Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
// SPDX-License-Identifier: GPL-2.0
/*
 * AD7280A Lithium Ion Battery Monitoring System
 *
 * Copyright 2011 Analog Devices Inc.
 */

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>

#include <linux/iio/events.h>
#include <linux/iio/iio.h>

/* Registers */

#define AD7280A_CELL_VOLTAGE_1_REG		0x0  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_2_REG		0x1  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_3_REG		0x2  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_4_REG		0x3  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_5_REG		0x4  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_6_REG		0x5  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_1_REG			0x6  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_2_REG			0x7  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_3_REG			0x8  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_4_REG			0x9  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_5_REG			0xA  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_6_REG			0xB  /* D11 to D0, Read only */
#define AD7280A_SELF_TEST_REG			0xC  /* D11 to D0, Read only */

#define AD7280A_CTRL_HB_REG			0xD  /* D15 to D8, Read/write */
#define   AD7280A_CTRL_HB_CONV_INPUT_MSK		GENMASK(7, 6)
#define     AD7280A_CTRL_HB_CONV_INPUT_ALL			0
#define     AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_5		1
#define     AD7280A_CTRL_HB_CONV_INPUT_6CELL			2
#define     AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST		3
#define   AD7280A_CTRL_HB_CONV_RREAD_MSK		GENMASK(5, 4)
#define     AD7280A_CTRL_HB_CONV_RREAD_ALL			0
#define     AD7280A_CTRL_HB_CONV_RREAD_6CELL_AUX1_3_5		1
#define     AD7280A_CTRL_HB_CONV_RREAD_6CELL			2
#define     AD7280A_CTRL_HB_CONV_RREAD_NO		        3
#define   AD7280A_CTRL_HB_CONV_START_MSK		BIT(3)
#define     AD7280A_CTRL_HB_CONV_START_CNVST			0
#define     AD7280A_CTRL_HB_CONV_START_CS			1
#define   AD7280A_CTRL_HB_CONV_AVG_MSK			GENMASK(2, 1)
#define     AD7280A_CTRL_HB_CONV_AVG_DIS			0
#define     AD7280A_CTRL_HB_CONV_AVG_2				1
#define     AD7280A_CTRL_HB_CONV_AVG_4			        2
#define     AD7280A_CTRL_HB_CONV_AVG_8			        3
#define   AD7280A_CTRL_HB_PWRDN_SW			BIT(0)

#define AD7280A_CTRL_LB_REG			0xE  /* D7 to D0, Read/write */
#define   AD7280A_CTRL_LB_SWRST_MSK			BIT(7)
#define   AD7280A_CTRL_LB_ACQ_TIME_MSK			GENMASK(6, 5)
#define     AD7280A_CTRL_LB_ACQ_TIME_400ns			0
#define     AD7280A_CTRL_LB_ACQ_TIME_800ns			1
#define     AD7280A_CTRL_LB_ACQ_TIME_1200ns			2
#define     AD7280A_CTRL_LB_ACQ_TIME_1600ns			3
#define   AD7280A_CTRL_LB_MUST_SET			BIT(4)
#define   AD7280A_CTRL_LB_THERMISTOR_MSK		BIT(3)
#define   AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK		BIT(2)
#define   AD7280A_CTRL_LB_INC_DEV_ADDR_MSK		BIT(1)
#define   AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK		BIT(0)

#define AD7280A_CELL_OVERVOLTAGE_REG		0xF  /* D7 to D0, Read/write */
#define AD7280A_CELL_UNDERVOLTAGE_REG		0x10 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_OVERVOLTAGE_REG		0x11 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_UNDERVOLTAGE_REG	0x12 /* D7 to D0, Read/write */

#define AD7280A_ALERT_REG			0x13 /* D7 to D0, Read/write */
#define   AD7280A_ALERT_REMOVE_MSK			GENMASK(3, 0)
#define     AD7280A_ALERT_REMOVE_AUX5			BIT(0)
#define     AD7280A_ALERT_REMOVE_AUX3_AUX5		BIT(1)
#define     AD7280A_ALERT_REMOVE_VIN5			BIT(2)
#define     AD7280A_ALERT_REMOVE_VIN4_VIN5		BIT(3)
#define   AD7280A_ALERT_GEN_STATIC_HIGH			BIT(6)
#define   AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN		(BIT(7) | BIT(6))

#define AD7280A_CELL_BALANCE_REG		0x14 /* D7 to D0, Read/write */
#define  AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK		GENMASK(7, 2)
#define AD7280A_CB1_TIMER_REG			0x15 /* D7 to D0, Read/write */
#define  AD7280A_CB_TIMER_VAL_MSK			GENMASK(7, 3)
#define AD7280A_CB2_TIMER_REG			0x16 /* D7 to D0, Read/write */
#define AD7280A_CB3_TIMER_REG			0x17 /* D7 to D0, Read/write */
#define AD7280A_CB4_TIMER_REG			0x18 /* D7 to D0, Read/write */
#define AD7280A_CB5_TIMER_REG			0x19 /* D7 to D0, Read/write */
#define AD7280A_CB6_TIMER_REG			0x1A /* D7 to D0, Read/write */
#define AD7280A_PD_TIMER_REG			0x1B /* D7 to D0, Read/write */
#define AD7280A_READ_REG			0x1C /* D7 to D0, Read/write */
#define   AD7280A_READ_ADDR_MSK				GENMASK(7, 2)
#define AD7280A_CNVST_CTRL_REG			0x1D /* D7 to D0, Read/write */

/* Transfer fields */
#define AD7280A_TRANS_WRITE_DEVADDR_MSK		GENMASK(31, 27)
#define AD7280A_TRANS_WRITE_ADDR_MSK		GENMASK(26, 21)
#define AD7280A_TRANS_WRITE_VAL_MSK		GENMASK(20, 13)
#define AD7280A_TRANS_WRITE_ALL_MSK		BIT(12)
#define AD7280A_TRANS_WRITE_CRC_MSK		GENMASK(10, 3)
#define AD7280A_TRANS_WRITE_RES_PATTERN		0x2

/* Layouts differ for channel vs other registers */
#define AD7280A_TRANS_READ_DEVADDR_MSK		GENMASK(31, 27)
#define AD7280A_TRANS_READ_CONV_CHANADDR_MSK	GENMASK(26, 23)
#define AD7280A_TRANS_READ_CONV_DATA_MSK	GENMASK(22, 11)
#define AD7280A_TRANS_READ_REG_REGADDR_MSK	GENMASK(26, 21)
#define AD7280A_TRANS_READ_REG_DATA_MSK		GENMASK(20, 13)
#define AD7280A_TRANS_READ_WRITE_ACK_MSK	BIT(10)
#define AD7280A_TRANS_READ_CRC_MSK		GENMASK(9, 2)

/* Magic value used to indicate this special case */
#define AD7280A_ALL_CELLS				(0xAD << 16)

#define AD7280A_MAX_SPI_CLK_HZ		700000 /* < 1MHz */
#define AD7280A_MAX_CHAIN		8
#define AD7280A_CELLS_PER_DEV		6
#define AD7280A_BITS			12
#define AD7280A_NUM_CH			(AD7280A_AUX_ADC_6_REG - \
					AD7280A_CELL_VOLTAGE_1_REG + 1)

#define AD7280A_CALC_VOLTAGE_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \
					     (c))
#define AD7280A_CALC_TEMP_CHAN_NUM(d, c)    (((d) * AD7280A_CELLS_PER_DEV) + \
					     (c) - AD7280A_CELLS_PER_DEV)

#define AD7280A_DEVADDR_MASTER		0
#define AD7280A_DEVADDR_ALL		0x1F

static const unsigned short ad7280a_n_avg[4] = {1, 2, 4, 8};
static const unsigned short ad7280a_t_acq_ns[4] = {470, 1030, 1510, 1945};

/* 5-bit device address is sent LSB first */
static unsigned int ad7280a_devaddr(unsigned int addr)
{
	return ((addr & 0x1) << 4) |
	       ((addr & 0x2) << 2) |
	       (addr & 0x4) |
	       ((addr & 0x8) >> 2) |
	       ((addr & 0x10) >> 4);
}

/*
 * During a read a valid write is mandatory.
 * So writing to the highest available address (Address 0x1F) and setting the
 * address all parts bit to 0 is recommended.
 * So the TXVAL is AD7280A_DEVADDR_ALL + CRC
 */
#define AD7280A_READ_TXVAL	0xF800030A

/*
 * AD7280 CRC
 *
 * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F
 */
#define POLYNOM		0x2F

struct ad7280_state {
	struct spi_device		*spi;
	struct iio_chan_spec		*channels;
	unsigned int			chain_last_alert_ignore;
	bool				thermistor_term_en;
	int				slave_num;
	int				scan_cnt;
	int				readback_delay_us;
	unsigned char			crc_tab[CRC8_TABLE_SIZE];
	u8				oversampling_ratio;
	u8				acquisition_time;
	unsigned char			ctrl_lb;
	unsigned char			cell_threshhigh;
	unsigned char			cell_threshlow;
	unsigned char			aux_threshhigh;
	unsigned char			aux_threshlow;
	unsigned char			cb_mask[AD7280A_MAX_CHAIN];
	struct mutex			lock; /* protect sensor state */

	__be32				tx __aligned(IIO_DMA_MINALIGN);
	__be32				rx;
};

static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val)
{
	unsigned char crc;

	crc = crc_tab[val >> 16 & 0xFF];
	crc = crc_tab[crc ^ (val >> 8 & 0xFF)];

	return crc ^ (val & 0xFF);
}

static int ad7280_check_crc(struct ad7280_state *st, unsigned int val)
{
	unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10);

	if (crc != ((val >> 2) & 0xFF))
		return -EIO;

	return 0;
}

/*
 * After initiating a conversion sequence we need to wait until the conversion
 * is done. The delay is typically in the range of 15..30us however depending on
 * the number of devices in the daisy chain, the number of averages taken,
 * conversion delays and acquisition time options it may take up to 250us, in
 * this case we better sleep instead of busy wait.
 */

static void ad7280_delay(struct ad7280_state *st)
{
	if (st->readback_delay_us < 50)
		udelay(st->readback_delay_us);
	else
		usleep_range(250, 500);
}

static int __ad7280_read32(struct ad7280_state *st, unsigned int *val)
{
	int ret;
	struct spi_transfer t = {
		.tx_buf	= &st->tx,
		.rx_buf = &st->rx,
		.len = sizeof(st->tx),
	};

	st->tx = cpu_to_be32(AD7280A_READ_TXVAL);

	ret = spi_sync_transfer(st->spi, &t, 1);
	if (ret)
		return ret;

	*val = be32_to_cpu(st->rx);

	return 0;
}

static int ad7280_write(struct ad7280_state *st, unsigned int devaddr,
			unsigned int addr, bool all, unsigned int val)
{
	unsigned int reg = FIELD_PREP(AD7280A_TRANS_WRITE_DEVADDR_MSK, devaddr) |
		FIELD_PREP(AD7280A_TRANS_WRITE_ADDR_MSK, addr) |
		FIELD_PREP(AD7280A_TRANS_WRITE_VAL_MSK, val) |
		FIELD_PREP(AD7280A_TRANS_WRITE_ALL_MSK, all);

	reg |= FIELD_PREP(AD7280A_TRANS_WRITE_CRC_MSK,
			ad7280_calc_crc8(st->crc_tab, reg >> 11));
	/* Reserved b010 pattern not included crc calc */
	reg |= AD7280A_TRANS_WRITE_RES_PATTERN;

	st->tx = cpu_to_be32(reg);

	return spi_write(st->spi, &st->tx, sizeof(st->tx));
}

static int ad7280_read_reg(struct ad7280_state *st, unsigned int devaddr,
			   unsigned int addr)
{
	int ret;
	unsigned int tmp;

	/* turns off the read operation on all parts */
	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_NO) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	/* turns on the read operation on the addressed part */
	ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	/* Set register address on the part to be read from */
	ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
			   FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
	if (ret)
		return ret;

	ret = __ad7280_read32(st, &tmp);
	if (ret)
		return ret;

	if (ad7280_check_crc(st, tmp))
		return -EIO;

	if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
	    (FIELD_GET(AD7280A_TRANS_READ_REG_REGADDR_MSK, tmp) != addr))
		return -EFAULT;

	return FIELD_GET(AD7280A_TRANS_READ_REG_DATA_MSK, tmp);
}

static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr,
			       unsigned int addr)
{
	int ret;
	unsigned int tmp;

	ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
			   FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_NO) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
				      AD7280A_CTRL_HB_CONV_START_CS) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	ad7280_delay(st);

	ret = __ad7280_read32(st, &tmp);
	if (ret)
		return ret;

	if (ad7280_check_crc(st, tmp))
		return -EIO;

	if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
	    (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) != addr))
		return -EFAULT;

	return FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
}

static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt,
				    unsigned int *array)
{
	int i, ret;
	unsigned int tmp, sum = 0;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
			   AD7280A_CELL_VOLTAGE_1_REG << 2);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
				      AD7280A_CTRL_HB_CONV_START_CS) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	ad7280_delay(st);

	for (i = 0; i < cnt; i++) {
		ret = __ad7280_read32(st, &tmp);
		if (ret)
			return ret;

		if (ad7280_check_crc(st, tmp))
			return -EIO;

		if (array)
			array[i] = tmp;
		/* only sum cell voltages */
		if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) <=
		    AD7280A_CELL_VOLTAGE_6_REG)
			sum += FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
	}

	return sum;
}

static void ad7280_sw_power_down(void *data)
{
	struct ad7280_state *st = data;

	ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
		     AD7280A_CTRL_HB_PWRDN_SW |
		     FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));
}

static int ad7280_chain_setup(struct ad7280_state *st)
{
	unsigned int val, n;
	int ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
			   FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
			   AD7280A_CTRL_LB_MUST_SET |
			   FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 1) |
			   st->ctrl_lb);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
			   FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
			   AD7280A_CTRL_LB_MUST_SET |
			   FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 0) |
			   st->ctrl_lb);
	if (ret)
		goto error_power_down;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
			   FIELD_PREP(AD7280A_READ_ADDR_MSK, AD7280A_CTRL_LB_REG));
	if (ret)
		goto error_power_down;

	for (n = 0; n <= AD7280A_MAX_CHAIN; n++) {
		ret = __ad7280_read32(st, &val);
		if (ret)
			goto error_power_down;

		if (val == 0)
			return n - 1;

		if (ad7280_check_crc(st, val)) {
			ret = -EIO;
			goto error_power_down;
		}

		if (n != ad7280a_devaddr(FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, val))) {
			ret = -EIO;
			goto error_power_down;
		}
	}
	ret = -EFAULT;

error_power_down:
	ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
		     AD7280A_CTRL_HB_PWRDN_SW |
		     FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));

	return ret;
}

static ssize_t ad7280_show_balance_sw(struct iio_dev *indio_dev,
				      uintptr_t private,
				      const struct iio_chan_spec *chan, char *buf)
{
	struct ad7280_state *st = iio_priv(indio_dev);

	return sysfs_emit(buf, "%d\n",
			  !!(st->cb_mask[chan->address >> 8] &
			     BIT(chan->address & 0xFF)));
}

static ssize_t ad7280_store_balance_sw(struct iio_dev *indio_dev,
				       uintptr_t private,
				       const struct iio_chan_spec *chan,
				       const char *buf, size_t len)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int devaddr, ch;
	bool readin;
	int ret;

	ret = kstrtobool(buf, &readin);
	if (ret)
		return ret;

	devaddr = chan->address >> 8;
	ch = chan->address & 0xFF;

	mutex_lock(&st->lock);
	if (readin)
		st->cb_mask[devaddr] |= BIT(ch);
	else
		st->cb_mask[devaddr] &= ~BIT(ch);

	ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE_REG, 0,
			   FIELD_PREP(AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK,
				      st->cb_mask[devaddr]));
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

static ssize_t ad7280_show_balance_timer(struct iio_dev *indio_dev,
					 uintptr_t private,
					 const struct iio_chan_spec *chan,
					 char *buf)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int msecs;
	int ret;

	mutex_lock(&st->lock);
	ret = ad7280_read_reg(st, chan->address >> 8,
			      (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG);
	mutex_unlock(&st->lock);

	if (ret < 0)
		return ret;

	msecs = FIELD_GET(AD7280A_CB_TIMER_VAL_MSK, ret) * 71500;

	return sysfs_emit(buf, "%u.%u\n", msecs / 1000, msecs % 1000);
}

static ssize_t ad7280_store_balance_timer(struct iio_dev *indio_dev,
					  uintptr_t private,
					  const struct iio_chan_spec *chan,
					  const char *buf, size_t len)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int val, val2;
	int ret;

	ret = iio_str_to_fixpoint(buf, 1000, &val, &val2);
	if (ret)
		return ret;

	val = val * 1000 + val2;
	val /= 71500;

	if (val > 31)
		return -EINVAL;

	mutex_lock(&st->lock);
	ret = ad7280_write(st, chan->address >> 8,
			   (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG, 0,
			   FIELD_PREP(AD7280A_CB_TIMER_VAL_MSK, val));
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

static const struct iio_chan_spec_ext_info ad7280_cell_ext_info[] = {
	{
		.name = "balance_switch_en",
		.read = ad7280_show_balance_sw,
		.write = ad7280_store_balance_sw,
		.shared = IIO_SEPARATE,
	}, {
		.name = "balance_switch_timer",
		.read = ad7280_show_balance_timer,
		.write = ad7280_store_balance_timer,
		.shared = IIO_SEPARATE,
	},
	{}
};

static const struct iio_event_spec ad7280_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
	}, {
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
	},
};

static void ad7280_voltage_channel_init(struct iio_chan_spec *chan, int i,
					bool irq_present)
{
	chan->type = IIO_VOLTAGE;
	chan->differential = 1;
	chan->channel = i;
	chan->channel2 = chan->channel + 1;
	if (irq_present) {
		chan->event_spec = ad7280_events;
		chan->num_event_specs = ARRAY_SIZE(ad7280_events);
	}
	chan->ext_info = ad7280_cell_ext_info;
}

static void ad7280_temp_channel_init(struct iio_chan_spec *chan, int i,
				     bool irq_present)
{
	chan->type = IIO_TEMP;
	chan->channel = i;
	if (irq_present) {
		chan->event_spec = ad7280_events;
		chan->num_event_specs = ARRAY_SIZE(ad7280_events);
	}
}

static void ad7280_common_fields_init(struct iio_chan_spec *chan, int addr,
				      int cnt)
{
	chan->indexed = 1;
	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	chan->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
	chan->address = addr;
	chan->scan_index = cnt;
	chan->scan_type.sign = 'u';
	chan->scan_type.realbits = 12;
	chan->scan_type.storagebits = 32;
}

static void ad7280_total_voltage_channel_init(struct iio_chan_spec *chan,
					      int cnt, int dev)
{
	chan->type = IIO_VOLTAGE;
	chan->differential = 1;
	chan->channel = 0;
	chan->channel2 = dev * AD7280A_CELLS_PER_DEV;
	chan->address = AD7280A_ALL_CELLS;
	chan->indexed = 1;
	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	chan->scan_index = cnt;
	chan->scan_type.sign = 'u';
	chan->scan_type.realbits = 32;
	chan->scan_type.storagebits = 32;
}

static void ad7280_init_dev_channels(struct ad7280_state *st, int dev, int *cnt,
				     bool irq_present)
{
	int addr, ch, i;
	struct iio_chan_spec *chan;

	for (ch = AD7280A_CELL_VOLTAGE_1_REG; ch <= AD7280A_AUX_ADC_6_REG; ch++) {
		chan = &st->channels[*cnt];

		if (ch < AD7280A_AUX_ADC_1_REG) {
			i = AD7280A_CALC_VOLTAGE_CHAN_NUM(dev, ch);
			ad7280_voltage_channel_init(chan, i, irq_present);
		} else {
			i = AD7280A_CALC_TEMP_CHAN_NUM(dev, ch);
			ad7280_temp_channel_init(chan, i, irq_present);
		}

		addr = ad7280a_devaddr(dev) << 8 | ch;
		ad7280_common_fields_init(chan, addr, *cnt);

		(*cnt)++;
	}
}

static int ad7280_channel_init(struct ad7280_state *st, bool irq_present)
{
	int dev, cnt = 0;

	st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 1,
				    sizeof(*st->channels), GFP_KERNEL);
	if (!st->channels)
		return -ENOMEM;

	for (dev = 0; dev <= st->slave_num; dev++)
		ad7280_init_dev_channels(st, dev, &cnt, irq_present);

	ad7280_total_voltage_channel_init(&st->channels[cnt], cnt, dev);

	return cnt + 1;
}

static int ad7280a_read_thresh(struct iio_dev *indio_dev,
			       const struct iio_chan_spec *chan,
			       enum iio_event_type type,
			       enum iio_event_direction dir,
			       enum iio_event_info info, int *val, int *val2)
{
	struct ad7280_state *st = iio_priv(indio_dev);

	switch (chan->type) {
	case IIO_VOLTAGE:
		switch (dir) {
		case IIO_EV_DIR_RISING:
			*val = 1000 + (st->cell_threshhigh * 1568L) / 100;
			return IIO_VAL_INT;
		case IIO_EV_DIR_FALLING:
			*val = 1000 + (st->cell_threshlow * 1568L) / 100;
			return IIO_VAL_INT;
		default:
			return -EINVAL;
		}
		break;
	case IIO_TEMP:
		switch (dir) {
		case IIO_EV_DIR_RISING:
			*val = ((st->aux_threshhigh) * 196L) / 10;
			return IIO_VAL_INT;
		case IIO_EV_DIR_FALLING:
			*val = (st->aux_threshlow * 196L) / 10;
			return IIO_VAL_INT;
		default:
			return -EINVAL;
		}
		break;
	default:
		return -EINVAL;
	}
}

static int ad7280a_write_thresh(struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan,
				enum iio_event_type type,
				enum iio_event_direction dir,
				enum iio_event_info info,
				int val, int val2)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int addr;
	long value;
	int ret;

	if (val2 != 0)
		return -EINVAL;

	mutex_lock(&st->lock);
	switch (chan->type) {
	case IIO_VOLTAGE:
		value = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */
		value = clamp(value, 0L, 0xFFL);
		switch (dir) {
		case IIO_EV_DIR_RISING:
			addr = AD7280A_CELL_OVERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->cell_threshhigh = value;
			break;
		case IIO_EV_DIR_FALLING:
			addr = AD7280A_CELL_UNDERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->cell_threshlow = value;
			break;
		default:
			ret = -EINVAL;
			goto err_unlock;
		}
		break;
	case IIO_TEMP:
		value = (val * 10) / 196; /* LSB 19.6mV */
		value = clamp(value, 0L, 0xFFL);
		switch (dir) {
		case IIO_EV_DIR_RISING:
			addr = AD7280A_AUX_ADC_OVERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->aux_threshhigh = value;
			break;
		case IIO_EV_DIR_FALLING:
			addr = AD7280A_AUX_ADC_UNDERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->aux_threshlow = value;
			break;
		default:
			ret = -EINVAL;
			goto err_unlock;
		}
		break;
	default:
		ret = -EINVAL;
		goto err_unlock;
	}

err_unlock:
	mutex_unlock(&st->lock);

	return ret;
}

static irqreturn_t ad7280_event_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int *channels;
	int i, ret;

	channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL);
	if (!channels)
		return IRQ_HANDLED;

	ret = ad7280_read_all_channels(st, st->scan_cnt, channels);
	if (ret < 0)
		goto out;

	for (i = 0; i < st->scan_cnt; i++) {
		unsigned int val;

		val = FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, channels[i]);
		if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, channels[i]) <=
		    AD7280A_CELL_VOLTAGE_6_REG) {
			if (val >= st->cell_threshhigh) {
				u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
							 IIO_EV_DIR_RISING,
							 IIO_EV_TYPE_THRESH,
							 0, 0, 0);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			} else if (val <= st->cell_threshlow) {
				u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
							 IIO_EV_DIR_FALLING,
							 IIO_EV_TYPE_THRESH,
							 0, 0, 0);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			}
		} else {
			if (val >= st->aux_threshhigh) {
				u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
							IIO_EV_TYPE_THRESH,
							IIO_EV_DIR_RISING);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			} else if (val <= st->aux_threshlow) {
				u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
							IIO_EV_TYPE_THRESH,
							IIO_EV_DIR_FALLING);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			}
		}
	}

out:
	kfree(channels);

	return IRQ_HANDLED;
}

static void ad7280_update_delay(struct ad7280_state *st)
{
	/*
	 * Total Conversion Time = ((tACQ + tCONV) *
	 *			   (Number of Conversions per Part)) −
	 *			   tACQ + ((N - 1) * tDELAY)
	 *
	 * Readback Delay = Total Conversion Time + tWAIT
	 */

	st->readback_delay_us =
		((ad7280a_t_acq_ns[st->acquisition_time & 0x3] + 720) *
			(AD7280A_NUM_CH * ad7280a_n_avg[st->oversampling_ratio & 0x3])) -
		ad7280a_t_acq_ns[st->acquisition_time & 0x3] + st->slave_num * 250;

	/* Convert to usecs */
	st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000);
	st->readback_delay_us += 5; /* Add tWAIT */
}

static int ad7280_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long m)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int ret;

	switch (m) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&st->lock);
		if (chan->address == AD7280A_ALL_CELLS)
			ret = ad7280_read_all_channels(st, st->scan_cnt, NULL);
		else
			ret = ad7280_read_channel(st, chan->address >> 8,
						  chan->address & 0xFF);
		mutex_unlock(&st->lock);

		if (ret < 0)
			return ret;

		*val = ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6_REG)
			*val = 4000;
		else
			*val = 5000;

		*val2 = AD7280A_BITS;
		return IIO_VAL_FRACTIONAL_LOG2;
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*val = ad7280a_n_avg[st->oversampling_ratio];
		return IIO_VAL_INT;
	}
	return -EINVAL;
}

static int ad7280_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val, int val2, long mask)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int i;

	switch (mask) {
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		if (val2 != 0)
			return -EINVAL;
		for (i = 0; i < ARRAY_SIZE(ad7280a_n_avg); i++) {
			if (val == ad7280a_n_avg[i]) {
				st->oversampling_ratio = i;
				ad7280_update_delay(st);
				return 0;
			}
		}
		return -EINVAL;
	default:
		return -EINVAL;
	}
}

static const struct iio_info ad7280_info = {
	.read_raw = ad7280_read_raw,
	.write_raw = ad7280_write_raw,
	.read_event_value = &ad7280a_read_thresh,
	.write_event_value = &ad7280a_write_thresh,
};

static const struct iio_info ad7280_info_no_irq = {
	.read_raw = ad7280_read_raw,
	.write_raw = ad7280_write_raw,
};

static int ad7280_probe(struct spi_device *spi)
{
	struct device *dev = &spi->dev;
	struct ad7280_state *st;
	int ret;
	struct iio_dev *indio_dev;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);
	st->spi = spi;
	mutex_init(&st->lock);

	st->thermistor_term_en =
		device_property_read_bool(dev, "adi,thermistor-termination");

	if (device_property_present(dev, "adi,acquisition-time-ns")) {
		u32 val;

		ret = device_property_read_u32(dev, "adi,acquisition-time-ns", &val);
		if (ret)
			return ret;

		switch (val) {
		case 400:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
			break;
		case 800:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_800ns;
			break;
		case 1200:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1200ns;
			break;
		case 1600:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1600ns;
			break;
		default:
			dev_err(dev, "Firmware provided acquisition time is invalid\n");
			return -EINVAL;
		}
	} else {
		st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
	}

	/* Alert masks are intended for when particular inputs are not wired up */
	if (device_property_present(dev, "adi,voltage-alert-last-chan")) {
		u32 val;

		ret = device_property_read_u32(dev, "adi,voltage-alert-last-chan", &val);
		if (ret)
			return ret;

		switch (val) {
		case 3:
			st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN4_VIN5;
			break;
		case 4:
			st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN5;
			break;
		case 5:
			break;
		default:
			dev_err(dev,
				"Firmware provided last voltage alert channel invalid\n");
			break;
		}
	}
	crc8_populate_msb(st->crc_tab, POLYNOM);

	st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ;
	st->spi->mode = SPI_MODE_1;
	spi_setup(st->spi);

	st->ctrl_lb = FIELD_PREP(AD7280A_CTRL_LB_ACQ_TIME_MSK, st->acquisition_time) |
		FIELD_PREP(AD7280A_CTRL_LB_THERMISTOR_MSK, st->thermistor_term_en);
	st->oversampling_ratio = 0; /* No oversampling */

	ret = ad7280_chain_setup(st);
	if (ret < 0)
		return ret;

	st->slave_num = ret;
	st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH;
	st->cell_threshhigh = 0xFF;
	st->aux_threshhigh = 0xFF;

	ret = devm_add_action_or_reset(dev, ad7280_sw_power_down, st);
	if (ret)
		return ret;

	ad7280_update_delay(st);

	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->modes = INDIO_DIRECT_MODE;

	ret = ad7280_channel_init(st, spi->irq > 0);
	if (ret < 0)
		return ret;

	indio_dev->num_channels = ret;
	indio_dev->channels = st->channels;
	if (spi->irq > 0) {
		ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
				   AD7280A_ALERT_REG, 1,
				   AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN);
		if (ret)
			return ret;

		ret = ad7280_write(st, ad7280a_devaddr(st->slave_num),
				   AD7280A_ALERT_REG, 0,
				   AD7280A_ALERT_GEN_STATIC_HIGH |
				   FIELD_PREP(AD7280A_ALERT_REMOVE_MSK,
					      st->chain_last_alert_ignore));
		if (ret)
			return ret;

		ret = devm_request_threaded_irq(dev, spi->irq,
						NULL,
						ad7280_event_handler,
						IRQF_TRIGGER_FALLING |
						IRQF_ONESHOT,
						indio_dev->name,
						indio_dev);
		if (ret)
			return ret;

		indio_dev->info = &ad7280_info;
	} else {
		indio_dev->info = &ad7280_info_no_irq;
	}

	return devm_iio_device_register(dev, indio_dev);
}

static const struct spi_device_id ad7280_id[] = {
	{"ad7280a", 0},
	{}
};
MODULE_DEVICE_TABLE(spi, ad7280_id);

static struct spi_driver ad7280_driver = {
	.driver = {
		.name	= "ad7280",
	},
	.probe		= ad7280_probe,
	.id_table	= ad7280_id,
};
module_spi_driver(ad7280_driver);

MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7280A");
MODULE_LICENSE("GPL v2");