pr_err("Sample data caused the AUX buffer with %lu " "pages to overflow\n", aux->sfb.num_sdb); debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld " "overflow %lld\n", __func__, aux->head, range, overflow); } else { size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT; perf_aux_output_end(&cpuhw->handle, size); debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld " "already full, try another\n", __func__, aux->head, aux->alert_mark); } } if (done) debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld " "empty %ld\n", __func__, aux->head, aux->alert_mark, aux->empty_mark); } /* * Callback when freeing AUX buffers. */ static void aux_buffer_free(void *data) { struct aux_buffer *aux = data; unsigned long i, num_sdbt; if (!aux) return; /* Free SDBT. SDB is freed by the caller */ num_sdbt = aux->sfb.num_sdbt; for (i = 0; i < num_sdbt; i++) free_page(aux->sdbt_index[i]); kfree(aux->sdbt_index); kfree(aux->sdb_index); kfree(aux); debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt); } static void aux_sdb_init(unsigned long sdb) { struct hws_trailer_entry *te; te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb); /* Save clock base */ te->clock_base = 1; te->progusage2 = tod_clock_base.tod; } /* * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling * @event: Event the buffer is setup for, event->cpu == -1 means current * @pages: Array of pointers to buffer pages passed from perf core * @nr_pages: Total pages * @snapshot: Flag for snapshot mode * * This is the callback when setup an event using AUX buffer. Perf tool can * trigger this by an additional mmap() call on the event. Unlike the buffer * for basic samples, AUX buffer belongs to the event. It is scheduled with * the task among online cpus when it is a per-thread event. * * Return the private AUX buffer structure if success or NULL if fails. */ static void *aux_buffer_setup(struct perf_event *event, void **pages, int nr_pages, bool snapshot) { struct sf_buffer *sfb; struct aux_buffer *aux; unsigned long *new, *tail; int i, n_sdbt; if (!nr_pages || !pages) return NULL; if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { pr_err("AUX buffer size (%i pages) is larger than the " "maximum sampling buffer limit\n", nr_pages); return NULL; } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { pr_err("AUX buffer size (%i pages) is less than the " "minimum sampling buffer limit\n", nr_pages); return NULL; } /* Allocate aux_buffer struct for the event */ aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); if (!aux) goto no_aux; sfb = &aux->sfb; /* Allocate sdbt_index for fast reference */ n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); if (!aux->sdbt_index) goto no_sdbt_index; /* Allocate sdb_index for fast reference */ aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); if (!aux->sdb_index) goto no_sdb_index; /* Allocate the first SDBT */ sfb->num_sdbt = 0; sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!sfb->sdbt) goto no_sdbt; aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; tail = sfb->tail = sfb->sdbt; /* * Link the provided pages of AUX buffer to SDBT. * Allocate SDBT if needed. */ for (i = 0; i < nr_pages; i++, tail++) { if (require_table_link(tail)) { new = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!new) goto no_sdbt; aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; /* Link current page to tail of chain */ *tail = (unsigned long)(void *) new + 1; tail = new; } /* Tail is the entry in a SDBT */ *tail = (unsigned long)pages[i]; aux->sdb_index[i] = (unsigned long)pages[i]; aux_sdb_init((unsigned long)pages[i]); } sfb->num_sdb = nr_pages; /* Link the last entry in the SDBT to the first SDBT */ *tail = (unsigned long) sfb->sdbt + 1; sfb->tail = tail; /* * Initial all SDBs are zeroed. Mark it as empty. * So there is no need to clear the full indicator * when this event is first added. */ aux->empty_mark = sfb->num_sdb - 1; debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__, sfb->num_sdbt, sfb->num_sdb); return aux; no_sdbt: /* SDBs (AUX buffer pages) are freed by caller */ for (i = 0; i < sfb->num_sdbt; i++) free_page(aux->sdbt_index[i]); kfree(aux->sdb_index); no_sdb_index: kfree(aux->sdbt_index); no_sdbt_index: kfree(aux); no_aux: return NULL; } static void cpumsf_pmu_read(struct perf_event *event) { /* Nothing to do ... updates are interrupt-driven */ } /* Check if the new sampling period/freqeuncy is appropriate. * * Return non-zero on error and zero on passed checks. */ static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) { struct hws_qsi_info_block si; unsigned long rate; bool do_freq; memset(&si, 0, sizeof(si)); if (event->cpu == -1) { if (qsi(&si)) return -ENODEV; } else { /* Event is pinned to a particular CPU, retrieve the per-CPU * sampling structure for accessing the CPU-specific QSI. */ struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); si = cpuhw->qsi; } do_freq = !!SAMPLE_FREQ_MODE(&event->hw); rate = getrate(do_freq, value, &si); if (!rate) return -EINVAL; event->attr.sample_period = rate; SAMPL_RATE(&event->hw) = rate; hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); debug_sprintf_event(sfdbg, 4, "%s:" " cpu %d value %#llx period %#llx freq %d\n", __func__, event->cpu, value, event->attr.sample_period, do_freq); return 0; } /* Activate sampling control. * Next call of pmu_enable() starts sampling. */ static void cpumsf_pmu_start(struct perf_event *event, int flags) { struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) return; if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); perf_pmu_disable(event->pmu); event->hw.state = 0; cpuhw->lsctl.cs = 1; if (SAMPL_DIAG_MODE(&event->hw)) cpuhw->lsctl.cd = 1; perf_pmu_enable(event->pmu); } /* Deactivate sampling control. * Next call of pmu_enable() stops sampling. */ static void cpumsf_pmu_stop(struct perf_event *event, int flags) { struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); if (event->hw.state & PERF_HES_STOPPED) return; perf_pmu_disable(event->pmu); cpuhw->lsctl.cs = 0; cpuhw->lsctl.cd = 0; event->hw.state |= PERF_HES_STOPPED; if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { hw_perf_event_update(event, 1); event->hw.state |= PERF_HES_UPTODATE; } perf_pmu_enable(event->pmu); } static int cpumsf_pmu_add(struct perf_event *event, int flags) { struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); struct aux_buffer *aux; int err; if (cpuhw->flags & PMU_F_IN_USE) return -EAGAIN; if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt) return -EINVAL; err = 0; perf_pmu_disable(event->pmu); event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; /* Set up sampling controls. Always program the sampling register * using the SDB-table start. Reset TEAR_REG event hardware register * that is used by hw_perf_event_update() to store the sampling buffer * position after samples have been flushed. */ cpuhw->lsctl.s = 0; cpuhw->lsctl.h = 1; cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); if (!SAMPL_DIAG_MODE(&event->hw)) { cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt; cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt; TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt; } /* Ensure sampling functions are in the disabled state. If disabled, * switch on sampling enable control. */ if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { err = -EAGAIN; goto out; } if (SAMPL_DIAG_MODE(&event->hw)) { aux = perf_aux_output_begin(&cpuhw->handle, event); if (!aux) { err = -EINVAL; goto out; } err = aux_output_begin(&cpuhw->handle, aux, cpuhw); if (err) goto out; cpuhw->lsctl.ed = 1; } cpuhw->lsctl.es = 1; /* Set in_use flag and store event */ cpuhw->event = event; cpuhw->flags |= PMU_F_IN_USE; if (flags & PERF_EF_START) cpumsf_pmu_start(event, PERF_EF_RELOAD); out: perf_event_update_userpage(event); perf_pmu_enable(event->pmu); return err; } static void cpumsf_pmu_del(struct perf_event *event, int flags) { struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); perf_pmu_disable(event->pmu); cpumsf_pmu_stop(event, PERF_EF_UPDATE); cpuhw->lsctl.es = 0; cpuhw->lsctl.ed = 0; cpuhw->flags &= ~PMU_F_IN_USE; cpuhw->event = NULL; if (SAMPL_DIAG_MODE(&event->hw)) aux_output_end(&cpuhw->handle); perf_event_update_userpage(event); perf_pmu_enable(event->pmu); } CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); /* Attribute list for CPU_SF. * * The availablitiy depends on the CPU_MF sampling facility authorization * for basic + diagnositic samples. This is determined at initialization * time by the sampling facility device driver. * If the authorization for basic samples is turned off, it should be * also turned off for diagnostic sampling. * * During initialization of the device driver, check the authorization * level for diagnostic sampling and installs the attribute * file for diagnostic sampling if necessary. * * For now install a placeholder to reference all possible attributes: * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. * Add another entry for the final NULL pointer. */ enum { SF_CYCLES_BASIC_ATTR_IDX = 0, SF_CYCLES_BASIC_DIAG_ATTR_IDX, SF_CYCLES_ATTR_MAX }; static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) }; PMU_FORMAT_ATTR(event, "config:0-63"); static struct attribute *cpumsf_pmu_format_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group cpumsf_pmu_events_group = { .name = "events", .attrs = cpumsf_pmu_events_attr, }; static struct attribute_group cpumsf_pmu_format_group = { .name = "format", .attrs = cpumsf_pmu_format_attr, }; static const struct attribute_group *cpumsf_pmu_attr_groups[] = { &cpumsf_pmu_events_group, &cpumsf_pmu_format_group, NULL, }; static struct pmu cpumf_sampling = { .pmu_enable = cpumsf_pmu_enable, .pmu_disable = cpumsf_pmu_disable, .event_init = cpumsf_pmu_event_init, .add = cpumsf_pmu_add, .del = cpumsf_pmu_del, .start = cpumsf_pmu_start, .stop = cpumsf_pmu_stop, .read = cpumsf_pmu_read, .attr_groups = cpumsf_pmu_attr_groups, .setup_aux = aux_buffer_setup, .free_aux = aux_buffer_free, .check_period = cpumsf_pmu_check_period, }; static void cpumf_measurement_alert(struct ext_code ext_code, unsigned int alert, unsigned long unused) { struct cpu_hw_sf *cpuhw; if (!(alert & CPU_MF_INT_SF_MASK)) return; inc_irq_stat(IRQEXT_CMS); cpuhw = this_cpu_ptr(&cpu_hw_sf); /* Measurement alerts are shared and might happen when the PMU * is not reserved. Ignore these alerts in this case. */ if (!(cpuhw->flags & PMU_F_RESERVED)) return; /* The processing below must take care of multiple alert events that * might be indicated concurrently. */ /* Program alert request */ if (alert & CPU_MF_INT_SF_PRA) { if (cpuhw->flags & PMU_F_IN_USE) if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) hw_collect_aux(cpuhw); else hw_perf_event_update(cpuhw->event, 0); else WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); } /* Report measurement alerts only for non-PRA codes */ if (alert != CPU_MF_INT_SF_PRA) debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__, alert); /* Sampling authorization change request */ if (alert & CPU_MF_INT_SF_SACA) qsi(&cpuhw->qsi); /* Loss of sample data due to high-priority machine activities */ if (alert & CPU_MF_INT_SF_LSDA) { pr_err("Sample data was lost\n"); cpuhw->flags |= PMU_F_ERR_LSDA; sf_disable(); } /* Invalid sampling buffer entry */ if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", alert); cpuhw->flags |= PMU_F_ERR_IBE; sf_disable(); } } static int cpusf_pmu_setup(unsigned int cpu, int flags) { /* Ignore the notification if no events are scheduled on the PMU. * This might be racy... */ if (!atomic_read(&num_events)) return 0; local_irq_disable(); setup_pmc_cpu(&flags); local_irq_enable(); return 0; } static int s390_pmu_sf_online_cpu(unsigned int cpu) { return cpusf_pmu_setup(cpu, PMC_INIT); } static int s390_pmu_sf_offline_cpu(unsigned int cpu) { return cpusf_pmu_setup(cpu, PMC_RELEASE); } static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) { if (!cpum_sf_avail()) return -ENODEV; return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); } static int param_set_sfb_size(const char *val, const struct kernel_param *kp) { int rc; unsigned long min, max; if (!cpum_sf_avail()) return -ENODEV; if (!val || !strlen(val)) return -EINVAL; /* Valid parameter values: "min,max" or "max" */ min = CPUM_SF_MIN_SDB; max = CPUM_SF_MAX_SDB; if (strchr(val, ',')) rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; else rc = kstrtoul(val, 10, &max); if (min < 2 || min >= max || max > get_num_physpages()) rc = -EINVAL; if (rc) return rc; sfb_set_limits(min, max); pr_info("The sampling buffer limits have changed to: " "min %lu max %lu (diag %lu)\n", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); return 0; } #define param_check_sfb_size(name, p) __param_check(name, p, void) static const struct kernel_param_ops param_ops_sfb_size = { .set = param_set_sfb_size, .get = param_get_sfb_size, }; #define RS_INIT_FAILURE_QSI 0x0001 #define RS_INIT_FAILURE_BSDES 0x0002 #define RS_INIT_FAILURE_ALRT 0x0003 #define RS_INIT_FAILURE_PERF 0x0004 static void __init pr_cpumsf_err(unsigned int reason) { pr_err("Sampling facility support for perf is not available: " "reason %#x\n", reason); } static int __init init_cpum_sampling_pmu(void) { struct hws_qsi_info_block si; int err; if (!cpum_sf_avail()) return -ENODEV; memset(&si, 0, sizeof(si)); if (qsi(&si)) { pr_cpumsf_err(RS_INIT_FAILURE_QSI); return -ENODEV; } if (!si.as && !si.ad) return -ENODEV; if (si.bsdes != sizeof(struct hws_basic_entry)) { pr_cpumsf_err(RS_INIT_FAILURE_BSDES); return -EINVAL; } if (si.ad) { sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); /* Sampling of diagnostic data authorized, * install event into attribute list of PMU device. */ cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); } sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); if (!sfdbg) { pr_err("Registering for s390dbf failed\n"); return -ENOMEM; } debug_register_view(sfdbg, &debug_sprintf_view); err = register_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert); if (err) { pr_cpumsf_err(RS_INIT_FAILURE_ALRT); debug_unregister(sfdbg); goto out; } err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); if (err) { pr_cpumsf_err(RS_INIT_FAILURE_PERF); unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert); debug_unregister(sfdbg); goto out; } cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); out: return err; } arch_initcall(init_cpum_sampling_pmu); core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); |