Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | // SPDX-License-Identifier: LGPL-2.1 #define _GNU_SOURCE #include <assert.h> #include <pthread.h> #include <sched.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stddef.h> #include "../kselftest.h" #include "rseq.h" struct percpu_lock_entry { intptr_t v; } __attribute__((aligned(128))); struct percpu_lock { struct percpu_lock_entry c[CPU_SETSIZE]; }; struct test_data_entry { intptr_t count; } __attribute__((aligned(128))); struct spinlock_test_data { struct percpu_lock lock; struct test_data_entry c[CPU_SETSIZE]; int reps; }; struct percpu_list_node { intptr_t data; struct percpu_list_node *next; }; struct percpu_list_entry { struct percpu_list_node *head; } __attribute__((aligned(128))); struct percpu_list { struct percpu_list_entry c[CPU_SETSIZE]; }; /* A simple percpu spinlock. Returns the cpu lock was acquired on. */ int rseq_this_cpu_lock(struct percpu_lock *lock) { int cpu; for (;;) { int ret; cpu = rseq_cpu_start(); ret = rseq_cmpeqv_storev(&lock->c[cpu].v, 0, 1, cpu); if (rseq_likely(!ret)) break; /* Retry if comparison fails or rseq aborts. */ } /* * Acquire semantic when taking lock after control dependency. * Matches rseq_smp_store_release(). */ rseq_smp_acquire__after_ctrl_dep(); return cpu; } void rseq_percpu_unlock(struct percpu_lock *lock, int cpu) { assert(lock->c[cpu].v == 1); /* * Release lock, with release semantic. Matches * rseq_smp_acquire__after_ctrl_dep(). */ rseq_smp_store_release(&lock->c[cpu].v, 0); } void *test_percpu_spinlock_thread(void *arg) { struct spinlock_test_data *data = arg; int i, cpu; if (rseq_register_current_thread()) { fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n", errno, strerror(errno)); abort(); } for (i = 0; i < data->reps; i++) { cpu = rseq_this_cpu_lock(&data->lock); data->c[cpu].count++; rseq_percpu_unlock(&data->lock, cpu); } if (rseq_unregister_current_thread()) { fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n", errno, strerror(errno)); abort(); } return NULL; } /* * A simple test which implements a sharded counter using a per-cpu * lock. Obviously real applications might prefer to simply use a * per-cpu increment; however, this is reasonable for a test and the * lock can be extended to synchronize more complicated operations. */ void test_percpu_spinlock(void) { const int num_threads = 200; int i; uint64_t sum; pthread_t test_threads[num_threads]; struct spinlock_test_data data; memset(&data, 0, sizeof(data)); data.reps = 5000; for (i = 0; i < num_threads; i++) pthread_create(&test_threads[i], NULL, test_percpu_spinlock_thread, &data); for (i = 0; i < num_threads; i++) pthread_join(test_threads[i], NULL); sum = 0; for (i = 0; i < CPU_SETSIZE; i++) sum += data.c[i].count; assert(sum == (uint64_t)data.reps * num_threads); } void this_cpu_list_push(struct percpu_list *list, struct percpu_list_node *node, int *_cpu) { int cpu; for (;;) { intptr_t *targetptr, newval, expect; int ret; cpu = rseq_cpu_start(); /* Load list->c[cpu].head with single-copy atomicity. */ expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head); newval = (intptr_t)node; targetptr = (intptr_t *)&list->c[cpu].head; node->next = (struct percpu_list_node *)expect; ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu); if (rseq_likely(!ret)) break; /* Retry if comparison fails or rseq aborts. */ } if (_cpu) *_cpu = cpu; } /* * Unlike a traditional lock-less linked list; the availability of a * rseq primitive allows us to implement pop without concerns over * ABA-type races. */ struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list, int *_cpu) { for (;;) { struct percpu_list_node *head; intptr_t *targetptr, expectnot, *load; long offset; int ret, cpu; cpu = rseq_cpu_start(); targetptr = (intptr_t *)&list->c[cpu].head; expectnot = (intptr_t)NULL; offset = offsetof(struct percpu_list_node, next); load = (intptr_t *)&head; ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot, offset, load, cpu); if (rseq_likely(!ret)) { if (_cpu) *_cpu = cpu; return head; } if (ret > 0) return NULL; /* Retry if rseq aborts. */ } } /* * __percpu_list_pop is not safe against concurrent accesses. Should * only be used on lists that are not concurrently modified. */ struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu) { struct percpu_list_node *node; node = list->c[cpu].head; if (!node) return NULL; list->c[cpu].head = node->next; return node; } void *test_percpu_list_thread(void *arg) { int i; struct percpu_list *list = (struct percpu_list *)arg; if (rseq_register_current_thread()) { fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n", errno, strerror(errno)); abort(); } for (i = 0; i < 100000; i++) { struct percpu_list_node *node; node = this_cpu_list_pop(list, NULL); sched_yield(); /* encourage shuffling */ if (node) this_cpu_list_push(list, node, NULL); } if (rseq_unregister_current_thread()) { fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n", errno, strerror(errno)); abort(); } return NULL; } /* Simultaneous modification to a per-cpu linked list from many threads. */ void test_percpu_list(void) { int i, j; uint64_t sum = 0, expected_sum = 0; struct percpu_list list; pthread_t test_threads[200]; cpu_set_t allowed_cpus; memset(&list, 0, sizeof(list)); /* Generate list entries for every usable cpu. */ sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus); for (i = 0; i < CPU_SETSIZE; i++) { if (!CPU_ISSET(i, &allowed_cpus)) continue; for (j = 1; j <= 100; j++) { struct percpu_list_node *node; expected_sum += j; node = malloc(sizeof(*node)); assert(node); node->data = j; node->next = list.c[i].head; list.c[i].head = node; } } for (i = 0; i < 200; i++) pthread_create(&test_threads[i], NULL, test_percpu_list_thread, &list); for (i = 0; i < 200; i++) pthread_join(test_threads[i], NULL); for (i = 0; i < CPU_SETSIZE; i++) { struct percpu_list_node *node; if (!CPU_ISSET(i, &allowed_cpus)) continue; while ((node = __percpu_list_pop(&list, i))) { sum += node->data; free(node); } } /* * All entries should now be accounted for (unless some external * actor is interfering with our allowed affinity while this * test is running). */ assert(sum == expected_sum); } int main(int argc, char **argv) { if (rseq_register_current_thread()) { fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n", errno, strerror(errno)); goto error; } printf("spinlock\n"); test_percpu_spinlock(); printf("percpu_list\n"); test_percpu_list(); if (rseq_unregister_current_thread()) { fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n", errno, strerror(errno)); goto error; } return 0; error: return -1; } |