Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 | // SPDX-License-Identifier: GPL-2.0-only /* * Aic94xx SAS/SATA driver hardware interface. * * Copyright (C) 2005 Adaptec, Inc. All rights reserved. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> */ #include <linux/pci.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/firmware.h> #include "aic94xx.h" #include "aic94xx_reg.h" #include "aic94xx_hwi.h" #include "aic94xx_seq.h" #include "aic94xx_dump.h" u32 MBAR0_SWB_SIZE; /* ---------- Initialization ---------- */ static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha) { /* adapter came with a sas address */ if (asd_ha->hw_prof.sas_addr[0]) return 0; return sas_request_addr(asd_ha->sas_ha.core.shost, asd_ha->hw_prof.sas_addr); } static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha) { int i; for (i = 0; i < ASD_MAX_PHYS; i++) { if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0) continue; /* Set a phy's address only if it has none. */ ASD_DPRINTK("setting phy%d addr to %llx\n", i, SAS_ADDR(asd_ha->hw_prof.sas_addr)); memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE); } } /* ---------- PHY initialization ---------- */ static void asd_init_phy_identify(struct asd_phy *phy) { phy->identify_frame = phy->id_frm_tok->vaddr; memset(phy->identify_frame, 0, sizeof(*phy->identify_frame)); phy->identify_frame->dev_type = SAS_END_DEVICE; if (phy->sas_phy.role & PHY_ROLE_INITIATOR) phy->identify_frame->initiator_bits = phy->sas_phy.iproto; if (phy->sas_phy.role & PHY_ROLE_TARGET) phy->identify_frame->target_bits = phy->sas_phy.tproto; memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr, SAS_ADDR_SIZE); phy->identify_frame->phy_id = phy->sas_phy.id; } static int asd_init_phy(struct asd_phy *phy) { struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; struct asd_sas_phy *sas_phy = &phy->sas_phy; sas_phy->enabled = 1; sas_phy->class = SAS; sas_phy->iproto = SAS_PROTOCOL_ALL; sas_phy->tproto = 0; sas_phy->type = PHY_TYPE_PHYSICAL; sas_phy->role = PHY_ROLE_INITIATOR; sas_phy->oob_mode = OOB_NOT_CONNECTED; sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN; phy->id_frm_tok = asd_alloc_coherent(asd_ha, sizeof(*phy->identify_frame), GFP_KERNEL); if (!phy->id_frm_tok) { asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id); return -ENOMEM; } else asd_init_phy_identify(phy); memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd)); return 0; } static void asd_init_ports(struct asd_ha_struct *asd_ha) { int i; spin_lock_init(&asd_ha->asd_ports_lock); for (i = 0; i < ASD_MAX_PHYS; i++) { struct asd_port *asd_port = &asd_ha->asd_ports[i]; memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE); memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE); asd_port->phy_mask = 0; asd_port->num_phys = 0; } } static int asd_init_phys(struct asd_ha_struct *asd_ha) { u8 i; u8 phy_mask = asd_ha->hw_prof.enabled_phys; for (i = 0; i < ASD_MAX_PHYS; i++) { struct asd_phy *phy = &asd_ha->phys[i]; phy->phy_desc = &asd_ha->hw_prof.phy_desc[i]; phy->asd_port = NULL; phy->sas_phy.enabled = 0; phy->sas_phy.id = i; phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0]; phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0]; phy->sas_phy.ha = &asd_ha->sas_ha; phy->sas_phy.lldd_phy = phy; } /* Now enable and initialize only the enabled phys. */ for_each_phy(phy_mask, phy_mask, i) { int err = asd_init_phy(&asd_ha->phys[i]); if (err) return err; } return 0; } /* ---------- Sliding windows ---------- */ static int asd_init_sw(struct asd_ha_struct *asd_ha) { struct pci_dev *pcidev = asd_ha->pcidev; int err; u32 v; /* Unlock MBARs */ err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v); if (err) { asd_printk("couldn't access conf. space of %s\n", pci_name(pcidev)); goto Err; } if (v) err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v); if (err) { asd_printk("couldn't write to MBAR_KEY of %s\n", pci_name(pcidev)); goto Err; } /* Set sliding windows A, B and C to point to proper internal * memory regions. */ pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR); pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB, REG_BASE_ADDR_CSEQCIO); pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI); asd_ha->io_handle[0].swa_base = REG_BASE_ADDR; asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO; asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI; MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80; if (!asd_ha->iospace) { /* MBAR1 will point to OCM (On Chip Memory) */ pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR); asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR; } spin_lock_init(&asd_ha->iolock); Err: return err; } /* ---------- SCB initialization ---------- */ /** * asd_init_scbs - manually allocate the first SCB. * @asd_ha: pointer to host adapter structure * * This allocates the very first SCB which would be sent to the * sequencer for execution. Its bus address is written to * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of * the _next_ scb to be DMA-ed to the host adapter is read from the last * SCB DMA-ed to the host adapter, we have to always stay one step * ahead of the sequencer and keep one SCB already allocated. */ static int asd_init_scbs(struct asd_ha_struct *asd_ha) { struct asd_seq_data *seq = &asd_ha->seq; int bitmap_bytes; /* allocate the index array and bitmap */ asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs; asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits, sizeof(void *), GFP_KERNEL); if (!asd_ha->seq.tc_index_array) return -ENOMEM; bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8; bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); if (!asd_ha->seq.tc_index_bitmap) { kfree(asd_ha->seq.tc_index_array); asd_ha->seq.tc_index_array = NULL; return -ENOMEM; } spin_lock_init(&seq->tc_index_lock); seq->next_scb.size = sizeof(struct scb); seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL, &seq->next_scb.dma_handle); if (!seq->next_scb.vaddr) { kfree(asd_ha->seq.tc_index_bitmap); kfree(asd_ha->seq.tc_index_array); asd_ha->seq.tc_index_bitmap = NULL; asd_ha->seq.tc_index_array = NULL; return -ENOMEM; } seq->pending = 0; spin_lock_init(&seq->pend_q_lock); INIT_LIST_HEAD(&seq->pend_q); return 0; } static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha) { asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE; asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE; ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n", asd_ha->hw_prof.max_scbs, asd_ha->hw_prof.max_ddbs); } /* ---------- Done List initialization ---------- */ static void asd_dl_tasklet_handler(unsigned long); static int asd_init_dl(struct asd_ha_struct *asd_ha) { asd_ha->seq.actual_dl = asd_alloc_coherent(asd_ha, ASD_DL_SIZE * sizeof(struct done_list_struct), GFP_KERNEL); if (!asd_ha->seq.actual_dl) return -ENOMEM; asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr; asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE; asd_ha->seq.dl_next = 0; tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler, (unsigned long) asd_ha); return 0; } /* ---------- EDB and ESCB init ---------- */ static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags) { struct asd_seq_data *seq = &asd_ha->seq; int i; seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr), gfp_flags); if (!seq->edb_arr) return -ENOMEM; for (i = 0; i < seq->num_edbs; i++) { seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE, gfp_flags); if (!seq->edb_arr[i]) goto Err_unroll; memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE); } ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs); return 0; Err_unroll: for (i-- ; i >= 0; i--) asd_free_coherent(asd_ha, seq->edb_arr[i]); kfree(seq->edb_arr); seq->edb_arr = NULL; return -ENOMEM; } static int asd_alloc_escbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags) { struct asd_seq_data *seq = &asd_ha->seq; struct asd_ascb *escb; int i, escbs; seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr), gfp_flags); if (!seq->escb_arr) return -ENOMEM; escbs = seq->num_escbs; escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags); if (!escb) { asd_printk("couldn't allocate list of escbs\n"); goto Err; } seq->num_escbs -= escbs; /* subtract what was not allocated */ ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs); for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next, struct asd_ascb, list)) { seq->escb_arr[i] = escb; escb->scb->header.opcode = EMPTY_SCB; } return 0; Err: kfree(seq->escb_arr); seq->escb_arr = NULL; return -ENOMEM; } static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha) { struct asd_seq_data *seq = &asd_ha->seq; int i, k, z = 0; for (i = 0; i < seq->num_escbs; i++) { struct asd_ascb *ascb = seq->escb_arr[i]; struct empty_scb *escb = &ascb->scb->escb; ascb->edb_index = z; escb->num_valid = ASD_EDBS_PER_SCB; for (k = 0; k < ASD_EDBS_PER_SCB; k++) { struct sg_el *eb = &escb->eb[k]; struct asd_dma_tok *edb = seq->edb_arr[z++]; memset(eb, 0, sizeof(*eb)); eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle)); eb->size = cpu_to_le32(((u32) edb->size)); } } } /** * asd_init_escbs -- allocate and initialize empty scbs * @asd_ha: pointer to host adapter structure * * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers. * They transport sense data, etc. */ static int asd_init_escbs(struct asd_ha_struct *asd_ha) { struct asd_seq_data *seq = &asd_ha->seq; int err = 0; /* Allocate two empty data buffers (edb) per sequencer. */ int edbs = 2*(1+asd_ha->hw_prof.num_phys); seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB; seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB; err = asd_alloc_edbs(asd_ha, GFP_KERNEL); if (err) { asd_printk("couldn't allocate edbs\n"); return err; } err = asd_alloc_escbs(asd_ha, GFP_KERNEL); if (err) { asd_printk("couldn't allocate escbs\n"); return err; } asd_assign_edbs2escbs(asd_ha); /* In order to insure that normal SCBs do not overfill sequencer * memory and leave no space for escbs (halting condition), * we increment pending here by the number of escbs. However, * escbs are never pending. */ seq->pending = seq->num_escbs; seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2; return 0; } /* ---------- HW initialization ---------- */ /** * asd_chip_hardrst -- hard reset the chip * @asd_ha: pointer to host adapter structure * * This takes 16 cycles and is synchronous to CFCLK, which runs * at 200 MHz, so this should take at most 80 nanoseconds. */ int asd_chip_hardrst(struct asd_ha_struct *asd_ha) { int i; int count = 100; u32 reg; for (i = 0 ; i < 4 ; i++) { asd_write_reg_dword(asd_ha, COMBIST, HARDRST); } do { udelay(1); reg = asd_read_reg_dword(asd_ha, CHIMINT); if (reg & HARDRSTDET) { asd_write_reg_dword(asd_ha, CHIMINT, HARDRSTDET|PORRSTDET); return 0; } } while (--count > 0); return -ENODEV; } /** * asd_init_chip -- initialize the chip * @asd_ha: pointer to host adapter structure * * Hard resets the chip, disables HA interrupts, downloads the sequnecer * microcode and starts the sequencers. The caller has to explicitly * enable HA interrupts with asd_enable_ints(asd_ha). */ static int asd_init_chip(struct asd_ha_struct *asd_ha) { int err; err = asd_chip_hardrst(asd_ha); if (err) { asd_printk("couldn't hard reset %s\n", pci_name(asd_ha->pcidev)); goto out; } asd_disable_ints(asd_ha); err = asd_init_seqs(asd_ha); if (err) { asd_printk("couldn't init seqs for %s\n", pci_name(asd_ha->pcidev)); goto out; } err = asd_start_seqs(asd_ha); if (err) { asd_printk("couldn't start seqs for %s\n", pci_name(asd_ha->pcidev)); goto out; } out: return err; } #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE)) static int max_devs = 0; module_param_named(max_devs, max_devs, int, S_IRUGO); MODULE_PARM_DESC(max_devs, "\n" "\tMaximum number of SAS devices to support (not LUs).\n" "\tDefault: 2176, Maximum: 65663.\n"); static int max_cmnds = 0; module_param_named(max_cmnds, max_cmnds, int, S_IRUGO); MODULE_PARM_DESC(max_cmnds, "\n" "\tMaximum number of commands queuable.\n" "\tDefault: 512, Maximum: 66047.\n"); static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha) { unsigned long dma_addr = OCM_BASE_ADDR; u32 d; dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr); d = asd_read_reg_dword(asd_ha, CTXDOMAIN); d |= 4; asd_write_reg_dword(asd_ha, CTXDOMAIN, d); asd_ha->hw_prof.max_ddbs += MAX_DEVS; } static int asd_extend_devctx(struct asd_ha_struct *asd_ha) { dma_addr_t dma_handle; unsigned long dma_addr; u32 d; int size; asd_extend_devctx_ocm(asd_ha); asd_ha->hw_prof.ddb_ext = NULL; if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) { max_devs = asd_ha->hw_prof.max_ddbs; return 0; } size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE; asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); if (!asd_ha->hw_prof.ddb_ext) { asd_printk("couldn't allocate memory for %d devices\n", max_devs); max_devs = asd_ha->hw_prof.max_ddbs; return -ENOMEM; } dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle; dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE); dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; dma_handle = (dma_addr_t) dma_addr; asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle); d = asd_read_reg_dword(asd_ha, CTXDOMAIN); d &= ~4; asd_write_reg_dword(asd_ha, CTXDOMAIN, d); asd_ha->hw_prof.max_ddbs = max_devs; return 0; } static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha) { dma_addr_t dma_handle; unsigned long dma_addr; u32 d; int size; asd_ha->hw_prof.scb_ext = NULL; if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) { max_cmnds = asd_ha->hw_prof.max_scbs; return 0; } size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE; asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); if (!asd_ha->hw_prof.scb_ext) { asd_printk("couldn't allocate memory for %d commands\n", max_cmnds); max_cmnds = asd_ha->hw_prof.max_scbs; return -ENOMEM; } dma_handle = asd_ha->hw_prof.scb_ext->dma_handle; dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE); dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE; dma_handle = (dma_addr_t) dma_addr; asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle); d = asd_read_reg_dword(asd_ha, CTXDOMAIN); d &= ~1; asd_write_reg_dword(asd_ha, CTXDOMAIN, d); asd_ha->hw_prof.max_scbs = max_cmnds; return 0; } /** * asd_init_ctxmem -- initialize context memory * @asd_ha: pointer to host adapter structure * * This function sets the maximum number of SCBs and * DDBs which can be used by the sequencer. This is normally * 512 and 128 respectively. If support for more SCBs or more DDBs * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are * initialized here to extend context memory to point to host memory, * thus allowing unlimited support for SCBs and DDBs -- only limited * by host memory. */ static int asd_init_ctxmem(struct asd_ha_struct *asd_ha) { int bitmap_bytes; asd_get_max_scb_ddb(asd_ha); asd_extend_devctx(asd_ha); asd_extend_cmdctx(asd_ha); /* The kernel wants bitmaps to be unsigned long sized. */ bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8; bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); if (!asd_ha->hw_prof.ddb_bitmap) return -ENOMEM; spin_lock_init(&asd_ha->hw_prof.ddb_lock); return 0; } int asd_init_hw(struct asd_ha_struct *asd_ha) { int err; u32 v; err = asd_init_sw(asd_ha); if (err) return err; err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v); if (err) { asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n", pci_name(asd_ha->pcidev)); return err; } err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, v | SC_TMR_DIS); if (err) { asd_printk("couldn't disable split completion timer of %s\n", pci_name(asd_ha->pcidev)); return err; } err = asd_read_ocm(asd_ha); if (err) { asd_printk("couldn't read ocm(%d)\n", err); /* While suspicios, it is not an error that we * couldn't read the OCM. */ } err = asd_read_flash(asd_ha); if (err) { asd_printk("couldn't read flash(%d)\n", err); /* While suspicios, it is not an error that we * couldn't read FLASH memory. */ } asd_init_ctxmem(asd_ha); if (asd_get_user_sas_addr(asd_ha)) { asd_printk("No SAS Address provided for %s\n", pci_name(asd_ha->pcidev)); err = -ENODEV; goto Out; } asd_propagate_sas_addr(asd_ha); err = asd_init_phys(asd_ha); if (err) { asd_printk("couldn't initialize phys for %s\n", pci_name(asd_ha->pcidev)); goto Out; } asd_init_ports(asd_ha); err = asd_init_scbs(asd_ha); if (err) { asd_printk("couldn't initialize scbs for %s\n", pci_name(asd_ha->pcidev)); goto Out; } err = asd_init_dl(asd_ha); if (err) { asd_printk("couldn't initialize the done list:%d\n", err); goto Out; } err = asd_init_escbs(asd_ha); if (err) { asd_printk("couldn't initialize escbs\n"); goto Out; } err = asd_init_chip(asd_ha); if (err) { asd_printk("couldn't init the chip\n"); goto Out; } Out: return err; } /* ---------- Chip reset ---------- */ /** * asd_chip_reset -- reset the host adapter, etc * @asd_ha: pointer to host adapter structure of interest * * Called from the ISR. Hard reset the chip. Let everything * timeout. This should be no different than hot-unplugging the * host adapter. Once everything times out we'll init the chip with * a call to asd_init_chip() and enable interrupts with asd_enable_ints(). * XXX finish. */ static void asd_chip_reset(struct asd_ha_struct *asd_ha) { ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev)); asd_chip_hardrst(asd_ha); } /* ---------- Done List Routines ---------- */ static void asd_dl_tasklet_handler(unsigned long data) { struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data; struct asd_seq_data *seq = &asd_ha->seq; unsigned long flags; while (1) { struct done_list_struct *dl = &seq->dl[seq->dl_next]; struct asd_ascb *ascb; if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle) break; /* find the aSCB */ spin_lock_irqsave(&seq->tc_index_lock, flags); ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index)); spin_unlock_irqrestore(&seq->tc_index_lock, flags); if (unlikely(!ascb)) { ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n"); goto next_1; } else if (ascb->scb->header.opcode == EMPTY_SCB) { goto out; } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) { goto next_1; } spin_lock_irqsave(&seq->pend_q_lock, flags); list_del_init(&ascb->list); seq->pending--; spin_unlock_irqrestore(&seq->pend_q_lock, flags); out: ascb->tasklet_complete(ascb, dl); next_1: seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1); if (!seq->dl_next) seq->dl_toggle ^= DL_TOGGLE_MASK; } } /* ---------- Interrupt Service Routines ---------- */ /** * asd_process_donelist_isr -- schedule processing of done list entries * @asd_ha: pointer to host adapter structure */ static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha) { tasklet_schedule(&asd_ha->seq.dl_tasklet); } /** * asd_com_sas_isr -- process device communication interrupt (COMINT) * @asd_ha: pointer to host adapter structure */ static void asd_com_sas_isr(struct asd_ha_struct *asd_ha) { u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT); /* clear COMSTAT int */ asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF); if (comstat & CSBUFPERR) { asd_printk("%s: command/status buffer dma parity error\n", pci_name(asd_ha->pcidev)); } else if (comstat & CSERR) { int i; u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); dmaerr &= 0xFF; asd_printk("%s: command/status dma error, DMAERR: 0x%02x, " "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n", pci_name(asd_ha->pcidev), dmaerr, asd_read_reg_dword(asd_ha, CSDMAADR), asd_read_reg_dword(asd_ha, CSDMAADR+4)); asd_printk("CSBUFFER:\n"); for (i = 0; i < 8; i++) { asd_printk("%08x %08x %08x %08x\n", asd_read_reg_dword(asd_ha, CSBUFFER), asd_read_reg_dword(asd_ha, CSBUFFER+4), asd_read_reg_dword(asd_ha, CSBUFFER+8), asd_read_reg_dword(asd_ha, CSBUFFER+12)); } asd_dump_seq_state(asd_ha, 0); } else if (comstat & OVLYERR) { u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); dmaerr = (dmaerr >> 8) & 0xFF; asd_printk("%s: overlay dma error:0x%x\n", pci_name(asd_ha->pcidev), dmaerr); } asd_chip_reset(asd_ha); } static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus) { static const char *halt_code[256] = { "UNEXPECTED_INTERRUPT0", "UNEXPECTED_INTERRUPT1", "UNEXPECTED_INTERRUPT2", "UNEXPECTED_INTERRUPT3", "UNEXPECTED_INTERRUPT4", "UNEXPECTED_INTERRUPT5", "UNEXPECTED_INTERRUPT6", "UNEXPECTED_INTERRUPT7", "UNEXPECTED_INTERRUPT8", "UNEXPECTED_INTERRUPT9", "UNEXPECTED_INTERRUPT10", [11 ... 19] = "unknown[11,19]", "NO_FREE_SCB_AVAILABLE", "INVALID_SCB_OPCODE", "INVALID_MBX_OPCODE", "INVALID_ATA_STATE", "ATA_QUEUE_FULL", "ATA_TAG_TABLE_FAULT", "ATA_TAG_MASK_FAULT", "BAD_LINK_QUEUE_STATE", "DMA2CHIM_QUEUE_ERROR", "EMPTY_SCB_LIST_FULL", "unknown[30]", "IN_USE_SCB_ON_FREE_LIST", "BAD_OPEN_WAIT_STATE", "INVALID_STP_AFFILIATION", "unknown[34]", "EXEC_QUEUE_ERROR", "TOO_MANY_EMPTIES_NEEDED", "EMPTY_REQ_QUEUE_ERROR", "Q_MONIRTT_MGMT_ERROR", "TARGET_MODE_FLOW_ERROR", "DEVICE_QUEUE_NOT_FOUND", "START_IRTT_TIMER_ERROR", "ABORT_TASK_ILLEGAL_REQ", [43 ... 255] = "unknown[43,255]" }; if (dchstatus & CSEQINT) { u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT); if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) { asd_printk("%s: CSEQ arp2int:0x%x\n", pci_name(asd_ha->pcidev), arp2int); } else if (arp2int & ARP2HALTC) asd_printk("%s: CSEQ halted: %s\n", pci_name(asd_ha->pcidev), halt_code[(arp2int>>16)&0xFF]); else asd_printk("%s: CARP2INT:0x%x\n", pci_name(asd_ha->pcidev), arp2int); } if (dchstatus & LSEQINT_MASK) { int lseq; u8 lseq_mask = dchstatus & LSEQINT_MASK; for_each_sequencer(lseq_mask, lseq_mask, lseq) { u32 arp2int = asd_read_reg_dword(asd_ha, LmARP2INT(lseq)); if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR | ARP2CIOPERR)) { asd_printk("%s: LSEQ%d arp2int:0x%x\n", pci_name(asd_ha->pcidev), lseq, arp2int); /* XXX we should only do lseq reset */ } else if (arp2int & ARP2HALTC) asd_printk("%s: LSEQ%d halted: %s\n", pci_name(asd_ha->pcidev), lseq,halt_code[(arp2int>>16)&0xFF]); else asd_printk("%s: LSEQ%d ARP2INT:0x%x\n", pci_name(asd_ha->pcidev), lseq, arp2int); } } asd_chip_reset(asd_ha); } /** * asd_dch_sas_isr -- process device channel interrupt (DEVINT) * @asd_ha: pointer to host adapter structure */ static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha) { u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS); if (dchstatus & CFIFTOERR) { asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev)); asd_chip_reset(asd_ha); } else asd_arp2_err(asd_ha, dchstatus); } /** * asd_rbi_exsi_isr -- process external system interface interrupt (INITERR) * @asd_ha: pointer to host adapter structure */ static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha) { u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R); if (!(stat0r & ASIERR)) { asd_printk("hmm, EXSI interrupted but no error?\n"); return; } if (stat0r & ASIFMTERR) { asd_printk("ASI SEEPROM format error for %s\n", pci_name(asd_ha->pcidev)); } else if (stat0r & ASISEECHKERR) { u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R); asd_printk("ASI SEEPROM checksum 0x%x error for %s\n", stat1r & CHECKSUM_MASK, pci_name(asd_ha->pcidev)); } else { u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR); if (!(statr & CPI2ASIMSTERR_MASK)) { ASD_DPRINTK("hmm, ASIERR?\n"); return; } else { u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR); u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR); asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, " "count: 0x%x, byteen: 0x%x, targerr: 0x%x " "master id: 0x%x, master err: 0x%x\n", pci_name(asd_ha->pcidev), addr, data, (statr & CPI2ASIBYTECNT_MASK) >> 16, (statr & CPI2ASIBYTEEN_MASK) >> 12, (statr & CPI2ASITARGERR_MASK) >> 8, (statr & CPI2ASITARGMID_MASK) >> 4, (statr & CPI2ASIMSTERR_MASK)); } } asd_chip_reset(asd_ha); } /** * asd_hst_pcix_isr -- process host interface interrupts * @asd_ha: pointer to host adapter structure * * Asserted on PCIX errors: target abort, etc. */ static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha) { u16 status; u32 pcix_status; u32 ecc_status; pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status); pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status); pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status); if (status & PCI_STATUS_DETECTED_PARITY) asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev)); else if (status & PCI_STATUS_REC_MASTER_ABORT) asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev)); else if (status & PCI_STATUS_REC_TARGET_ABORT) asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev)); else if (status & PCI_STATUS_PARITY) asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev)); else if (pcix_status & RCV_SCE) { asd_printk("received split completion error for %s\n", pci_name(asd_ha->pcidev)); pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); /* XXX: Abort task? */ return; } else if (pcix_status & UNEXP_SC) { asd_printk("unexpected split completion for %s\n", pci_name(asd_ha->pcidev)); pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); /* ignore */ return; } else if (pcix_status & SC_DISCARD) asd_printk("split completion discarded for %s\n", pci_name(asd_ha->pcidev)); else if (ecc_status & UNCOR_ECCERR) asd_printk("uncorrectable ECC error for %s\n", pci_name(asd_ha->pcidev)); asd_chip_reset(asd_ha); } /** * asd_hw_isr -- host adapter interrupt service routine * @irq: ignored * @dev_id: pointer to host adapter structure * * The ISR processes done list entries and level 3 error handling. */ irqreturn_t asd_hw_isr(int irq, void *dev_id) { struct asd_ha_struct *asd_ha = dev_id; u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT); if (!chimint) return IRQ_NONE; asd_write_reg_dword(asd_ha, CHIMINT, chimint); (void) asd_read_reg_dword(asd_ha, CHIMINT); if (chimint & DLAVAIL) asd_process_donelist_isr(asd_ha); if (chimint & COMINT) asd_com_sas_isr(asd_ha); if (chimint & DEVINT) asd_dch_sas_isr(asd_ha); if (chimint & INITERR) asd_rbi_exsi_isr(asd_ha); if (chimint & HOSTERR) asd_hst_pcix_isr(asd_ha); return IRQ_HANDLED; } /* ---------- SCB handling ---------- */ static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha, gfp_t gfp_flags) { extern struct kmem_cache *asd_ascb_cache; struct asd_seq_data *seq = &asd_ha->seq; struct asd_ascb *ascb; unsigned long flags; ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags); if (ascb) { ascb->dma_scb.size = sizeof(struct scb); ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool, gfp_flags, &ascb->dma_scb.dma_handle); if (!ascb->dma_scb.vaddr) { kmem_cache_free(asd_ascb_cache, ascb); return NULL; } asd_init_ascb(asd_ha, ascb); spin_lock_irqsave(&seq->tc_index_lock, flags); ascb->tc_index = asd_tc_index_get(seq, ascb); spin_unlock_irqrestore(&seq->tc_index_lock, flags); if (ascb->tc_index == -1) goto undo; ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index); } return ascb; undo: dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr, ascb->dma_scb.dma_handle); kmem_cache_free(asd_ascb_cache, ascb); ASD_DPRINTK("no index for ascb\n"); return NULL; } /** * asd_ascb_alloc_list -- allocate a list of aSCBs * @asd_ha: pointer to host adapter structure * @num: pointer to integer number of aSCBs * @gfp_flags: GFP_ flags. * * This is the only function which is used to allocate aSCBs. * It can allocate one or many. If more than one, then they form * a linked list in two ways: by their list field of the ascb struct * and by the next_scb field of the scb_header. * * Returns NULL if no memory was available, else pointer to a list * of ascbs. When this function returns, @num would be the number * of SCBs which were not able to be allocated, 0 if all requested * were able to be allocated. */ struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct *asd_ha, int *num, gfp_t gfp_flags) { struct asd_ascb *first = NULL; for ( ; *num > 0; --*num) { struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags); if (!ascb) break; else if (!first) first = ascb; else { struct asd_ascb *last = list_entry(first->list.prev, struct asd_ascb, list); list_add_tail(&ascb->list, &first->list); last->scb->header.next_scb = cpu_to_le64(((u64)ascb->dma_scb.dma_handle)); } } return first; } /** * asd_swap_head_scb -- swap the head scb * @asd_ha: pointer to host adapter structure * @ascb: pointer to the head of an ascb list * * The sequencer knows the DMA address of the next SCB to be DMAed to * the host adapter, from initialization or from the last list DMAed. * seq->next_scb keeps the address of this SCB. The sequencer will * DMA to the host adapter this list of SCBs. But the head (first * element) of this list is not known to the sequencer. Here we swap * the head of the list with the known SCB (memcpy()). * Only one memcpy() is required per list so it is in our interest * to keep the list of SCB as long as possible so that the ratio * of number of memcpy calls to the number of SCB DMA-ed is as small * as possible. * * LOCKING: called with the pending list lock held. */ static void asd_swap_head_scb(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb) { struct asd_seq_data *seq = &asd_ha->seq; struct asd_ascb *last = list_entry(ascb->list.prev, struct asd_ascb, list); struct asd_dma_tok t = ascb->dma_scb; memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb)); ascb->dma_scb = seq->next_scb; ascb->scb = ascb->dma_scb.vaddr; seq->next_scb = t; last->scb->header.next_scb = cpu_to_le64(((u64)seq->next_scb.dma_handle)); } /** * asd_start_scb_timers -- (add and) start timers of SCBs * @list: pointer to struct list_head of the scbs * * If an SCB in the @list has no timer function, assign the default * one, then start the timer of the SCB. This function is * intended to be called from asd_post_ascb_list(), just prior to * posting the SCBs to the sequencer. */ static void asd_start_scb_timers(struct list_head *list) { struct asd_ascb *ascb; list_for_each_entry(ascb, list, list) { if (!ascb->uldd_timer) { ascb->timer.function = asd_ascb_timedout; ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT; add_timer(&ascb->timer); } } } /** * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter * @asd_ha: pointer to a host adapter structure * @ascb: pointer to the first aSCB in the list * @num: number of aSCBs in the list (to be posted) * * See queueing comment in asd_post_escb_list(). * * Additional note on queuing: In order to minimize the ratio of memcpy() * to the number of ascbs sent, we try to batch-send as many ascbs as possible * in one go. * Two cases are possible: * A) can_queue >= num, * B) can_queue < num. * Case A: we can send the whole batch at once. Increment "pending" * in the beginning of this function, when it is checked, in order to * eliminate races when this function is called by multiple processes. * Case B: should never happen. */ int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, int num) { unsigned long flags; LIST_HEAD(list); int can_queue; spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending; if (can_queue >= num) asd_ha->seq.pending += num; else can_queue = 0; if (!can_queue) { spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev)); return -SAS_QUEUE_FULL; } asd_swap_head_scb(asd_ha, ascb); __list_add(&list, ascb->list.prev, &ascb->list); asd_start_scb_timers(&list); asd_ha->seq.scbpro += num; list_splice_init(&list, asd_ha->seq.pend_q.prev); asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); return 0; } /** * asd_post_escb_list -- post a list of 1 or more empty scb * @asd_ha: pointer to a host adapter structure * @ascb: pointer to the first empty SCB in the list * @num: number of aSCBs in the list (to be posted) * * This is essentially the same as asd_post_ascb_list, but we do not * increment pending, add those to the pending list or get indexes. * See asd_init_escbs() and asd_init_post_escbs(). * * Since sending a list of ascbs is a superset of sending a single * ascb, this function exists to generalize this. More specifically, * when sending a list of those, we want to do only a _single_ * memcpy() at swap head, as opposed to for each ascb sent (in the * case of sending them one by one). That is, we want to minimize the * ratio of memcpy() operations to the number of ascbs sent. The same * logic applies to asd_post_ascb_list(). */ int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, int num) { unsigned long flags; spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); asd_swap_head_scb(asd_ha, ascb); asd_ha->seq.scbpro += num; asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); return 0; } /* ---------- LED ---------- */ /** * asd_turn_led -- turn on/off an LED * @asd_ha: pointer to host adapter structure * @phy_id: the PHY id whose LED we want to manupulate * @op: 1 to turn on, 0 to turn off */ void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op) { if (phy_id < ASD_MAX_PHYS) { u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id)); if (op) v |= LEDPOL; else v &= ~LEDPOL; asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v); } } /** * asd_control_led -- enable/disable an LED on the board * @asd_ha: pointer to host adapter structure * @phy_id: integer, the phy id * @op: integer, 1 to enable, 0 to disable the LED * * First we output enable the LED, then we set the source * to be an external module. */ void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op) { if (phy_id < ASD_MAX_PHYS) { u32 v; v = asd_read_reg_dword(asd_ha, GPIOOER); if (op) v |= (1 << phy_id); else v &= ~(1 << phy_id); asd_write_reg_dword(asd_ha, GPIOOER, v); v = asd_read_reg_dword(asd_ha, GPIOCNFGR); if (op) v |= (1 << phy_id); else v &= ~(1 << phy_id); asd_write_reg_dword(asd_ha, GPIOCNFGR, v); } } /* ---------- PHY enable ---------- */ static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id) { struct asd_phy *phy = &asd_ha->phys[phy_id]; asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0); asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY), HOTPLUG_DELAY_TIMEOUT); /* Get defaults from manuf. sector */ /* XXX we need defaults for those in case MS is broken. */ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0), phy->phy_desc->phy_control_0); asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1), phy->phy_desc->phy_control_1); asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2), phy->phy_desc->phy_control_2); asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3), phy->phy_desc->phy_control_3); asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id), ASD_COMINIT_TIMEOUT); asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id), phy->id_frm_tok->dma_handle); asd_control_led(asd_ha, phy_id, 1); return 0; } int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask) { u8 phy_m; u8 i; int num = 0, k; struct asd_ascb *ascb; struct asd_ascb *ascb_list; if (!phy_mask) { asd_printk("%s called with phy_mask of 0!?\n", __func__); return 0; } for_each_phy(phy_mask, phy_m, i) { num++; asd_enable_phy(asd_ha, i); } k = num; ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL); if (!ascb_list) { asd_printk("no memory for control phy ascb list\n"); return -ENOMEM; } num -= k; ascb = ascb_list; for_each_phy(phy_mask, phy_m, i) { asd_build_control_phy(ascb, i, ENABLE_PHY); ascb = list_entry(ascb->list.next, struct asd_ascb, list); } ASD_DPRINTK("posting %d control phy scbs\n", num); k = asd_post_ascb_list(asd_ha, ascb_list, num); if (k) asd_ascb_free_list(ascb_list); return k; } |