Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1995 Linus Torvalds * * Pentium III FXSR, SSE support * Gareth Hughes <gareth@valinux.com>, May 2000 * * X86-64 port * Andi Kleen. * * CPU hotplug support - ashok.raj@intel.com */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <linux/cpu.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/elfcore.h> #include <linux/smp.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/ptrace.h> #include <linux/notifier.h> #include <linux/kprobes.h> #include <linux/kdebug.h> #include <linux/prctl.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/ftrace.h> #include <linux/syscalls.h> #include <asm/processor.h> #include <asm/pkru.h> #include <asm/fpu/sched.h> #include <asm/mmu_context.h> #include <asm/prctl.h> #include <asm/desc.h> #include <asm/proto.h> #include <asm/ia32.h> #include <asm/debugreg.h> #include <asm/switch_to.h> #include <asm/xen/hypervisor.h> #include <asm/vdso.h> #include <asm/resctrl.h> #include <asm/unistd.h> #include <asm/fsgsbase.h> #ifdef CONFIG_IA32_EMULATION /* Not included via unistd.h */ #include <asm/unistd_32_ia32.h> #endif #include "process.h" /* Prints also some state that isn't saved in the pt_regs */ void __show_regs(struct pt_regs *regs, enum show_regs_mode mode, const char *log_lvl) { unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; unsigned long d0, d1, d2, d3, d6, d7; unsigned int fsindex, gsindex; unsigned int ds, es; show_iret_regs(regs, log_lvl); if (regs->orig_ax != -1) pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); else pr_cont("\n"); printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n", log_lvl, regs->ax, regs->bx, regs->cx); printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n", log_lvl, regs->dx, regs->si, regs->di); printk("%sRBP: %016lx R08: %016lx R09: %016lx\n", log_lvl, regs->bp, regs->r8, regs->r9); printk("%sR10: %016lx R11: %016lx R12: %016lx\n", log_lvl, regs->r10, regs->r11, regs->r12); printk("%sR13: %016lx R14: %016lx R15: %016lx\n", log_lvl, regs->r13, regs->r14, regs->r15); if (mode == SHOW_REGS_SHORT) return; if (mode == SHOW_REGS_USER) { rdmsrl(MSR_FS_BASE, fs); rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); printk("%sFS: %016lx GS: %016lx\n", log_lvl, fs, shadowgs); return; } asm("movl %%ds,%0" : "=r" (ds)); asm("movl %%es,%0" : "=r" (es)); asm("movl %%fs,%0" : "=r" (fsindex)); asm("movl %%gs,%0" : "=r" (gsindex)); rdmsrl(MSR_FS_BASE, fs); rdmsrl(MSR_GS_BASE, gs); rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); cr0 = read_cr0(); cr2 = read_cr2(); cr3 = __read_cr3(); cr4 = __read_cr4(); printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", log_lvl, fs, fsindex, gs, gsindex, shadowgs); printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n", log_lvl, regs->cs, ds, es, cr0); printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n", log_lvl, cr2, cr3, cr4); get_debugreg(d0, 0); get_debugreg(d1, 1); get_debugreg(d2, 2); get_debugreg(d3, 3); get_debugreg(d6, 6); get_debugreg(d7, 7); /* Only print out debug registers if they are in their non-default state. */ if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && (d6 == DR6_RESERVED) && (d7 == 0x400))) { printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n", log_lvl, d0, d1, d2); printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n", log_lvl, d3, d6, d7); } if (cpu_feature_enabled(X86_FEATURE_OSPKE)) printk("%sPKRU: %08x\n", log_lvl, read_pkru()); } void release_thread(struct task_struct *dead_task) { WARN_ON(dead_task->mm); } enum which_selector { FS, GS }; /* * Out of line to be protected from kprobes and tracing. If this would be * traced or probed than any access to a per CPU variable happens with * the wrong GS. * * It is not used on Xen paravirt. When paravirt support is needed, it * needs to be renamed with native_ prefix. */ static noinstr unsigned long __rdgsbase_inactive(void) { unsigned long gsbase; lockdep_assert_irqs_disabled(); if (!static_cpu_has(X86_FEATURE_XENPV)) { native_swapgs(); gsbase = rdgsbase(); native_swapgs(); } else { instrumentation_begin(); rdmsrl(MSR_KERNEL_GS_BASE, gsbase); instrumentation_end(); } return gsbase; } /* * Out of line to be protected from kprobes and tracing. If this would be * traced or probed than any access to a per CPU variable happens with * the wrong GS. * * It is not used on Xen paravirt. When paravirt support is needed, it * needs to be renamed with native_ prefix. */ static noinstr void __wrgsbase_inactive(unsigned long gsbase) { lockdep_assert_irqs_disabled(); if (!static_cpu_has(X86_FEATURE_XENPV)) { native_swapgs(); wrgsbase(gsbase); native_swapgs(); } else { instrumentation_begin(); wrmsrl(MSR_KERNEL_GS_BASE, gsbase); instrumentation_end(); } } /* * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are * not available. The goal is to be reasonably fast on non-FSGSBASE systems. * It's forcibly inlined because it'll generate better code and this function * is hot. */ static __always_inline void save_base_legacy(struct task_struct *prev_p, unsigned short selector, enum which_selector which) { if (likely(selector == 0)) { /* * On Intel (without X86_BUG_NULL_SEG), the segment base could * be the pre-existing saved base or it could be zero. On AMD * (with X86_BUG_NULL_SEG), the segment base could be almost * anything. * * This branch is very hot (it's hit twice on almost every * context switch between 64-bit programs), and avoiding * the RDMSR helps a lot, so we just assume that whatever * value is already saved is correct. This matches historical * Linux behavior, so it won't break existing applications. * * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we * report that the base is zero, it needs to actually be zero: * see the corresponding logic in load_seg_legacy. */ } else { /* * If the selector is 1, 2, or 3, then the base is zero on * !X86_BUG_NULL_SEG CPUs and could be anything on * X86_BUG_NULL_SEG CPUs. In the latter case, Linux * has never attempted to preserve the base across context * switches. * * If selector > 3, then it refers to a real segment, and * saving the base isn't necessary. */ if (which == FS) prev_p->thread.fsbase = 0; else prev_p->thread.gsbase = 0; } } static __always_inline void save_fsgs(struct task_struct *task) { savesegment(fs, task->thread.fsindex); savesegment(gs, task->thread.gsindex); if (static_cpu_has(X86_FEATURE_FSGSBASE)) { /* * If FSGSBASE is enabled, we can't make any useful guesses * about the base, and user code expects us to save the current * value. Fortunately, reading the base directly is efficient. */ task->thread.fsbase = rdfsbase(); task->thread.gsbase = __rdgsbase_inactive(); } else { save_base_legacy(task, task->thread.fsindex, FS); save_base_legacy(task, task->thread.gsindex, GS); } } /* * While a process is running,current->thread.fsbase and current->thread.gsbase * may not match the corresponding CPU registers (see save_base_legacy()). */ void current_save_fsgs(void) { unsigned long flags; /* Interrupts need to be off for FSGSBASE */ local_irq_save(flags); save_fsgs(current); local_irq_restore(flags); } #if IS_ENABLED(CONFIG_KVM) EXPORT_SYMBOL_GPL(current_save_fsgs); #endif static __always_inline void loadseg(enum which_selector which, unsigned short sel) { if (which == FS) loadsegment(fs, sel); else load_gs_index(sel); } static __always_inline void load_seg_legacy(unsigned short prev_index, unsigned long prev_base, unsigned short next_index, unsigned long next_base, enum which_selector which) { if (likely(next_index <= 3)) { /* * The next task is using 64-bit TLS, is not using this * segment at all, or is having fun with arcane CPU features. */ if (next_base == 0) { /* * Nasty case: on AMD CPUs, we need to forcibly zero * the base. */ if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { loadseg(which, __USER_DS); loadseg(which, next_index); } else { /* * We could try to exhaustively detect cases * under which we can skip the segment load, * but there's really only one case that matters * for performance: if both the previous and * next states are fully zeroed, we can skip * the load. * * (This assumes that prev_base == 0 has no * false positives. This is the case on * Intel-style CPUs.) */ if (likely(prev_index | next_index | prev_base)) loadseg(which, next_index); } } else { if (prev_index != next_index) loadseg(which, next_index); wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, next_base); } } else { /* * The next task is using a real segment. Loading the selector * is sufficient. */ loadseg(which, next_index); } } /* * Store prev's PKRU value and load next's PKRU value if they differ. PKRU * is not XSTATE managed on context switch because that would require a * lookup in the task's FPU xsave buffer and require to keep that updated * in various places. */ static __always_inline void x86_pkru_load(struct thread_struct *prev, struct thread_struct *next) { if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* Stash the prev task's value: */ prev->pkru = rdpkru(); /* * PKRU writes are slightly expensive. Avoid them when not * strictly necessary: */ if (prev->pkru != next->pkru) wrpkru(next->pkru); } static __always_inline void x86_fsgsbase_load(struct thread_struct *prev, struct thread_struct *next) { if (static_cpu_has(X86_FEATURE_FSGSBASE)) { /* Update the FS and GS selectors if they could have changed. */ if (unlikely(prev->fsindex || next->fsindex)) loadseg(FS, next->fsindex); if (unlikely(prev->gsindex || next->gsindex)) loadseg(GS, next->gsindex); /* Update the bases. */ wrfsbase(next->fsbase); __wrgsbase_inactive(next->gsbase); } else { load_seg_legacy(prev->fsindex, prev->fsbase, next->fsindex, next->fsbase, FS); load_seg_legacy(prev->gsindex, prev->gsbase, next->gsindex, next->gsbase, GS); } } unsigned long x86_fsgsbase_read_task(struct task_struct *task, unsigned short selector) { unsigned short idx = selector >> 3; unsigned long base; if (likely((selector & SEGMENT_TI_MASK) == 0)) { if (unlikely(idx >= GDT_ENTRIES)) return 0; /* * There are no user segments in the GDT with nonzero bases * other than the TLS segments. */ if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return 0; idx -= GDT_ENTRY_TLS_MIN; base = get_desc_base(&task->thread.tls_array[idx]); } else { #ifdef CONFIG_MODIFY_LDT_SYSCALL struct ldt_struct *ldt; /* * If performance here mattered, we could protect the LDT * with RCU. This is a slow path, though, so we can just * take the mutex. */ mutex_lock(&task->mm->context.lock); ldt = task->mm->context.ldt; if (unlikely(!ldt || idx >= ldt->nr_entries)) base = 0; else base = get_desc_base(ldt->entries + idx); mutex_unlock(&task->mm->context.lock); #else base = 0; #endif } return base; } unsigned long x86_gsbase_read_cpu_inactive(void) { unsigned long gsbase; if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { unsigned long flags; local_irq_save(flags); gsbase = __rdgsbase_inactive(); local_irq_restore(flags); } else { rdmsrl(MSR_KERNEL_GS_BASE, gsbase); } return gsbase; } void x86_gsbase_write_cpu_inactive(unsigned long gsbase) { if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { unsigned long flags; local_irq_save(flags); __wrgsbase_inactive(gsbase); local_irq_restore(flags); } else { wrmsrl(MSR_KERNEL_GS_BASE, gsbase); } } unsigned long x86_fsbase_read_task(struct task_struct *task) { unsigned long fsbase; if (task == current) fsbase = x86_fsbase_read_cpu(); else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || (task->thread.fsindex == 0)) fsbase = task->thread.fsbase; else fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex); return fsbase; } unsigned long x86_gsbase_read_task(struct task_struct *task) { unsigned long gsbase; if (task == current) gsbase = x86_gsbase_read_cpu_inactive(); else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || (task->thread.gsindex == 0)) gsbase = task->thread.gsbase; else gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex); return gsbase; } void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) { WARN_ON_ONCE(task == current); task->thread.fsbase = fsbase; } void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) { WARN_ON_ONCE(task == current); task->thread.gsbase = gsbase; } static void start_thread_common(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp, unsigned int _cs, unsigned int _ss, unsigned int _ds) { WARN_ON_ONCE(regs != current_pt_regs()); if (static_cpu_has(X86_BUG_NULL_SEG)) { /* Loading zero below won't clear the base. */ loadsegment(fs, __USER_DS); load_gs_index(__USER_DS); } loadsegment(fs, 0); loadsegment(es, _ds); loadsegment(ds, _ds); load_gs_index(0); regs->ip = new_ip; regs->sp = new_sp; regs->cs = _cs; regs->ss = _ss; regs->flags = X86_EFLAGS_IF; } void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) { start_thread_common(regs, new_ip, new_sp, __USER_CS, __USER_DS, 0); } EXPORT_SYMBOL_GPL(start_thread); #ifdef CONFIG_COMPAT void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32) { start_thread_common(regs, new_ip, new_sp, x32 ? __USER_CS : __USER32_CS, __USER_DS, __USER_DS); } #endif /* * switch_to(x,y) should switch tasks from x to y. * * This could still be optimized: * - fold all the options into a flag word and test it with a single test. * - could test fs/gs bitsliced * * Kprobes not supported here. Set the probe on schedule instead. * Function graph tracer not supported too. */ __no_kmsan_checks __visible __notrace_funcgraph struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) { struct thread_struct *prev = &prev_p->thread; struct thread_struct *next = &next_p->thread; struct fpu *prev_fpu = &prev->fpu; int cpu = smp_processor_id(); WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && this_cpu_read(hardirq_stack_inuse)); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) switch_fpu_prepare(prev_fpu, cpu); /* We must save %fs and %gs before load_TLS() because * %fs and %gs may be cleared by load_TLS(). * * (e.g. xen_load_tls()) */ save_fsgs(prev_p); /* * Load TLS before restoring any segments so that segment loads * reference the correct GDT entries. */ load_TLS(next, cpu); /* * Leave lazy mode, flushing any hypercalls made here. This * must be done after loading TLS entries in the GDT but before * loading segments that might reference them. */ arch_end_context_switch(next_p); /* Switch DS and ES. * * Reading them only returns the selectors, but writing them (if * nonzero) loads the full descriptor from the GDT or LDT. The * LDT for next is loaded in switch_mm, and the GDT is loaded * above. * * We therefore need to write new values to the segment * registers on every context switch unless both the new and old * values are zero. * * Note that we don't need to do anything for CS and SS, as * those are saved and restored as part of pt_regs. */ savesegment(es, prev->es); if (unlikely(next->es | prev->es)) loadsegment(es, next->es); savesegment(ds, prev->ds); if (unlikely(next->ds | prev->ds)) loadsegment(ds, next->ds); x86_fsgsbase_load(prev, next); x86_pkru_load(prev, next); /* * Switch the PDA and FPU contexts. */ this_cpu_write(current_task, next_p); this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p)); switch_fpu_finish(); /* Reload sp0. */ update_task_stack(next_p); switch_to_extra(prev_p, next_p); if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { /* * AMD CPUs have a misfeature: SYSRET sets the SS selector but * does not update the cached descriptor. As a result, if we * do SYSRET while SS is NULL, we'll end up in user mode with * SS apparently equal to __USER_DS but actually unusable. * * The straightforward workaround would be to fix it up just * before SYSRET, but that would slow down the system call * fast paths. Instead, we ensure that SS is never NULL in * system call context. We do this by replacing NULL SS * selectors at every context switch. SYSCALL sets up a valid * SS, so the only way to get NULL is to re-enter the kernel * from CPL 3 through an interrupt. Since that can't happen * in the same task as a running syscall, we are guaranteed to * context switch between every interrupt vector entry and a * subsequent SYSRET. * * We read SS first because SS reads are much faster than * writes. Out of caution, we force SS to __KERNEL_DS even if * it previously had a different non-NULL value. */ unsigned short ss_sel; savesegment(ss, ss_sel); if (ss_sel != __KERNEL_DS) loadsegment(ss, __KERNEL_DS); } /* Load the Intel cache allocation PQR MSR. */ resctrl_sched_in(next_p); return prev_p; } void set_personality_64bit(void) { /* inherit personality from parent */ /* Make sure to be in 64bit mode */ clear_thread_flag(TIF_ADDR32); /* Pretend that this comes from a 64bit execve */ task_pt_regs(current)->orig_ax = __NR_execve; current_thread_info()->status &= ~TS_COMPAT; if (current->mm) current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL; /* TBD: overwrites user setup. Should have two bits. But 64bit processes have always behaved this way, so it's not too bad. The main problem is just that 32bit children are affected again. */ current->personality &= ~READ_IMPLIES_EXEC; } static void __set_personality_x32(void) { #ifdef CONFIG_X86_X32_ABI if (current->mm) current->mm->context.flags = 0; current->personality &= ~READ_IMPLIES_EXEC; /* * in_32bit_syscall() uses the presence of the x32 syscall bit * flag to determine compat status. The x86 mmap() code relies on * the syscall bitness so set x32 syscall bit right here to make * in_32bit_syscall() work during exec(). * * Pretend to come from a x32 execve. */ task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; current_thread_info()->status &= ~TS_COMPAT; #endif } static void __set_personality_ia32(void) { #ifdef CONFIG_IA32_EMULATION if (current->mm) { /* * uprobes applied to this MM need to know this and * cannot use user_64bit_mode() at that time. */ current->mm->context.flags = MM_CONTEXT_UPROBE_IA32; } current->personality |= force_personality32; /* Prepare the first "return" to user space */ task_pt_regs(current)->orig_ax = __NR_ia32_execve; current_thread_info()->status |= TS_COMPAT; #endif } void set_personality_ia32(bool x32) { /* Make sure to be in 32bit mode */ set_thread_flag(TIF_ADDR32); if (x32) __set_personality_x32(); else __set_personality_ia32(); } EXPORT_SYMBOL_GPL(set_personality_ia32); #ifdef CONFIG_CHECKPOINT_RESTORE static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) { int ret; ret = map_vdso_once(image, addr); if (ret) return ret; return (long)image->size; } #endif long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) { int ret = 0; switch (option) { case ARCH_SET_GS: { if (unlikely(arg2 >= TASK_SIZE_MAX)) return -EPERM; preempt_disable(); /* * ARCH_SET_GS has always overwritten the index * and the base. Zero is the most sensible value * to put in the index, and is the only value that * makes any sense if FSGSBASE is unavailable. */ if (task == current) { loadseg(GS, 0); x86_gsbase_write_cpu_inactive(arg2); /* * On non-FSGSBASE systems, save_base_legacy() expects * that we also fill in thread.gsbase. */ task->thread.gsbase = arg2; } else { task->thread.gsindex = 0; x86_gsbase_write_task(task, arg2); } preempt_enable(); break; } case ARCH_SET_FS: { /* * Not strictly needed for %fs, but do it for symmetry * with %gs */ if (unlikely(arg2 >= TASK_SIZE_MAX)) return -EPERM; preempt_disable(); /* * Set the selector to 0 for the same reason * as %gs above. */ if (task == current) { loadseg(FS, 0); x86_fsbase_write_cpu(arg2); /* * On non-FSGSBASE systems, save_base_legacy() expects * that we also fill in thread.fsbase. */ task->thread.fsbase = arg2; } else { task->thread.fsindex = 0; x86_fsbase_write_task(task, arg2); } preempt_enable(); break; } case ARCH_GET_FS: { unsigned long base = x86_fsbase_read_task(task); ret = put_user(base, (unsigned long __user *)arg2); break; } case ARCH_GET_GS: { unsigned long base = x86_gsbase_read_task(task); ret = put_user(base, (unsigned long __user *)arg2); break; } #ifdef CONFIG_CHECKPOINT_RESTORE # ifdef CONFIG_X86_X32_ABI case ARCH_MAP_VDSO_X32: return prctl_map_vdso(&vdso_image_x32, arg2); # endif # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION case ARCH_MAP_VDSO_32: return prctl_map_vdso(&vdso_image_32, arg2); # endif case ARCH_MAP_VDSO_64: return prctl_map_vdso(&vdso_image_64, arg2); #endif default: ret = -EINVAL; break; } return ret; } SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) { long ret; ret = do_arch_prctl_64(current, option, arg2); if (ret == -EINVAL) ret = do_arch_prctl_common(option, arg2); return ret; } #ifdef CONFIG_IA32_EMULATION COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) { return do_arch_prctl_common(option, arg2); } #endif unsigned long KSTK_ESP(struct task_struct *task) { return task_pt_regs(task)->sp; } |