Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 | // SPDX-License-Identifier: GPL-2.0 /* * Filesystem-level keyring for fscrypt * * Copyright 2019 Google LLC */ /* * This file implements management of fscrypt master keys in the * filesystem-level keyring, including the ioctls: * * - FS_IOC_ADD_ENCRYPTION_KEY * - FS_IOC_REMOVE_ENCRYPTION_KEY * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS * - FS_IOC_GET_ENCRYPTION_KEY_STATUS * * See the "User API" section of Documentation/filesystems/fscrypt.rst for more * information about these ioctls. */ #include <asm/unaligned.h> #include <crypto/skcipher.h> #include <linux/key-type.h> #include <linux/random.h> #include <linux/seq_file.h> #include "fscrypt_private.h" /* The master encryption keys for a filesystem (->s_master_keys) */ struct fscrypt_keyring { /* * Lock that protects ->key_hashtable. It does *not* protect the * fscrypt_master_key structs themselves. */ spinlock_t lock; /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ struct hlist_head key_hashtable[128]; }; static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) { fscrypt_destroy_hkdf(&secret->hkdf); memzero_explicit(secret, sizeof(*secret)); } static void move_master_key_secret(struct fscrypt_master_key_secret *dst, struct fscrypt_master_key_secret *src) { memcpy(dst, src, sizeof(*dst)); memzero_explicit(src, sizeof(*src)); } static void fscrypt_free_master_key(struct rcu_head *head) { struct fscrypt_master_key *mk = container_of(head, struct fscrypt_master_key, mk_rcu_head); /* * The master key secret and any embedded subkeys should have already * been wiped when the last active reference to the fscrypt_master_key * struct was dropped; doing it here would be unnecessarily late. * Nevertheless, use kfree_sensitive() in case anything was missed. */ kfree_sensitive(mk); } void fscrypt_put_master_key(struct fscrypt_master_key *mk) { if (!refcount_dec_and_test(&mk->mk_struct_refs)) return; /* * No structural references left, so free ->mk_users, and also free the * fscrypt_master_key struct itself after an RCU grace period ensures * that concurrent keyring lookups can no longer find it. */ WARN_ON(refcount_read(&mk->mk_active_refs) != 0); key_put(mk->mk_users); mk->mk_users = NULL; call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); } void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk) { struct super_block *sb = mk->mk_sb; struct fscrypt_keyring *keyring = sb->s_master_keys; size_t i; if (!refcount_dec_and_test(&mk->mk_active_refs)) return; /* * No active references left, so complete the full removal of this * fscrypt_master_key struct by removing it from the keyring and * destroying any subkeys embedded in it. */ spin_lock(&keyring->lock); hlist_del_rcu(&mk->mk_node); spin_unlock(&keyring->lock); /* * ->mk_active_refs == 0 implies that ->mk_secret is not present and * that ->mk_decrypted_inodes is empty. */ WARN_ON(is_master_key_secret_present(&mk->mk_secret)); WARN_ON(!list_empty(&mk->mk_decrypted_inodes)); for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { fscrypt_destroy_prepared_key( sb, &mk->mk_direct_keys[i]); fscrypt_destroy_prepared_key( sb, &mk->mk_iv_ino_lblk_64_keys[i]); fscrypt_destroy_prepared_key( sb, &mk->mk_iv_ino_lblk_32_keys[i]); } memzero_explicit(&mk->mk_ino_hash_key, sizeof(mk->mk_ino_hash_key)); mk->mk_ino_hash_key_initialized = false; /* Drop the structural ref associated with the active refs. */ fscrypt_put_master_key(mk); } static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) { if (spec->__reserved) return false; return master_key_spec_len(spec) != 0; } static int fscrypt_user_key_instantiate(struct key *key, struct key_preparsed_payload *prep) { /* * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for * each key, regardless of the exact key size. The amount of memory * actually used is greater than the size of the raw key anyway. */ return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); } static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) { seq_puts(m, key->description); } /* * Type of key in ->mk_users. Each key of this type represents a particular * user who has added a particular master key. * * Note that the name of this key type really should be something like * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen * mainly for simplicity of presentation in /proc/keys when read by a non-root * user. And it is expected to be rare that a key is actually added by multiple * users, since users should keep their encryption keys confidential. */ static struct key_type key_type_fscrypt_user = { .name = ".fscrypt", .instantiate = fscrypt_user_key_instantiate, .describe = fscrypt_user_key_describe, }; #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ CONST_STRLEN("-users") + 1) #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) static void format_mk_users_keyring_description( char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) { sprintf(description, "fscrypt-%*phN-users", FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); } static void format_mk_user_description( char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) { sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier, __kuid_val(current_fsuid())); } /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ static int allocate_filesystem_keyring(struct super_block *sb) { struct fscrypt_keyring *keyring; if (sb->s_master_keys) return 0; keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); if (!keyring) return -ENOMEM; spin_lock_init(&keyring->lock); /* * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). * I.e., here we publish ->s_master_keys with a RELEASE barrier so that * concurrent tasks can ACQUIRE it. */ smp_store_release(&sb->s_master_keys, keyring); return 0; } /* * Release all encryption keys that have been added to the filesystem, along * with the keyring that contains them. * * This is called at unmount time. The filesystem's underlying block device(s) * are still available at this time; this is important because after user file * accesses have been allowed, this function may need to evict keys from the * keyslots of an inline crypto engine, which requires the block device(s). * * This is also called when the super_block is being freed. This is needed to * avoid a memory leak if mounting fails after the "test_dummy_encryption" * option was processed, as in that case the unmount-time call isn't made. */ void fscrypt_destroy_keyring(struct super_block *sb) { struct fscrypt_keyring *keyring = sb->s_master_keys; size_t i; if (!keyring) return; for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { struct hlist_head *bucket = &keyring->key_hashtable[i]; struct fscrypt_master_key *mk; struct hlist_node *tmp; hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { /* * Since all inodes were already evicted, every key * remaining in the keyring should have an empty inode * list, and should only still be in the keyring due to * the single active ref associated with ->mk_secret. * There should be no structural refs beyond the one * associated with the active ref. */ WARN_ON(refcount_read(&mk->mk_active_refs) != 1); WARN_ON(refcount_read(&mk->mk_struct_refs) != 1); WARN_ON(!is_master_key_secret_present(&mk->mk_secret)); wipe_master_key_secret(&mk->mk_secret); fscrypt_put_master_key_activeref(mk); } } kfree_sensitive(keyring); sb->s_master_keys = NULL; } static struct hlist_head * fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, const struct fscrypt_key_specifier *mk_spec) { /* * Since key specifiers should be "random" values, it is sufficient to * use a trivial hash function that just takes the first several bits of * the key specifier. */ unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; } /* * Find the specified master key struct in ->s_master_keys and take a structural * ref to it. The structural ref guarantees that the key struct continues to * exist, but it does *not* guarantee that ->s_master_keys continues to contain * the key struct. The structural ref needs to be dropped by * fscrypt_put_master_key(). Returns NULL if the key struct is not found. */ struct fscrypt_master_key * fscrypt_find_master_key(struct super_block *sb, const struct fscrypt_key_specifier *mk_spec) { struct fscrypt_keyring *keyring; struct hlist_head *bucket; struct fscrypt_master_key *mk; /* * Pairs with the smp_store_release() in allocate_filesystem_keyring(). * I.e., another task can publish ->s_master_keys concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ keyring = smp_load_acquire(&sb->s_master_keys); if (keyring == NULL) return NULL; /* No keyring yet, so no keys yet. */ bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); rcu_read_lock(); switch (mk_spec->type) { case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: hlist_for_each_entry_rcu(mk, bucket, mk_node) { if (mk->mk_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && memcmp(mk->mk_spec.u.descriptor, mk_spec->u.descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && refcount_inc_not_zero(&mk->mk_struct_refs)) goto out; } break; case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: hlist_for_each_entry_rcu(mk, bucket, mk_node) { if (mk->mk_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && memcmp(mk->mk_spec.u.identifier, mk_spec->u.identifier, FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && refcount_inc_not_zero(&mk->mk_struct_refs)) goto out; } break; } mk = NULL; out: rcu_read_unlock(); return mk; } static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) { char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; struct key *keyring; format_mk_users_keyring_description(description, mk->mk_spec.u.identifier); keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); if (IS_ERR(keyring)) return PTR_ERR(keyring); mk->mk_users = keyring; return 0; } /* * Find the current user's "key" in the master key's ->mk_users. * Returns ERR_PTR(-ENOKEY) if not found. */ static struct key *find_master_key_user(struct fscrypt_master_key *mk) { char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; key_ref_t keyref; format_mk_user_description(description, mk->mk_spec.u.identifier); /* * We need to mark the keyring reference as "possessed" so that we * acquire permission to search it, via the KEY_POS_SEARCH permission. */ keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), &key_type_fscrypt_user, description, false); if (IS_ERR(keyref)) { if (PTR_ERR(keyref) == -EAGAIN || /* not found */ PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ keyref = ERR_PTR(-ENOKEY); return ERR_CAST(keyref); } return key_ref_to_ptr(keyref); } /* * Give the current user a "key" in ->mk_users. This charges the user's quota * and marks the master key as added by the current user, so that it cannot be * removed by another user with the key. Either ->mk_sem must be held for * write, or the master key must be still undergoing initialization. */ static int add_master_key_user(struct fscrypt_master_key *mk) { char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; struct key *mk_user; int err; format_mk_user_description(description, mk->mk_spec.u.identifier); mk_user = key_alloc(&key_type_fscrypt_user, description, current_fsuid(), current_gid(), current_cred(), KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); if (IS_ERR(mk_user)) return PTR_ERR(mk_user); err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); key_put(mk_user); return err; } /* * Remove the current user's "key" from ->mk_users. * ->mk_sem must be held for write. * * Returns 0 if removed, -ENOKEY if not found, or another -errno code. */ static int remove_master_key_user(struct fscrypt_master_key *mk) { struct key *mk_user; int err; mk_user = find_master_key_user(mk); if (IS_ERR(mk_user)) return PTR_ERR(mk_user); err = key_unlink(mk->mk_users, mk_user); key_put(mk_user); return err; } /* * Allocate a new fscrypt_master_key, transfer the given secret over to it, and * insert it into sb->s_master_keys. */ static int add_new_master_key(struct super_block *sb, struct fscrypt_master_key_secret *secret, const struct fscrypt_key_specifier *mk_spec) { struct fscrypt_keyring *keyring = sb->s_master_keys; struct fscrypt_master_key *mk; int err; mk = kzalloc(sizeof(*mk), GFP_KERNEL); if (!mk) return -ENOMEM; mk->mk_sb = sb; init_rwsem(&mk->mk_sem); refcount_set(&mk->mk_struct_refs, 1); mk->mk_spec = *mk_spec; INIT_LIST_HEAD(&mk->mk_decrypted_inodes); spin_lock_init(&mk->mk_decrypted_inodes_lock); if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { err = allocate_master_key_users_keyring(mk); if (err) goto out_put; err = add_master_key_user(mk); if (err) goto out_put; } move_master_key_secret(&mk->mk_secret, secret); refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ spin_lock(&keyring->lock); hlist_add_head_rcu(&mk->mk_node, fscrypt_mk_hash_bucket(keyring, mk_spec)); spin_unlock(&keyring->lock); return 0; out_put: fscrypt_put_master_key(mk); return err; } #define KEY_DEAD 1 static int add_existing_master_key(struct fscrypt_master_key *mk, struct fscrypt_master_key_secret *secret) { int err; /* * If the current user is already in ->mk_users, then there's nothing to * do. Otherwise, we need to add the user to ->mk_users. (Neither is * applicable for v1 policy keys, which have NULL ->mk_users.) */ if (mk->mk_users) { struct key *mk_user = find_master_key_user(mk); if (mk_user != ERR_PTR(-ENOKEY)) { if (IS_ERR(mk_user)) return PTR_ERR(mk_user); key_put(mk_user); return 0; } err = add_master_key_user(mk); if (err) return err; } /* Re-add the secret if needed. */ if (!is_master_key_secret_present(&mk->mk_secret)) { if (!refcount_inc_not_zero(&mk->mk_active_refs)) return KEY_DEAD; move_master_key_secret(&mk->mk_secret, secret); } return 0; } static int do_add_master_key(struct super_block *sb, struct fscrypt_master_key_secret *secret, const struct fscrypt_key_specifier *mk_spec) { static DEFINE_MUTEX(fscrypt_add_key_mutex); struct fscrypt_master_key *mk; int err; mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ mk = fscrypt_find_master_key(sb, mk_spec); if (!mk) { /* Didn't find the key in ->s_master_keys. Add it. */ err = allocate_filesystem_keyring(sb); if (!err) err = add_new_master_key(sb, secret, mk_spec); } else { /* * Found the key in ->s_master_keys. Re-add the secret if * needed, and add the user to ->mk_users if needed. */ down_write(&mk->mk_sem); err = add_existing_master_key(mk, secret); up_write(&mk->mk_sem); if (err == KEY_DEAD) { /* * We found a key struct, but it's already been fully * removed. Ignore the old struct and add a new one. * fscrypt_add_key_mutex means we don't need to worry * about concurrent adds. */ err = add_new_master_key(sb, secret, mk_spec); } fscrypt_put_master_key(mk); } mutex_unlock(&fscrypt_add_key_mutex); return err; } static int add_master_key(struct super_block *sb, struct fscrypt_master_key_secret *secret, struct fscrypt_key_specifier *key_spec) { int err; if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, secret->size); if (err) return err; /* * Now that the HKDF context is initialized, the raw key is no * longer needed. */ memzero_explicit(secret->raw, secret->size); /* Calculate the key identifier */ err = fscrypt_hkdf_expand(&secret->hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, key_spec->u.identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); if (err) return err; } return do_add_master_key(sb, secret, key_spec); } static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) { const struct fscrypt_provisioning_key_payload *payload = prep->data; if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) return -EINVAL; if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) return -EINVAL; if (payload->__reserved) return -EINVAL; prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); if (!prep->payload.data[0]) return -ENOMEM; prep->quotalen = prep->datalen; return 0; } static void fscrypt_provisioning_key_free_preparse( struct key_preparsed_payload *prep) { kfree_sensitive(prep->payload.data[0]); } static void fscrypt_provisioning_key_describe(const struct key *key, struct seq_file *m) { seq_puts(m, key->description); if (key_is_positive(key)) { const struct fscrypt_provisioning_key_payload *payload = key->payload.data[0]; seq_printf(m, ": %u [%u]", key->datalen, payload->type); } } static void fscrypt_provisioning_key_destroy(struct key *key) { kfree_sensitive(key->payload.data[0]); } static struct key_type key_type_fscrypt_provisioning = { .name = "fscrypt-provisioning", .preparse = fscrypt_provisioning_key_preparse, .free_preparse = fscrypt_provisioning_key_free_preparse, .instantiate = generic_key_instantiate, .describe = fscrypt_provisioning_key_describe, .destroy = fscrypt_provisioning_key_destroy, }; /* * Retrieve the raw key from the Linux keyring key specified by 'key_id', and * store it into 'secret'. * * The key must be of type "fscrypt-provisioning" and must have the field * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's * only usable with fscrypt with the particular KDF version identified by * 'type'. We don't use the "logon" key type because there's no way to * completely restrict the use of such keys; they can be used by any kernel API * that accepts "logon" keys and doesn't require a specific service prefix. * * The ability to specify the key via Linux keyring key is intended for cases * where userspace needs to re-add keys after the filesystem is unmounted and * re-mounted. Most users should just provide the raw key directly instead. */ static int get_keyring_key(u32 key_id, u32 type, struct fscrypt_master_key_secret *secret) { key_ref_t ref; struct key *key; const struct fscrypt_provisioning_key_payload *payload; int err; ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); if (IS_ERR(ref)) return PTR_ERR(ref); key = key_ref_to_ptr(ref); if (key->type != &key_type_fscrypt_provisioning) goto bad_key; payload = key->payload.data[0]; /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ if (payload->type != type) goto bad_key; secret->size = key->datalen - sizeof(*payload); memcpy(secret->raw, payload->raw, secret->size); err = 0; goto out_put; bad_key: err = -EKEYREJECTED; out_put: key_ref_put(ref); return err; } /* * Add a master encryption key to the filesystem, causing all files which were * encrypted with it to appear "unlocked" (decrypted) when accessed. * * When adding a key for use by v1 encryption policies, this ioctl is * privileged, and userspace must provide the 'key_descriptor'. * * When adding a key for use by v2+ encryption policies, this ioctl is * unprivileged. This is needed, in general, to allow non-root users to use * encryption without encountering the visibility problems of process-subscribed * keyrings and the inability to properly remove keys. This works by having * each key identified by its cryptographically secure hash --- the * 'key_identifier'. The cryptographic hash ensures that a malicious user * cannot add the wrong key for a given identifier. Furthermore, each added key * is charged to the appropriate user's quota for the keyrings service, which * prevents a malicious user from adding too many keys. Finally, we forbid a * user from removing a key while other users have added it too, which prevents * a user who knows another user's key from causing a denial-of-service by * removing it at an inopportune time. (We tolerate that a user who knows a key * can prevent other users from removing it.) * * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of * Documentation/filesystems/fscrypt.rst. */ int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) { struct super_block *sb = file_inode(filp)->i_sb; struct fscrypt_add_key_arg __user *uarg = _uarg; struct fscrypt_add_key_arg arg; struct fscrypt_master_key_secret secret; int err; if (copy_from_user(&arg, uarg, sizeof(arg))) return -EFAULT; if (!valid_key_spec(&arg.key_spec)) return -EINVAL; if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) return -EINVAL; /* * Only root can add keys that are identified by an arbitrary descriptor * rather than by a cryptographic hash --- since otherwise a malicious * user could add the wrong key. */ if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && !capable(CAP_SYS_ADMIN)) return -EACCES; memset(&secret, 0, sizeof(secret)); if (arg.key_id) { if (arg.raw_size != 0) return -EINVAL; err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); if (err) goto out_wipe_secret; } else { if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || arg.raw_size > FSCRYPT_MAX_KEY_SIZE) return -EINVAL; secret.size = arg.raw_size; err = -EFAULT; if (copy_from_user(secret.raw, uarg->raw, secret.size)) goto out_wipe_secret; } err = add_master_key(sb, &secret, &arg.key_spec); if (err) goto out_wipe_secret; /* Return the key identifier to userspace, if applicable */ err = -EFAULT; if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, FSCRYPT_KEY_IDENTIFIER_SIZE)) goto out_wipe_secret; err = 0; out_wipe_secret: wipe_master_key_secret(&secret); return err; } EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); static void fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) { static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); memset(secret, 0, sizeof(*secret)); secret->size = FSCRYPT_MAX_KEY_SIZE; memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); } int fscrypt_get_test_dummy_key_identifier( u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) { struct fscrypt_master_key_secret secret; int err; fscrypt_get_test_dummy_secret(&secret); err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); if (err) goto out; err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, key_identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); out: wipe_master_key_secret(&secret); return err; } /** * fscrypt_add_test_dummy_key() - add the test dummy encryption key * @sb: the filesystem instance to add the key to * @dummy_policy: the encryption policy for test_dummy_encryption * * If needed, add the key for the test_dummy_encryption mount option to the * filesystem. To prevent misuse of this mount option, a per-boot random key is * used instead of a hardcoded one. This makes it so that any encrypted files * created using this option won't be accessible after a reboot. * * Return: 0 on success, -errno on failure */ int fscrypt_add_test_dummy_key(struct super_block *sb, const struct fscrypt_dummy_policy *dummy_policy) { const union fscrypt_policy *policy = dummy_policy->policy; struct fscrypt_key_specifier key_spec; struct fscrypt_master_key_secret secret; int err; if (!policy) return 0; err = fscrypt_policy_to_key_spec(policy, &key_spec); if (err) return err; fscrypt_get_test_dummy_secret(&secret); err = add_master_key(sb, &secret, &key_spec); wipe_master_key_secret(&secret); return err; } EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key); /* * Verify that the current user has added a master key with the given identifier * (returns -ENOKEY if not). This is needed to prevent a user from encrypting * their files using some other user's key which they don't actually know. * Cryptographically this isn't much of a problem, but the semantics of this * would be a bit weird, so it's best to just forbid it. * * The system administrator (CAP_FOWNER) can override this, which should be * enough for any use cases where encryption policies are being set using keys * that were chosen ahead of time but aren't available at the moment. * * Note that the key may have already removed by the time this returns, but * that's okay; we just care whether the key was there at some point. * * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code */ int fscrypt_verify_key_added(struct super_block *sb, const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) { struct fscrypt_key_specifier mk_spec; struct fscrypt_master_key *mk; struct key *mk_user; int err; mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); mk = fscrypt_find_master_key(sb, &mk_spec); if (!mk) { err = -ENOKEY; goto out; } down_read(&mk->mk_sem); mk_user = find_master_key_user(mk); if (IS_ERR(mk_user)) { err = PTR_ERR(mk_user); } else { key_put(mk_user); err = 0; } up_read(&mk->mk_sem); fscrypt_put_master_key(mk); out: if (err == -ENOKEY && capable(CAP_FOWNER)) err = 0; return err; } /* * Try to evict the inode's dentries from the dentry cache. If the inode is a * directory, then it can have at most one dentry; however, that dentry may be * pinned by child dentries, so first try to evict the children too. */ static void shrink_dcache_inode(struct inode *inode) { struct dentry *dentry; if (S_ISDIR(inode->i_mode)) { dentry = d_find_any_alias(inode); if (dentry) { shrink_dcache_parent(dentry); dput(dentry); } } d_prune_aliases(inode); } static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) { struct fscrypt_info *ci; struct inode *inode; struct inode *toput_inode = NULL; spin_lock(&mk->mk_decrypted_inodes_lock); list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { inode = ci->ci_inode; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { spin_unlock(&inode->i_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(&mk->mk_decrypted_inodes_lock); shrink_dcache_inode(inode); iput(toput_inode); toput_inode = inode; spin_lock(&mk->mk_decrypted_inodes_lock); } spin_unlock(&mk->mk_decrypted_inodes_lock); iput(toput_inode); } static int check_for_busy_inodes(struct super_block *sb, struct fscrypt_master_key *mk) { struct list_head *pos; size_t busy_count = 0; unsigned long ino; char ino_str[50] = ""; spin_lock(&mk->mk_decrypted_inodes_lock); list_for_each(pos, &mk->mk_decrypted_inodes) busy_count++; if (busy_count == 0) { spin_unlock(&mk->mk_decrypted_inodes_lock); return 0; } { /* select an example file to show for debugging purposes */ struct inode *inode = list_first_entry(&mk->mk_decrypted_inodes, struct fscrypt_info, ci_master_key_link)->ci_inode; ino = inode->i_ino; } spin_unlock(&mk->mk_decrypted_inodes_lock); /* If the inode is currently being created, ino may still be 0. */ if (ino) snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); fscrypt_warn(NULL, "%s: %zu inode(s) still busy after removing key with %s %*phN%s", sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, ino_str); return -EBUSY; } static int try_to_lock_encrypted_files(struct super_block *sb, struct fscrypt_master_key *mk) { int err1; int err2; /* * An inode can't be evicted while it is dirty or has dirty pages. * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. * * Just do it the easy way: call sync_filesystem(). It's overkill, but * it works, and it's more important to minimize the amount of caches we * drop than the amount of data we sync. Also, unprivileged users can * already call sync_filesystem() via sys_syncfs() or sys_sync(). */ down_read(&sb->s_umount); err1 = sync_filesystem(sb); up_read(&sb->s_umount); /* If a sync error occurs, still try to evict as much as possible. */ /* * Inodes are pinned by their dentries, so we have to evict their * dentries. shrink_dcache_sb() would suffice, but would be overkill * and inappropriate for use by unprivileged users. So instead go * through the inodes' alias lists and try to evict each dentry. */ evict_dentries_for_decrypted_inodes(mk); /* * evict_dentries_for_decrypted_inodes() already iput() each inode in * the list; any inodes for which that dropped the last reference will * have been evicted due to fscrypt_drop_inode() detecting the key * removal and telling the VFS to evict the inode. So to finish, we * just need to check whether any inodes couldn't be evicted. */ err2 = check_for_busy_inodes(sb, mk); return err1 ?: err2; } /* * Try to remove an fscrypt master encryption key. * * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's * claim to the key, then removes the key itself if no other users have claims. * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the * key itself. * * To "remove the key itself", first we wipe the actual master key secret, so * that no more inodes can be unlocked with it. Then we try to evict all cached * inodes that had been unlocked with the key. * * If all inodes were evicted, then we unlink the fscrypt_master_key from the * keyring. Otherwise it remains in the keyring in the "incompletely removed" * state (without the actual secret key) where it tracks the list of remaining * inodes. Userspace can execute the ioctl again later to retry eviction, or * alternatively can re-add the secret key again. * * For more details, see the "Removing keys" section of * Documentation/filesystems/fscrypt.rst. */ static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) { struct super_block *sb = file_inode(filp)->i_sb; struct fscrypt_remove_key_arg __user *uarg = _uarg; struct fscrypt_remove_key_arg arg; struct fscrypt_master_key *mk; u32 status_flags = 0; int err; bool inodes_remain; if (copy_from_user(&arg, uarg, sizeof(arg))) return -EFAULT; if (!valid_key_spec(&arg.key_spec)) return -EINVAL; if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) return -EINVAL; /* * Only root can add and remove keys that are identified by an arbitrary * descriptor rather than by a cryptographic hash. */ if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && !capable(CAP_SYS_ADMIN)) return -EACCES; /* Find the key being removed. */ mk = fscrypt_find_master_key(sb, &arg.key_spec); if (!mk) return -ENOKEY; down_write(&mk->mk_sem); /* If relevant, remove current user's (or all users) claim to the key */ if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { if (all_users) err = keyring_clear(mk->mk_users); else err = remove_master_key_user(mk); if (err) { up_write(&mk->mk_sem); goto out_put_key; } if (mk->mk_users->keys.nr_leaves_on_tree != 0) { /* * Other users have still added the key too. We removed * the current user's claim to the key, but we still * can't remove the key itself. */ status_flags |= FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; err = 0; up_write(&mk->mk_sem); goto out_put_key; } } /* No user claims remaining. Go ahead and wipe the secret. */ err = -ENOKEY; if (is_master_key_secret_present(&mk->mk_secret)) { wipe_master_key_secret(&mk->mk_secret); fscrypt_put_master_key_activeref(mk); err = 0; } inodes_remain = refcount_read(&mk->mk_active_refs) > 0; up_write(&mk->mk_sem); if (inodes_remain) { /* Some inodes still reference this key; try to evict them. */ err = try_to_lock_encrypted_files(sb, mk); if (err == -EBUSY) { status_flags |= FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; err = 0; } } /* * We return 0 if we successfully did something: removed a claim to the * key, wiped the secret, or tried locking the files again. Users need * to check the informational status flags if they care whether the key * has been fully removed including all files locked. */ out_put_key: fscrypt_put_master_key(mk); if (err == 0) err = put_user(status_flags, &uarg->removal_status_flags); return err; } int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) { return do_remove_key(filp, uarg, false); } EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) { if (!capable(CAP_SYS_ADMIN)) return -EACCES; return do_remove_key(filp, uarg, true); } EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); /* * Retrieve the status of an fscrypt master encryption key. * * We set ->status to indicate whether the key is absent, present, or * incompletely removed. "Incompletely removed" means that the master key * secret has been removed, but some files which had been unlocked with it are * still in use. This field allows applications to easily determine the state * of an encrypted directory without using a hack such as trying to open a * regular file in it (which can confuse the "incompletely removed" state with * absent or present). * * In addition, for v2 policy keys we allow applications to determine, via * ->status_flags and ->user_count, whether the key has been added by the * current user, by other users, or by both. Most applications should not need * this, since ordinarily only one user should know a given key. However, if a * secret key is shared by multiple users, applications may wish to add an * already-present key to prevent other users from removing it. This ioctl can * be used to check whether that really is the case before the work is done to * add the key --- which might e.g. require prompting the user for a passphrase. * * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of * Documentation/filesystems/fscrypt.rst. */ int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) { struct super_block *sb = file_inode(filp)->i_sb; struct fscrypt_get_key_status_arg arg; struct fscrypt_master_key *mk; int err; if (copy_from_user(&arg, uarg, sizeof(arg))) return -EFAULT; if (!valid_key_spec(&arg.key_spec)) return -EINVAL; if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) return -EINVAL; arg.status_flags = 0; arg.user_count = 0; memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); mk = fscrypt_find_master_key(sb, &arg.key_spec); if (!mk) { arg.status = FSCRYPT_KEY_STATUS_ABSENT; err = 0; goto out; } down_read(&mk->mk_sem); if (!is_master_key_secret_present(&mk->mk_secret)) { arg.status = refcount_read(&mk->mk_active_refs) > 0 ? FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; err = 0; goto out_release_key; } arg.status = FSCRYPT_KEY_STATUS_PRESENT; if (mk->mk_users) { struct key *mk_user; arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; mk_user = find_master_key_user(mk); if (!IS_ERR(mk_user)) { arg.status_flags |= FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; key_put(mk_user); } else if (mk_user != ERR_PTR(-ENOKEY)) { err = PTR_ERR(mk_user); goto out_release_key; } } err = 0; out_release_key: up_read(&mk->mk_sem); fscrypt_put_master_key(mk); out: if (!err && copy_to_user(uarg, &arg, sizeof(arg))) err = -EFAULT; return err; } EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); int __init fscrypt_init_keyring(void) { int err; err = register_key_type(&key_type_fscrypt_user); if (err) return err; err = register_key_type(&key_type_fscrypt_provisioning); if (err) goto err_unregister_fscrypt_user; return 0; err_unregister_fscrypt_user: unregister_key_type(&key_type_fscrypt_user); return err; } |