Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include <crypto/hash.h> #include <linux/kernel.h> #include <linux/bio.h> #include <linux/blk-cgroup.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/time.h> #include <linux/init.h> #include <linux/string.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #include <linux/compat.h> #include <linux/xattr.h> #include <linux/posix_acl.h> #include <linux/falloc.h> #include <linux/slab.h> #include <linux/ratelimit.h> #include <linux/btrfs.h> #include <linux/blkdev.h> #include <linux/posix_acl_xattr.h> #include <linux/uio.h> #include <linux/magic.h> #include <linux/iversion.h> #include <linux/swap.h> #include <linux/migrate.h> #include <linux/sched/mm.h> #include <linux/iomap.h> #include <asm/unaligned.h> #include <linux/fsverity.h> #include "misc.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "print-tree.h" #include "ordered-data.h" #include "xattr.h" #include "tree-log.h" #include "volumes.h" #include "compression.h" #include "locking.h" #include "free-space-cache.h" #include "props.h" #include "qgroup.h" #include "delalloc-space.h" #include "block-group.h" #include "space-info.h" #include "zoned.h" #include "subpage.h" #include "inode-item.h" struct btrfs_iget_args { u64 ino; struct btrfs_root *root; }; struct btrfs_dio_data { ssize_t submitted; struct extent_changeset *data_reserved; bool data_space_reserved; bool nocow_done; }; struct btrfs_dio_private { struct inode *inode; /* * Since DIO can use anonymous page, we cannot use page_offset() to * grab the file offset, thus need a dedicated member for file offset. */ u64 file_offset; /* Used for bio::bi_size */ u32 bytes; /* * References to this structure. There is one reference per in-flight * bio plus one while we're still setting up. */ refcount_t refs; /* Array of checksums */ u8 *csums; /* This must be last */ struct bio bio; }; static struct bio_set btrfs_dio_bioset; struct btrfs_rename_ctx { /* Output field. Stores the index number of the old directory entry. */ u64 index; }; static const struct inode_operations btrfs_dir_inode_operations; static const struct inode_operations btrfs_symlink_inode_operations; static const struct inode_operations btrfs_special_inode_operations; static const struct inode_operations btrfs_file_inode_operations; static const struct address_space_operations btrfs_aops; static const struct file_operations btrfs_dir_file_operations; static struct kmem_cache *btrfs_inode_cachep; struct kmem_cache *btrfs_trans_handle_cachep; struct kmem_cache *btrfs_path_cachep; struct kmem_cache *btrfs_free_space_cachep; struct kmem_cache *btrfs_free_space_bitmap_cachep; static int btrfs_setsize(struct inode *inode, struct iattr *attr); static int btrfs_truncate(struct inode *inode, bool skip_writeback); static noinline int cow_file_range(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written, int unlock, u64 *done_offset); static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, u64 len, u64 orig_start, u64 block_start, u64 block_len, u64 orig_block_len, u64 ram_bytes, int compress_type, int type); /* * btrfs_inode_lock - lock inode i_rwsem based on arguments passed * * ilock_flags can have the following bit set: * * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt * return -EAGAIN * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock */ int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) { if (ilock_flags & BTRFS_ILOCK_SHARED) { if (ilock_flags & BTRFS_ILOCK_TRY) { if (!inode_trylock_shared(inode)) return -EAGAIN; else return 0; } inode_lock_shared(inode); } else { if (ilock_flags & BTRFS_ILOCK_TRY) { if (!inode_trylock(inode)) return -EAGAIN; else return 0; } inode_lock(inode); } if (ilock_flags & BTRFS_ILOCK_MMAP) down_write(&BTRFS_I(inode)->i_mmap_lock); return 0; } /* * btrfs_inode_unlock - unock inode i_rwsem * * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() * to decide whether the lock acquired is shared or exclusive. */ void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) { if (ilock_flags & BTRFS_ILOCK_MMAP) up_write(&BTRFS_I(inode)->i_mmap_lock); if (ilock_flags & BTRFS_ILOCK_SHARED) inode_unlock_shared(inode); else inode_unlock(inode); } /* * Cleanup all submitted ordered extents in specified range to handle errors * from the btrfs_run_delalloc_range() callback. * * NOTE: caller must ensure that when an error happens, it can not call * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata * to be released, which we want to happen only when finishing the ordered * extent (btrfs_finish_ordered_io()). */ static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, struct page *locked_page, u64 offset, u64 bytes) { unsigned long index = offset >> PAGE_SHIFT; unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; u64 page_start, page_end; struct page *page; if (locked_page) { page_start = page_offset(locked_page); page_end = page_start + PAGE_SIZE - 1; } while (index <= end_index) { /* * For locked page, we will call end_extent_writepage() on it * in run_delalloc_range() for the error handling. That * end_extent_writepage() function will call * btrfs_mark_ordered_io_finished() to clear page Ordered and * run the ordered extent accounting. * * Here we can't just clear the Ordered bit, or * btrfs_mark_ordered_io_finished() would skip the accounting * for the page range, and the ordered extent will never finish. */ if (locked_page && index == (page_start >> PAGE_SHIFT)) { index++; continue; } page = find_get_page(inode->vfs_inode.i_mapping, index); index++; if (!page) continue; /* * Here we just clear all Ordered bits for every page in the * range, then btrfs_mark_ordered_io_finished() will handle * the ordered extent accounting for the range. */ btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, offset, bytes); put_page(page); } if (locked_page) { /* The locked page covers the full range, nothing needs to be done */ if (bytes + offset <= page_start + PAGE_SIZE) return; /* * In case this page belongs to the delalloc range being * instantiated then skip it, since the first page of a range is * going to be properly cleaned up by the caller of * run_delalloc_range */ if (page_start >= offset && page_end <= (offset + bytes - 1)) { bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; offset = page_offset(locked_page) + PAGE_SIZE; } } return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); } static int btrfs_dirty_inode(struct inode *inode); static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, struct btrfs_new_inode_args *args) { int err; if (args->default_acl) { err = __btrfs_set_acl(trans, args->inode, args->default_acl, ACL_TYPE_DEFAULT); if (err) return err; } if (args->acl) { err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); if (err) return err; } if (!args->default_acl && !args->acl) cache_no_acl(args->inode); return btrfs_xattr_security_init(trans, args->inode, args->dir, &args->dentry->d_name); } /* * this does all the hard work for inserting an inline extent into * the btree. The caller should have done a btrfs_drop_extents so that * no overlapping inline items exist in the btree */ static int insert_inline_extent(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_inode *inode, bool extent_inserted, size_t size, size_t compressed_size, int compress_type, struct page **compressed_pages, bool update_i_size) { struct btrfs_root *root = inode->root; struct extent_buffer *leaf; struct page *page = NULL; char *kaddr; unsigned long ptr; struct btrfs_file_extent_item *ei; int ret; size_t cur_size = size; u64 i_size; ASSERT((compressed_size > 0 && compressed_pages) || (compressed_size == 0 && !compressed_pages)); if (compressed_size && compressed_pages) cur_size = compressed_size; if (!extent_inserted) { struct btrfs_key key; size_t datasize; key.objectid = btrfs_ino(inode); key.offset = 0; key.type = BTRFS_EXTENT_DATA_KEY; datasize = btrfs_file_extent_calc_inline_size(cur_size); ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); if (ret) goto fail; } leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(leaf, ei, trans->transid); btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); btrfs_set_file_extent_encryption(leaf, ei, 0); btrfs_set_file_extent_other_encoding(leaf, ei, 0); btrfs_set_file_extent_ram_bytes(leaf, ei, size); ptr = btrfs_file_extent_inline_start(ei); if (compress_type != BTRFS_COMPRESS_NONE) { struct page *cpage; int i = 0; while (compressed_size > 0) { cpage = compressed_pages[i]; cur_size = min_t(unsigned long, compressed_size, PAGE_SIZE); kaddr = kmap_local_page(cpage); write_extent_buffer(leaf, kaddr, ptr, cur_size); kunmap_local(kaddr); i++; ptr += cur_size; compressed_size -= cur_size; } btrfs_set_file_extent_compression(leaf, ei, compress_type); } else { page = find_get_page(inode->vfs_inode.i_mapping, 0); btrfs_set_file_extent_compression(leaf, ei, 0); kaddr = kmap_local_page(page); write_extent_buffer(leaf, kaddr, ptr, size); kunmap_local(kaddr); put_page(page); } btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); /* * We align size to sectorsize for inline extents just for simplicity * sake. */ ret = btrfs_inode_set_file_extent_range(inode, 0, ALIGN(size, root->fs_info->sectorsize)); if (ret) goto fail; /* * We're an inline extent, so nobody can extend the file past i_size * without locking a page we already have locked. * * We must do any i_size and inode updates before we unlock the pages. * Otherwise we could end up racing with unlink. */ i_size = i_size_read(&inode->vfs_inode); if (update_i_size && size > i_size) { i_size_write(&inode->vfs_inode, size); i_size = size; } inode->disk_i_size = i_size; fail: return ret; } /* * conditionally insert an inline extent into the file. This * does the checks required to make sure the data is small enough * to fit as an inline extent. */ static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, size_t compressed_size, int compress_type, struct page **compressed_pages, bool update_i_size) { struct btrfs_drop_extents_args drop_args = { 0 }; struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_trans_handle *trans; u64 data_len = (compressed_size ?: size); int ret; struct btrfs_path *path; /* * We can create an inline extent if it ends at or beyond the current * i_size, is no larger than a sector (decompressed), and the (possibly * compressed) data fits in a leaf and the configured maximum inline * size. */ if (size < i_size_read(&inode->vfs_inode) || size > fs_info->sectorsize || data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || data_len > fs_info->max_inline) return 1; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } trans->block_rsv = &inode->block_rsv; drop_args.path = path; drop_args.start = 0; drop_args.end = fs_info->sectorsize; drop_args.drop_cache = true; drop_args.replace_extent = true; drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); ret = btrfs_drop_extents(trans, root, inode, &drop_args); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, size, compressed_size, compress_type, compressed_pages, update_i_size); if (ret && ret != -ENOSPC) { btrfs_abort_transaction(trans, ret); goto out; } else if (ret == -ENOSPC) { ret = 1; goto out; } btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); ret = btrfs_update_inode(trans, root, inode); if (ret && ret != -ENOSPC) { btrfs_abort_transaction(trans, ret); goto out; } else if (ret == -ENOSPC) { ret = 1; goto out; } btrfs_set_inode_full_sync(inode); out: /* * Don't forget to free the reserved space, as for inlined extent * it won't count as data extent, free them directly here. * And at reserve time, it's always aligned to page size, so * just free one page here. */ btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); btrfs_free_path(path); btrfs_end_transaction(trans); return ret; } struct async_extent { u64 start; u64 ram_size; u64 compressed_size; struct page **pages; unsigned long nr_pages; int compress_type; struct list_head list; }; struct async_chunk { struct inode *inode; struct page *locked_page; u64 start; u64 end; blk_opf_t write_flags; struct list_head extents; struct cgroup_subsys_state *blkcg_css; struct btrfs_work work; struct async_cow *async_cow; }; struct async_cow { atomic_t num_chunks; struct async_chunk chunks[]; }; static noinline int add_async_extent(struct async_chunk *cow, u64 start, u64 ram_size, u64 compressed_size, struct page **pages, unsigned long nr_pages, int compress_type) { struct async_extent *async_extent; async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); BUG_ON(!async_extent); /* -ENOMEM */ async_extent->start = start; async_extent->ram_size = ram_size; async_extent->compressed_size = compressed_size; async_extent->pages = pages; async_extent->nr_pages = nr_pages; async_extent->compress_type = compress_type; list_add_tail(&async_extent->list, &cow->extents); return 0; } /* * Check if the inode needs to be submitted to compression, based on mount * options, defragmentation, properties or heuristics. */ static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, u64 end) { struct btrfs_fs_info *fs_info = inode->root->fs_info; if (!btrfs_inode_can_compress(inode)) { WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), KERN_ERR "BTRFS: unexpected compression for ino %llu\n", btrfs_ino(inode)); return 0; } /* * Special check for subpage. * * We lock the full page then run each delalloc range in the page, thus * for the following case, we will hit some subpage specific corner case: * * 0 32K 64K * | |///////| |///////| * \- A \- B * * In above case, both range A and range B will try to unlock the full * page [0, 64K), causing the one finished later will have page * unlocked already, triggering various page lock requirement BUG_ON()s. * * So here we add an artificial limit that subpage compression can only * if the range is fully page aligned. * * In theory we only need to ensure the first page is fully covered, but * the tailing partial page will be locked until the full compression * finishes, delaying the write of other range. * * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range * first to prevent any submitted async extent to unlock the full page. * By this, we can ensure for subpage case that only the last async_cow * will unlock the full page. */ if (fs_info->sectorsize < PAGE_SIZE) { if (!PAGE_ALIGNED(start) || !PAGE_ALIGNED(end + 1)) return 0; } /* force compress */ if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) return 1; /* defrag ioctl */ if (inode->defrag_compress) return 1; /* bad compression ratios */ if (inode->flags & BTRFS_INODE_NOCOMPRESS) return 0; if (btrfs_test_opt(fs_info, COMPRESS) || inode->flags & BTRFS_INODE_COMPRESS || inode->prop_compress) return btrfs_compress_heuristic(&inode->vfs_inode, start, end); return 0; } static inline void inode_should_defrag(struct btrfs_inode *inode, u64 start, u64 end, u64 num_bytes, u32 small_write) { /* If this is a small write inside eof, kick off a defrag */ if (num_bytes < small_write && (start > 0 || end + 1 < inode->disk_i_size)) btrfs_add_inode_defrag(NULL, inode, small_write); } /* * we create compressed extents in two phases. The first * phase compresses a range of pages that have already been * locked (both pages and state bits are locked). * * This is done inside an ordered work queue, and the compression * is spread across many cpus. The actual IO submission is step * two, and the ordered work queue takes care of making sure that * happens in the same order things were put onto the queue by * writepages and friends. * * If this code finds it can't get good compression, it puts an * entry onto the work queue to write the uncompressed bytes. This * makes sure that both compressed inodes and uncompressed inodes * are written in the same order that the flusher thread sent them * down. */ static noinline int compress_file_range(struct async_chunk *async_chunk) { struct inode *inode = async_chunk->inode; struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); u64 blocksize = fs_info->sectorsize; u64 start = async_chunk->start; u64 end = async_chunk->end; u64 actual_end; u64 i_size; int ret = 0; struct page **pages = NULL; unsigned long nr_pages; unsigned long total_compressed = 0; unsigned long total_in = 0; int i; int will_compress; int compress_type = fs_info->compress_type; int compressed_extents = 0; int redirty = 0; inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, SZ_16K); /* * We need to save i_size before now because it could change in between * us evaluating the size and assigning it. This is because we lock and * unlock the page in truncate and fallocate, and then modify the i_size * later on. * * The barriers are to emulate READ_ONCE, remove that once i_size_read * does that for us. */ barrier(); i_size = i_size_read(inode); barrier(); actual_end = min_t(u64, i_size, end + 1); again: will_compress = 0; nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED / PAGE_SIZE); /* * we don't want to send crud past the end of i_size through * compression, that's just a waste of CPU time. So, if the * end of the file is before the start of our current * requested range of bytes, we bail out to the uncompressed * cleanup code that can deal with all of this. * * It isn't really the fastest way to fix things, but this is a * very uncommon corner. */ if (actual_end <= start) goto cleanup_and_bail_uncompressed; total_compressed = actual_end - start; /* * Skip compression for a small file range(<=blocksize) that * isn't an inline extent, since it doesn't save disk space at all. */ if (total_compressed <= blocksize && (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) goto cleanup_and_bail_uncompressed; /* * For subpage case, we require full page alignment for the sector * aligned range. * Thus we must also check against @actual_end, not just @end. */ if (blocksize < PAGE_SIZE) { if (!PAGE_ALIGNED(start) || !PAGE_ALIGNED(round_up(actual_end, blocksize))) goto cleanup_and_bail_uncompressed; } total_compressed = min_t(unsigned long, total_compressed, BTRFS_MAX_UNCOMPRESSED); total_in = 0; ret = 0; /* * we do compression for mount -o compress and when the * inode has not been flagged as nocompress. This flag can * change at any time if we discover bad compression ratios. */ if (inode_need_compress(BTRFS_I(inode), start, end)) { WARN_ON(pages); pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); if (!pages) { /* just bail out to the uncompressed code */ nr_pages = 0; goto cont; } if (BTRFS_I(inode)->defrag_compress) compress_type = BTRFS_I(inode)->defrag_compress; else if (BTRFS_I(inode)->prop_compress) compress_type = BTRFS_I(inode)->prop_compress; /* * we need to call clear_page_dirty_for_io on each * page in the range. Otherwise applications with the file * mmap'd can wander in and change the page contents while * we are compressing them. * * If the compression fails for any reason, we set the pages * dirty again later on. * * Note that the remaining part is redirtied, the start pointer * has moved, the end is the original one. */ if (!redirty) { extent_range_clear_dirty_for_io(inode, start, end); redirty = 1; } /* Compression level is applied here and only here */ ret = btrfs_compress_pages( compress_type | (fs_info->compress_level << 4), inode->i_mapping, start, pages, &nr_pages, &total_in, &total_compressed); if (!ret) { unsigned long offset = offset_in_page(total_compressed); struct page *page = pages[nr_pages - 1]; /* zero the tail end of the last page, we might be * sending it down to disk */ if (offset) memzero_page(page, offset, PAGE_SIZE - offset); will_compress = 1; } } cont: /* * Check cow_file_range() for why we don't even try to create inline * extent for subpage case. */ if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { /* lets try to make an inline extent */ if (ret || total_in < actual_end) { /* we didn't compress the entire range, try * to make an uncompressed inline extent. */ ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 0, BTRFS_COMPRESS_NONE, NULL, false); } else { /* try making a compressed inline extent */ ret = cow_file_range_inline(BTRFS_I(inode), actual_end, total_compressed, compress_type, pages, false); } if (ret <= 0) { unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING; unsigned long page_error_op; page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; /* * inline extent creation worked or returned error, * we don't need to create any more async work items. * Unlock and free up our temp pages. * * We use DO_ACCOUNTING here because we need the * delalloc_release_metadata to be done _after_ we drop * our outstanding extent for clearing delalloc for this * range. */ extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, NULL, clear_flags, PAGE_UNLOCK | PAGE_START_WRITEBACK | page_error_op | PAGE_END_WRITEBACK); /* * Ensure we only free the compressed pages if we have * them allocated, as we can still reach here with * inode_need_compress() == false. */ if (pages) { for (i = 0; i < nr_pages; i++) { WARN_ON(pages[i]->mapping); put_page(pages[i]); } kfree(pages); } return 0; } } if (will_compress) { /* * we aren't doing an inline extent round the compressed size * up to a block size boundary so the allocator does sane * things */ total_compressed = ALIGN(total_compressed, blocksize); /* * one last check to make sure the compression is really a * win, compare the page count read with the blocks on disk, * compression must free at least one sector size */ total_in = round_up(total_in, fs_info->sectorsize); if (total_compressed + blocksize <= total_in) { compressed_extents++; /* * The async work queues will take care of doing actual * allocation on disk for these compressed pages, and * will submit them to the elevator. */ add_async_extent(async_chunk, start, total_in, total_compressed, pages, nr_pages, compress_type); if (start + total_in < end) { start += total_in; pages = NULL; cond_resched(); goto again; } return compressed_extents; } } if (pages) { /* * the compression code ran but failed to make things smaller, * free any pages it allocated and our page pointer array */ for (i = 0; i < nr_pages; i++) { WARN_ON(pages[i]->mapping); put_page(pages[i]); } kfree(pages); pages = NULL; total_compressed = 0; nr_pages = 0; /* flag the file so we don't compress in the future */ if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !(BTRFS_I(inode)->prop_compress)) { BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; } } cleanup_and_bail_uncompressed: /* * No compression, but we still need to write the pages in the file * we've been given so far. redirty the locked page if it corresponds * to our extent and set things up for the async work queue to run * cow_file_range to do the normal delalloc dance. */ if (async_chunk->locked_page && (page_offset(async_chunk->locked_page) >= start && page_offset(async_chunk->locked_page)) <= end) { __set_page_dirty_nobuffers(async_chunk->locked_page); /* unlocked later on in the async handlers */ } if (redirty) extent_range_redirty_for_io(inode, start, end); add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, BTRFS_COMPRESS_NONE); compressed_extents++; return compressed_extents; } static void free_async_extent_pages(struct async_extent *async_extent) { int i; if (!async_extent->pages) return; for (i = 0; i < async_extent->nr_pages; i++) { WARN_ON(async_extent->pages[i]->mapping); put_page(async_extent->pages[i]); } kfree(async_extent->pages); async_extent->nr_pages = 0; async_extent->pages = NULL; } static int submit_uncompressed_range(struct btrfs_inode *inode, struct async_extent *async_extent, struct page *locked_page) { u64 start = async_extent->start; u64 end = async_extent->start + async_extent->ram_size - 1; unsigned long nr_written = 0; int page_started = 0; int ret; /* * Call cow_file_range() to run the delalloc range directly, since we * won't go to NOCOW or async path again. * * Also we call cow_file_range() with @unlock_page == 0, so that we * can directly submit them without interruption. */ ret = cow_file_range(inode, locked_page, start, end, &page_started, &nr_written, 0, NULL); /* Inline extent inserted, page gets unlocked and everything is done */ if (page_started) { ret = 0; goto out; } if (ret < 0) { btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); if (locked_page) { const u64 page_start = page_offset(locked_page); const u64 page_end = page_start + PAGE_SIZE - 1; btrfs_page_set_error(inode->root->fs_info, locked_page, page_start, PAGE_SIZE); set_page_writeback(locked_page); end_page_writeback(locked_page); end_extent_writepage(locked_page, ret, page_start, page_end); unlock_page(locked_page); } goto out; } ret = extent_write_locked_range(&inode->vfs_inode, start, end); /* All pages will be unlocked, including @locked_page */ out: kfree(async_extent); return ret; } static int submit_one_async_extent(struct btrfs_inode *inode, struct async_chunk *async_chunk, struct async_extent *async_extent, u64 *alloc_hint) { struct extent_io_tree *io_tree = &inode->io_tree; struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key ins; struct page *locked_page = NULL; struct extent_map *em; int ret = 0; u64 start = async_extent->start; u64 end = async_extent->start + async_extent->ram_size - 1; /* * If async_chunk->locked_page is in the async_extent range, we need to * handle it. */ if (async_chunk->locked_page) { u64 locked_page_start = page_offset(async_chunk->locked_page); u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; if (!(start >= locked_page_end || end <= locked_page_start)) locked_page = async_chunk->locked_page; } lock_extent(io_tree, start, end, NULL); /* We have fall back to uncompressed write */ if (!async_extent->pages) return submit_uncompressed_range(inode, async_extent, locked_page); ret = btrfs_reserve_extent(root, async_extent->ram_size, async_extent->compressed_size, async_extent->compressed_size, 0, *alloc_hint, &ins, 1, 1); if (ret) { free_async_extent_pages(async_extent); /* * Here we used to try again by going back to non-compressed * path for ENOSPC. But we can't reserve space even for * compressed size, how could it work for uncompressed size * which requires larger size? So here we directly go error * path. */ goto out_free; } /* Here we're doing allocation and writeback of the compressed pages */ em = create_io_em(inode, start, async_extent->ram_size, /* len */ start, /* orig_start */ ins.objectid, /* block_start */ ins.offset, /* block_len */ ins.offset, /* orig_block_len */ async_extent->ram_size, /* ram_bytes */ async_extent->compress_type, BTRFS_ORDERED_COMPRESSED); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out_free_reserve; } free_extent_map(em); ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ async_extent->ram_size, /* num_bytes */ async_extent->ram_size, /* ram_bytes */ ins.objectid, /* disk_bytenr */ ins.offset, /* disk_num_bytes */ 0, /* offset */ 1 << BTRFS_ORDERED_COMPRESSED, async_extent->compress_type); if (ret) { btrfs_drop_extent_map_range(inode, start, end, false); goto out_free_reserve; } btrfs_dec_block_group_reservations(fs_info, ins.objectid); /* Clear dirty, set writeback and unlock the pages. */ extent_clear_unlock_delalloc(inode, start, end, NULL, EXTENT_LOCKED | EXTENT_DELALLOC, PAGE_UNLOCK | PAGE_START_WRITEBACK); if (btrfs_submit_compressed_write(inode, start, /* file_offset */ async_extent->ram_size, /* num_bytes */ ins.objectid, /* disk_bytenr */ ins.offset, /* compressed_len */ async_extent->pages, /* compressed_pages */ async_extent->nr_pages, async_chunk->write_flags, async_chunk->blkcg_css, true)) { const u64 start = async_extent->start; const u64 end = start + async_extent->ram_size - 1; btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); extent_clear_unlock_delalloc(inode, start, end, NULL, 0, PAGE_END_WRITEBACK | PAGE_SET_ERROR); free_async_extent_pages(async_extent); } *alloc_hint = ins.objectid + ins.offset; kfree(async_extent); return ret; out_free_reserve: btrfs_dec_block_group_reservations(fs_info, ins.objectid); btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); out_free: extent_clear_unlock_delalloc(inode, start, end, NULL, EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK | PAGE_SET_ERROR); free_async_extent_pages(async_extent); kfree(async_extent); return ret; } /* * Phase two of compressed writeback. This is the ordered portion of the code, * which only gets called in the order the work was queued. We walk all the * async extents created by compress_file_range and send them down to the disk. */ static noinline void submit_compressed_extents(struct async_chunk *async_chunk) { struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); struct btrfs_fs_info *fs_info = inode->root->fs_info; struct async_extent *async_extent; u64 alloc_hint = 0; int ret = 0; while (!list_empty(&async_chunk->extents)) { u64 extent_start; u64 ram_size; async_extent = list_entry(async_chunk->extents.next, struct async_extent, list); list_del(&async_extent->list); extent_start = async_extent->start; ram_size = async_extent->ram_size; ret = submit_one_async_extent(inode, async_chunk, async_extent, &alloc_hint); btrfs_debug(fs_info, "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", inode->root->root_key.objectid, btrfs_ino(inode), extent_start, ram_size, ret); } } static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, u64 num_bytes) { struct extent_map_tree *em_tree = &inode->extent_tree; struct extent_map *em; u64 alloc_hint = 0; read_lock(&em_tree->lock); em = search_extent_mapping(em_tree, start, num_bytes); if (em) { /* * if block start isn't an actual block number then find the * first block in this inode and use that as a hint. If that * block is also bogus then just don't worry about it. */ if (em->block_start >= EXTENT_MAP_LAST_BYTE) { free_extent_map(em); em = search_extent_mapping(em_tree, 0, 0); if (em && em->block_start < EXTENT_MAP_LAST_BYTE) alloc_hint = em->block_start; if (em) free_extent_map(em); } else { alloc_hint = em->block_start; free_extent_map(em); } } read_unlock(&em_tree->lock); return alloc_hint; } /* * when extent_io.c finds a delayed allocation range in the file, * the call backs end up in this code. The basic idea is to * allocate extents on disk for the range, and create ordered data structs * in ram to track those extents. * * locked_page is the page that writepage had locked already. We use * it to make sure we don't do extra locks or unlocks. * * *page_started is set to one if we unlock locked_page and do everything * required to start IO on it. It may be clean and already done with * IO when we return. * * When unlock == 1, we unlock the pages in successfully allocated regions. * When unlock == 0, we leave them locked for writing them out. * * However, we unlock all the pages except @locked_page in case of failure. * * In summary, page locking state will be as follow: * * - page_started == 1 (return value) * - All the pages are unlocked. IO is started. * - Note that this can happen only on success * - unlock == 1 * - All the pages except @locked_page are unlocked in any case * - unlock == 0 * - On success, all the pages are locked for writing out them * - On failure, all the pages except @locked_page are unlocked * * When a failure happens in the second or later iteration of the * while-loop, the ordered extents created in previous iterations are kept * intact. So, the caller must clean them up by calling * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for * example. */ static noinline int cow_file_range(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written, int unlock, u64 *done_offset) { struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; u64 alloc_hint = 0; u64 orig_start = start; u64 num_bytes; unsigned long ram_size; u64 cur_alloc_size = 0; u64 min_alloc_size; u64 blocksize = fs_info->sectorsize; struct btrfs_key ins; struct extent_map *em; unsigned clear_bits; unsigned long page_ops; bool extent_reserved = false; int ret = 0; if (btrfs_is_free_space_inode(inode)) { ret = -EINVAL; goto out_unlock; } num_bytes = ALIGN(end - start + 1, blocksize); num_bytes = max(blocksize, num_bytes); ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); inode_should_defrag(inode, start, end, num_bytes, SZ_64K); /* * Due to the page size limit, for subpage we can only trigger the * writeback for the dirty sectors of page, that means data writeback * is doing more writeback than what we want. * * This is especially unexpected for some call sites like fallocate, * where we only increase i_size after everything is done. * This means we can trigger inline extent even if we didn't want to. * So here we skip inline extent creation completely. */ if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); /* lets try to make an inline extent */ ret = cow_file_range_inline(inode, actual_end, 0, BTRFS_COMPRESS_NONE, NULL, false); if (ret == 0) { /* * We use DO_ACCOUNTING here because we need the * delalloc_release_metadata to be run _after_ we drop * our outstanding extent for clearing delalloc for this * range. */ extent_clear_unlock_delalloc(inode, start, end, locked_page, EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); *nr_written = *nr_written + (end - start + PAGE_SIZE) / PAGE_SIZE; *page_started = 1; /* * locked_page is locked by the caller of * writepage_delalloc(), not locked by * __process_pages_contig(). * * We can't let __process_pages_contig() to unlock it, * as it doesn't have any subpage::writers recorded. * * Here we manually unlock the page, since the caller * can't use page_started to determine if it's an * inline extent or a compressed extent. */ unlock_page(locked_page); goto out; } else if (ret < 0) { goto out_unlock; } } alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); /* * Relocation relies on the relocated extents to have exactly the same * size as the original extents. Normally writeback for relocation data * extents follows a NOCOW path because relocation preallocates the * extents. However, due to an operation such as scrub turning a block * group to RO mode, it may fallback to COW mode, so we must make sure * an extent allocated during COW has exactly the requested size and can * not be split into smaller extents, otherwise relocation breaks and * fails during the stage where it updates the bytenr of file extent * items. */ if (btrfs_is_data_reloc_root(root)) min_alloc_size = num_bytes; else min_alloc_size = fs_info->sectorsize; while (num_bytes > 0) { cur_alloc_size = num_bytes; ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, min_alloc_size, 0, alloc_hint, &ins, 1, 1); if (ret < 0) goto out_unlock; cur_alloc_size = ins.offset; extent_reserved = true; ram_size = ins.offset; em = create_io_em(inode, start, ins.offset, /* len */ start, /* orig_start */ ins.objectid, /* block_start */ ins.offset, /* block_len */ ins.offset, /* orig_block_len */ ram_size, /* ram_bytes */ BTRFS_COMPRESS_NONE, /* compress_type */ BTRFS_ORDERED_REGULAR /* type */); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out_reserve; } free_extent_map(em); ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, ins.objectid, cur_alloc_size, 0, 1 << BTRFS_ORDERED_REGULAR, BTRFS_COMPRESS_NONE); if (ret) goto out_drop_extent_cache; if (btrfs_is_data_reloc_root(root)) { ret = btrfs_reloc_clone_csums(inode, start, cur_alloc_size); /* * Only drop cache here, and process as normal. * * We must not allow extent_clear_unlock_delalloc() * at out_unlock label to free meta of this ordered * extent, as its meta should be freed by * btrfs_finish_ordered_io(). * * So we must continue until @start is increased to * skip current ordered extent. */ if (ret) btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); } btrfs_dec_block_group_reservations(fs_info, ins.objectid); /* * We're not doing compressed IO, don't unlock the first page * (which the caller expects to stay locked), don't clear any * dirty bits and don't set any writeback bits * * Do set the Ordered (Private2) bit so we know this page was * properly setup for writepage. */ page_ops = unlock ? PAGE_UNLOCK : 0; page_ops |= PAGE_SET_ORDERED; extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, locked_page, EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); if (num_bytes < cur_alloc_size) num_bytes = 0; else num_bytes -= cur_alloc_size; alloc_hint = ins.objectid + ins.offset; start += cur_alloc_size; extent_reserved = false; /* * btrfs_reloc_clone_csums() error, since start is increased * extent_clear_unlock_delalloc() at out_unlock label won't * free metadata of current ordered extent, we're OK to exit. */ if (ret) goto out_unlock; } out: return ret; out_drop_extent_cache: btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); out_reserve: btrfs_dec_block_group_reservations(fs_info, ins.objectid); btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); out_unlock: /* * If done_offset is non-NULL and ret == -EAGAIN, we expect the * caller to write out the successfully allocated region and retry. */ if (done_offset && ret == -EAGAIN) { if (orig_start < start) *done_offset = start - 1; else *done_offset = start; return ret; } else if (ret == -EAGAIN) { /* Convert to -ENOSPC since the caller cannot retry. */ ret = -ENOSPC; } /* * Now, we have three regions to clean up: * * |-------(1)----|---(2)---|-------------(3)----------| * `- orig_start `- start `- start + cur_alloc_size `- end * * We process each region below. */ clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; /* * For the range (1). We have already instantiated the ordered extents * for this region. They are cleaned up by * btrfs_cleanup_ordered_extents() in e.g, * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup * function. * * However, in case of unlock == 0, we still need to unlock the pages * (except @locked_page) to ensure all the pages are unlocked. */ if (!unlock && orig_start < start) { if (!locked_page) mapping_set_error(inode->vfs_inode.i_mapping, ret); extent_clear_unlock_delalloc(inode, orig_start, start - 1, locked_page, 0, page_ops); } /* * For the range (2). If we reserved an extent for our delalloc range * (or a subrange) and failed to create the respective ordered extent, * then it means that when we reserved the extent we decremented the * extent's size from the data space_info's bytes_may_use counter and * incremented the space_info's bytes_reserved counter by the same * amount. We must make sure extent_clear_unlock_delalloc() does not try * to decrement again the data space_info's bytes_may_use counter, * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. */ if (extent_reserved) { extent_clear_unlock_delalloc(inode, start, start + cur_alloc_size - 1, locked_page, clear_bits, page_ops); start += cur_alloc_size; if (start >= end) return ret; } /* * For the range (3). We never touched the region. In addition to the * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data * space_info's bytes_may_use counter, reserved in * btrfs_check_data_free_space(). */ extent_clear_unlock_delalloc(inode, start, end, locked_page, clear_bits | EXTENT_CLEAR_DATA_RESV, page_ops); return ret; } /* * work queue call back to started compression on a file and pages */ static noinline void async_cow_start(struct btrfs_work *work) { struct async_chunk *async_chunk; int compressed_extents; async_chunk = container_of(work, struct async_chunk, work); compressed_extents = compress_file_range(async_chunk); if (compressed_extents == 0) { btrfs_add_delayed_iput(async_chunk->inode); async_chunk->inode = NULL; } } /* * work queue call back to submit previously compressed pages */ static noinline void async_cow_submit(struct btrfs_work *work) { struct async_chunk *async_chunk = container_of(work, struct async_chunk, work); struct btrfs_fs_info *fs_info = btrfs_work_owner(work); unsigned long nr_pages; nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> PAGE_SHIFT; /* * ->inode could be NULL if async_chunk_start has failed to compress, * in which case we don't have anything to submit, yet we need to * always adjust ->async_delalloc_pages as its paired with the init * happening in cow_file_range_async */ if (async_chunk->inode) submit_compressed_extents(async_chunk); /* atomic_sub_return implies a barrier */ if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 5 * SZ_1M) cond_wake_up_nomb(&fs_info->async_submit_wait); } static noinline void async_cow_free(struct btrfs_work *work) { struct async_chunk *async_chunk; struct async_cow *async_cow; async_chunk = container_of(work, struct async_chunk, work); if (async_chunk->inode) btrfs_add_delayed_iput(async_chunk->inode); if (async_chunk->blkcg_css) css_put(async_chunk->blkcg_css); async_cow = async_chunk->async_cow; if (atomic_dec_and_test(&async_cow->num_chunks)) kvfree(async_cow); } static int cow_file_range_async(struct btrfs_inode *inode, struct writeback_control *wbc, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); struct async_cow *ctx; struct async_chunk *async_chunk; unsigned long nr_pages; u64 cur_end; u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); int i; bool should_compress; unsigned nofs_flag; const blk_opf_t write_flags = wbc_to_write_flags(wbc); unlock_extent(&inode->io_tree, start, end, NULL); if (inode->flags & BTRFS_INODE_NOCOMPRESS && !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { num_chunks = 1; should_compress = false; } else { should_compress = true; } nofs_flag = memalloc_nofs_save(); ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); memalloc_nofs_restore(nofs_flag); if (!ctx) { unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING; unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK | PAGE_SET_ERROR; extent_clear_unlock_delalloc(inode, start, end, locked_page, clear_bits, page_ops); return -ENOMEM; } async_chunk = ctx->chunks; atomic_set(&ctx->num_chunks, num_chunks); for (i = 0; i < num_chunks; i++) { if (should_compress) cur_end = min(end, start + SZ_512K - 1); else cur_end = end; /* * igrab is called higher up in the call chain, take only the * lightweight reference for the callback lifetime */ ihold(&inode->vfs_inode); async_chunk[i].async_cow = ctx; async_chunk[i].inode = &inode->vfs_inode; async_chunk[i].start = start; async_chunk[i].end = cur_end; async_chunk[i].write_flags = write_flags; INIT_LIST_HEAD(&async_chunk[i].extents); /* * The locked_page comes all the way from writepage and its * the original page we were actually given. As we spread * this large delalloc region across multiple async_chunk * structs, only the first struct needs a pointer to locked_page * * This way we don't need racey decisions about who is supposed * to unlock it. */ if (locked_page) { /* * Depending on the compressibility, the pages might or * might not go through async. We want all of them to * be accounted against wbc once. Let's do it here * before the paths diverge. wbc accounting is used * only for foreign writeback detection and doesn't * need full accuracy. Just account the whole thing * against the first page. */ wbc_account_cgroup_owner(wbc, locked_page, cur_end - start); async_chunk[i].locked_page = locked_page; locked_page = NULL; } else { async_chunk[i].locked_page = NULL; } if (blkcg_css != blkcg_root_css) { css_get(blkcg_css); async_chunk[i].blkcg_css = blkcg_css; } else { async_chunk[i].blkcg_css = NULL; } btrfs_init_work(&async_chunk[i].work, async_cow_start, async_cow_submit, async_cow_free); nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); atomic_add(nr_pages, &fs_info->async_delalloc_pages); btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); *nr_written += nr_pages; start = cur_end + 1; } *page_started = 1; return 0; } static noinline int run_delalloc_zoned(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written) { u64 done_offset = end; int ret; bool locked_page_done = false; while (start <= end) { ret = cow_file_range(inode, locked_page, start, end, page_started, nr_written, 0, &done_offset); if (ret && ret != -EAGAIN) return ret; if (*page_started) { ASSERT(ret == 0); return 0; } if (ret == 0) done_offset = end; if (done_offset == start) { wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, TASK_UNINTERRUPTIBLE); continue; } if (!locked_page_done) { __set_page_dirty_nobuffers(locked_page); account_page_redirty(locked_page); } locked_page_done = true; extent_write_locked_range(&inode->vfs_inode, start, done_offset); start = done_offset + 1; } *page_started = 1; return 0; } static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes, bool nowait) { struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); struct btrfs_ordered_sum *sums; int ret; LIST_HEAD(list); ret = btrfs_lookup_csums_range(csum_root, bytenr, bytenr + num_bytes - 1, &list, 0, nowait); if (ret == 0 && list_empty(&list)) return 0; while (!list_empty(&list)) { sums = list_entry(list.next, struct btrfs_ordered_sum, list); list_del(&sums->list); kfree(sums); } if (ret < 0) return ret; return 1; } static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, const u64 start, const u64 end, int *page_started, unsigned long *nr_written) { const bool is_space_ino = btrfs_is_free_space_inode(inode); const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); const u64 range_bytes = end + 1 - start; struct extent_io_tree *io_tree = &inode->io_tree; u64 range_start = start; u64 count; /* * If EXTENT_NORESERVE is set it means that when the buffered write was * made we had not enough available data space and therefore we did not * reserve data space for it, since we though we could do NOCOW for the * respective file range (either there is prealloc extent or the inode * has the NOCOW bit set). * * However when we need to fallback to COW mode (because for example the * block group for the corresponding extent was turned to RO mode by a * scrub or relocation) we need to do the following: * * 1) We increment the bytes_may_use counter of the data space info. * If COW succeeds, it allocates a new data extent and after doing * that it decrements the space info's bytes_may_use counter and * increments its bytes_reserved counter by the same amount (we do * this at btrfs_add_reserved_bytes()). So we need to increment the * bytes_may_use counter to compensate (when space is reserved at * buffered write time, the bytes_may_use counter is incremented); * * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so * that if the COW path fails for any reason, it decrements (through * extent_clear_unlock_delalloc()) the bytes_may_use counter of the * data space info, which we incremented in the step above. * * If we need to fallback to cow and the inode corresponds to a free * space cache inode or an inode of the data relocation tree, we must * also increment bytes_may_use of the data space_info for the same * reason. Space caches and relocated data extents always get a prealloc * extent for them, however scrub or balance may have set the block * group that contains that extent to RO mode and therefore force COW * when starting writeback. */ count = count_range_bits(io_tree, &range_start, end, range_bytes, EXTENT_NORESERVE, 0); if (count > 0 || is_space_ino || is_reloc_ino) { u64 bytes = count; struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_space_info *sinfo = fs_info->data_sinfo; if (is_space_ino || is_reloc_ino) bytes = range_bytes; spin_lock(&sinfo->lock); btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); spin_unlock(&sinfo->lock); if (count > 0) clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, NULL); } return cow_file_range(inode, locked_page, start, end, page_started, nr_written, 1, NULL); } struct can_nocow_file_extent_args { /* Input fields. */ /* Start file offset of the range we want to NOCOW. */ u64 start; /* End file offset (inclusive) of the range we want to NOCOW. */ u64 end; bool writeback_path; bool strict; /* * Free the path passed to can_nocow_file_extent() once it's not needed * anymore. */ bool free_path; /* Output fields. Only set when can_nocow_file_extent() returns 1. */ u64 disk_bytenr; u64 disk_num_bytes; u64 extent_offset; /* Number of bytes that can be written to in NOCOW mode. */ u64 num_bytes; }; /* * Check if we can NOCOW the file extent that the path points to. * This function may return with the path released, so the caller should check * if path->nodes[0] is NULL or not if it needs to use the path afterwards. * * Returns: < 0 on error * 0 if we can not NOCOW * 1 if we can NOCOW */ static int can_nocow_file_extent(struct btrfs_path *path, struct btrfs_key *key, struct btrfs_inode *inode, struct can_nocow_file_extent_args *args) { const bool is_freespace_inode = btrfs_is_free_space_inode(inode); struct extent_buffer *leaf = path->nodes[0]; struct btrfs_root *root = inode->root; struct btrfs_file_extent_item *fi; u64 extent_end; u8 extent_type; int can_nocow = 0; int ret = 0; bool nowait = path->nowait; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(leaf, fi); if (extent_type == BTRFS_FILE_EXTENT_INLINE) goto out; /* Can't access these fields unless we know it's not an inline extent. */ args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); args->extent_offset = btrfs_file_extent_offset(leaf, fi); if (!(inode->flags & BTRFS_INODE_NODATACOW) && extent_type == BTRFS_FILE_EXTENT_REG) goto out; /* * If the extent was created before the generation where the last snapshot * for its subvolume was created, then this implies the extent is shared, * hence we must COW. */ if (!args->strict && btrfs_file_extent_generation(leaf, fi) <= btrfs_root_last_snapshot(&root->root_item)) goto out; /* An explicit hole, must COW. */ if (args->disk_bytenr == 0) goto out; /* Compressed/encrypted/encoded extents must be COWed. */ if (btrfs_file_extent_compression(leaf, fi) || btrfs_file_extent_encryption(leaf, fi) || btrfs_file_extent_other_encoding(leaf, fi)) goto out; extent_end = btrfs_file_extent_end(path); /* * The following checks can be expensive, as they need to take other * locks and do btree or rbtree searches, so release the path to avoid * blocking other tasks for too long. */ btrfs_release_path(path); ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), key->offset - args->extent_offset, args->disk_bytenr, false, path); WARN_ON_ONCE(ret > 0 && is_freespace_inode); if (ret != 0) goto out; if (args->free_path) { /* * We don't need the path anymore, plus through the * csum_exist_in_range() call below we will end up allocating * another path. So free the path to avoid unnecessary extra * memory usage. */ btrfs_free_path(path); path = NULL; } /* If there are pending snapshots for this root, we must COW. */ if (args->writeback_path && !is_freespace_inode && atomic_read(&root->snapshot_force_cow)) goto out; args->disk_bytenr += args->extent_offset; args->disk_bytenr += args->start - key->offset; args->num_bytes = min(args->end + 1, extent_end) - args->start; /* * Force COW if csums exist in the range. This ensures that csums for a * given extent are either valid or do not exist. */ ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, nowait); WARN_ON_ONCE(ret > 0 && is_freespace_inode); if (ret != 0) goto out; can_nocow = 1; out: if (args->free_path && path) btrfs_free_path(path); return ret < 0 ? ret : can_nocow; } /* * when nowcow writeback call back. This checks for snapshots or COW copies * of the extents that exist in the file, and COWs the file as required. * * If no cow copies or snapshots exist, we write directly to the existing * blocks on disk */ static noinline int run_delalloc_nocow(struct btrfs_inode *inode, struct page *locked_page, const u64 start, const u64 end, int *page_started, unsigned long *nr_written) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_root *root = inode->root; struct btrfs_path *path; u64 cow_start = (u64)-1; u64 cur_offset = start; int ret; bool check_prev = true; u64 ino = btrfs_ino(inode); struct btrfs_block_group *bg; bool nocow = false; struct can_nocow_file_extent_args nocow_args = { 0 }; path = btrfs_alloc_path(); if (!path) { extent_clear_unlock_delalloc(inode, start, end, locked_page, EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); return -ENOMEM; } nocow_args.end = end; nocow_args.writeback_path = true; while (1) { struct btrfs_key found_key; struct btrfs_file_extent_item *fi; struct extent_buffer *leaf; u64 extent_end; u64 ram_bytes; u64 nocow_end; int extent_type; nocow = false; ret = btrfs_lookup_file_extent(NULL, root, path, ino, cur_offset, 0); if (ret < 0) goto error; /* * If there is no extent for our range when doing the initial * search, then go back to the previous slot as it will be the * one containing the search offset */ if (ret > 0 && path->slots[0] > 0 && check_prev) { leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); if (found_key.objectid == ino && found_key.type == BTRFS_EXTENT_DATA_KEY) path->slots[0]--; } check_prev = false; next_slot: /* Go to next leaf if we have exhausted the current one */ leaf = path->nodes[0]; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) { if (cow_start != (u64)-1) cur_offset = cow_start; goto error; } if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); /* Didn't find anything for our INO */ if (found_key.objectid > ino) break; /* * Keep searching until we find an EXTENT_ITEM or there are no * more extents for this inode */ if (WARN_ON_ONCE(found_key.objectid < ino) || found_key.type < BTRFS_EXTENT_DATA_KEY) { path->slots[0]++; goto next_slot; } /* Found key is not EXTENT_DATA_KEY or starts after req range */ if (found_key.type > BTRFS_EXTENT_DATA_KEY || found_key.offset > end) break; /* * If the found extent starts after requested offset, then * adjust extent_end to be right before this extent begins */ if (found_key.offset > cur_offset) { extent_end = found_key.offset; extent_type = 0; goto out_check; } /* * Found extent which begins before our range and potentially * intersect it */ fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(leaf, fi); /* If this is triggered then we have a memory corruption. */ ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { ret = -EUCLEAN; goto error; } ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); extent_end = btrfs_file_extent_end(path); /* * If the extent we got ends before our current offset, skip to * the next extent. */ if (extent_end <= cur_offset) { path->slots[0]++; goto next_slot; } nocow_args.start = cur_offset; ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); if (ret < 0) { if (cow_start != (u64)-1) cur_offset = cow_start; goto error; } else if (ret == 0) { goto out_check; } ret = 0; bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); if (bg) nocow = true; out_check: /* * If nocow is false then record the beginning of the range * that needs to be COWed */ if (!nocow) { if (cow_start == (u64)-1) cow_start = cur_offset; cur_offset = extent_end; if (cur_offset > end) break; if (!path->nodes[0]) continue; path->slots[0]++; goto next_slot; } /* * COW range from cow_start to found_key.offset - 1. As the key * will contain the beginning of the first extent that can be * NOCOW, following one which needs to be COW'ed */ if (cow_start != (u64)-1) { ret = fallback_to_cow(inode, locked_page, cow_start, found_key.offset - 1, page_started, nr_written); if (ret) goto error; cow_start = (u64)-1; } nocow_end = cur_offset + nocow_args.num_bytes - 1; if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { u64 orig_start = found_key.offset - nocow_args.extent_offset; struct extent_map *em; em = create_io_em(inode, cur_offset, nocow_args.num_bytes, orig_start, nocow_args.disk_bytenr, /* block_start */ nocow_args.num_bytes, /* block_len */ nocow_args.disk_num_bytes, /* orig_block_len */ ram_bytes, BTRFS_COMPRESS_NONE, BTRFS_ORDERED_PREALLOC); if (IS_ERR(em)) { ret = PTR_ERR(em); goto error; } free_extent_map(em); ret = btrfs_add_ordered_extent(inode, cur_offset, nocow_args.num_bytes, nocow_args.num_bytes, nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 1 << BTRFS_ORDERED_PREALLOC, BTRFS_COMPRESS_NONE); if (ret) { btrfs_drop_extent_map_range(inode, cur_offset, nocow_end, false); goto error; } } else { ret = btrfs_add_ordered_extent(inode, cur_offset, nocow_args.num_bytes, nocow_args.num_bytes, nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 1 << BTRFS_ORDERED_NOCOW, BTRFS_COMPRESS_NONE); if (ret) goto error; } if (nocow) { btrfs_dec_nocow_writers(bg); nocow = false; } if (btrfs_is_data_reloc_root(root)) /* * Error handled later, as we must prevent * extent_clear_unlock_delalloc() in error handler * from freeing metadata of created ordered extent. */ ret = btrfs_reloc_clone_csums(inode, cur_offset, nocow_args.num_bytes); extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, locked_page, EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_CLEAR_DATA_RESV, PAGE_UNLOCK | PAGE_SET_ORDERED); cur_offset = extent_end; /* * btrfs_reloc_clone_csums() error, now we're OK to call error * handler, as metadata for created ordered extent will only * be freed by btrfs_finish_ordered_io(). */ if (ret) goto error; if (cur_offset > end) break; } btrfs_release_path(path); if (cur_offset <= end && cow_start == (u64)-1) cow_start = cur_offset; if (cow_start != (u64)-1) { cur_offset = end; ret = fallback_to_cow(inode, locked_page, cow_start, end, page_started, nr_written); if (ret) goto error; } error: if (nocow) btrfs_dec_nocow_writers(bg); if (ret && cur_offset < end) extent_clear_unlock_delalloc(inode, cur_offset, end, locked_page, EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); btrfs_free_path(path); return ret; } static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) { if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { if (inode->defrag_bytes && test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) return false; return true; } return false; } /* * Function to process delayed allocation (create CoW) for ranges which are * being touched for the first time. */ int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written, struct writeback_control *wbc) { int ret; const bool zoned = btrfs_is_zoned(inode->root->fs_info); /* * The range must cover part of the @locked_page, or the returned * @page_started can confuse the caller. */ ASSERT(!(end <= page_offset(locked_page) || start >= page_offset(locked_page) + PAGE_SIZE)); if (should_nocow(inode, start, end)) { /* * Normally on a zoned device we're only doing COW writes, but * in case of relocation on a zoned filesystem we have taken * precaution, that we're only writing sequentially. It's safe * to use run_delalloc_nocow() here, like for regular * preallocated inodes. */ ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); ret = run_delalloc_nocow(inode, locked_page, start, end, page_started, nr_written); } else if (!btrfs_inode_can_compress(inode) || !inode_need_compress(inode, start, end)) { if (zoned) ret = run_delalloc_zoned(inode, locked_page, start, end, page_started, nr_written); else ret = cow_file_range(inode, locked_page, start, end, page_started, nr_written, 1, NULL); } else { set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); ret = cow_file_range_async(inode, wbc, locked_page, start, end, page_started, nr_written); } ASSERT(ret <= 0); if (ret) btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); return ret; } void btrfs_split_delalloc_extent(struct inode *inode, struct extent_state *orig, u64 split) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); u64 size; /* not delalloc, ignore it */ if (!(orig->state & EXTENT_DELALLOC)) return; size = orig->end - orig->start + 1; if (size > fs_info->max_extent_size) { u32 num_extents; u64 new_size; /* * See the explanation in btrfs_merge_delalloc_extent, the same * applies here, just in reverse. */ new_size = orig->end - split + 1; num_extents = count_max_extents(fs_info, new_size); new_size = split - orig->start; num_extents += count_max_extents(fs_info, new_size); if (count_max_extents(fs_info, size) >= num_extents) return; } spin_lock(&BTRFS_I(inode)->lock); btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); spin_unlock(&BTRFS_I(inode)->lock); } /* * Handle merged delayed allocation extents so we can keep track of new extents * that are just merged onto old extents, such as when we are doing sequential * writes, so we can properly account for the metadata space we'll need. */ void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, struct extent_state *other) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); u64 new_size, old_size; u32 num_extents; /* not delalloc, ignore it */ if (!(other->state & EXTENT_DELALLOC)) return; if (new->start > other->start) new_size = new->end - other->start + 1; else new_size = other->end - new->start + 1; /* we're not bigger than the max, unreserve the space and go */ if (new_size <= fs_info->max_extent_size) { spin_lock(&BTRFS_I(inode)->lock); btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); spin_unlock(&BTRFS_I(inode)->lock); return; } /* * We have to add up either side to figure out how many extents were * accounted for before we merged into one big extent. If the number of * extents we accounted for is <= the amount we need for the new range * then we can return, otherwise drop. Think of it like this * * [ 4k][MAX_SIZE] * * So we've grown the extent by a MAX_SIZE extent, this would mean we * need 2 outstanding extents, on one side we have 1 and the other side * we have 1 so they are == and we can return. But in this case * * [MAX_SIZE+4k][MAX_SIZE+4k] * * Each range on their own accounts for 2 extents, but merged together * they are only 3 extents worth of accounting, so we need to drop in * this case. */ old_size = other->end - other->start + 1; num_extents = count_max_extents(fs_info, old_size); old_size = new->end - new->start + 1; num_extents += count_max_extents(fs_info, old_size); if (count_max_extents(fs_info, new_size) >= num_extents) return; spin_lock(&BTRFS_I(inode)->lock); btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); spin_unlock(&BTRFS_I(inode)->lock); } static void btrfs_add_delalloc_inodes(struct btrfs_root *root, struct inode *inode) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); spin_lock(&root->delalloc_lock); if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { list_add_tail(&BTRFS_I(inode)->delalloc_inodes, &root->delalloc_inodes); set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &BTRFS_I(inode)->runtime_flags); root->nr_delalloc_inodes++; if (root->nr_delalloc_inodes == 1) { spin_lock(&fs_info->delalloc_root_lock); BUG_ON(!list_empty(&root->delalloc_root)); list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); spin_unlock(&fs_info->delalloc_root_lock); } } spin_unlock(&root->delalloc_lock); } void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode) { struct btrfs_fs_info *fs_info = root->fs_info; if (!list_empty(&inode->delalloc_inodes)) { list_del_init(&inode->delalloc_inodes); clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); root->nr_delalloc_inodes--; if (!root->nr_delalloc_inodes) { ASSERT(list_empty(&root->delalloc_inodes)); spin_lock(&fs_info->delalloc_root_lock); BUG_ON(list_empty(&root->delalloc_root)); list_del_init(&root->delalloc_root); spin_unlock(&fs_info->delalloc_root_lock); } } } static void btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode) { spin_lock(&root->delalloc_lock); __btrfs_del_delalloc_inode(root, inode); spin_unlock(&root->delalloc_lock); } /* * Properly track delayed allocation bytes in the inode and to maintain the * list of inodes that have pending delalloc work to be done. */ void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, u32 bits) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) WARN_ON(1); /* * set_bit and clear bit hooks normally require _irqsave/restore * but in this case, we are only testing for the DELALLOC * bit, which is only set or cleared with irqs on */ if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { struct btrfs_root *root = BTRFS_I(inode)->root; u64 len = state->end + 1 - state->start; u32 num_extents = count_max_extents(fs_info, len); bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); spin_lock(&BTRFS_I(inode)->lock); btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); spin_unlock(&BTRFS_I(inode)->lock); /* For sanity tests */ if (btrfs_is_testing(fs_info)) return; percpu_counter_add_batch(&fs_info->delalloc_bytes, len, fs_info->delalloc_batch); spin_lock(&BTRFS_I(inode)->lock); BTRFS_I(inode)->delalloc_bytes += len; if (bits & EXTENT_DEFRAG) BTRFS_I(inode)->defrag_bytes += len; if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, &BTRFS_I(inode)->runtime_flags)) btrfs_add_delalloc_inodes(root, inode); spin_unlock(&BTRFS_I(inode)->lock); } if (!(state->state & EXTENT_DELALLOC_NEW) && (bits & EXTENT_DELALLOC_NEW)) { spin_lock(&BTRFS_I(inode)->lock); BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - state->start; spin_unlock(&BTRFS_I(inode)->lock); } } /* * Once a range is no longer delalloc this function ensures that proper * accounting happens. */ void btrfs_clear_delalloc_extent(struct inode *vfs_inode, struct extent_state *state, u32 bits) { struct btrfs_inode *inode = BTRFS_I(vfs_inode); struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); u64 len = state->end + 1 - state->start; u32 num_extents = count_max_extents(fs_info, len); if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { spin_lock(&inode->lock); inode->defrag_bytes -= len; spin_unlock(&inode->lock); } /* * set_bit and clear bit hooks normally require _irqsave/restore * but in this case, we are only testing for the DELALLOC * bit, which is only set or cleared with irqs on */ if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { struct btrfs_root *root = inode->root; bool do_list = !btrfs_is_free_space_inode(inode); spin_lock(&inode->lock); btrfs_mod_outstanding_extents(inode, -num_extents); spin_unlock(&inode->lock); /* * We don't reserve metadata space for space cache inodes so we * don't need to call delalloc_release_metadata if there is an * error. */ if (bits & EXTENT_CLEAR_META_RESV && root != fs_info->tree_root) btrfs_delalloc_release_metadata(inode, len, false); /* For sanity tests. */ if (btrfs_is_testing(fs_info)) return; if (!btrfs_is_data_reloc_root(root) && do_list && !(state->state & EXTENT_NORESERVE) && (bits & EXTENT_CLEAR_DATA_RESV)) btrfs_free_reserved_data_space_noquota(fs_info, len); percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, fs_info->delalloc_batch); spin_lock(&inode->lock); inode->delalloc_bytes -= len; if (do_list && inode->delalloc_bytes == 0 && test_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags)) btrfs_del_delalloc_inode(root, inode); spin_unlock(&inode->lock); } if ((state->state & EXTENT_DELALLOC_NEW) && (bits & EXTENT_DELALLOC_NEW)) { spin_lock(&inode->lock); ASSERT(inode->new_delalloc_bytes >= len); inode->new_delalloc_bytes -= len; if (bits & EXTENT_ADD_INODE_BYTES) inode_add_bytes(&inode->vfs_inode, len); spin_unlock(&inode->lock); } } /* * in order to insert checksums into the metadata in large chunks, * we wait until bio submission time. All the pages in the bio are * checksummed and sums are attached onto the ordered extent record. * * At IO completion time the cums attached on the ordered extent record * are inserted into the btree */ static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, u64 dio_file_offset) { return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); } /* * Split an extent_map at [start, start + len] * * This function is intended to be used only for extract_ordered_extent(). */ static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, u64 pre, u64 post) { struct extent_map_tree *em_tree = &inode->extent_tree; struct extent_map *em; struct extent_map *split_pre = NULL; struct extent_map *split_mid = NULL; struct extent_map *split_post = NULL; int ret = 0; unsigned long flags; /* Sanity check */ if (pre == 0 && post == 0) return 0; split_pre = alloc_extent_map(); if (pre) split_mid = alloc_extent_map(); if (post) split_post = alloc_extent_map(); if (!split_pre || (pre && !split_mid) || (post && !split_post)) { ret = -ENOMEM; goto out; } ASSERT(pre + post < len); lock_extent(&inode->io_tree, start, start + len - 1, NULL); write_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (!em) { ret = -EIO; goto out_unlock; } ASSERT(em->len == len); ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); ASSERT(!list_empty(&em->list)); flags = em->flags; clear_bit(EXTENT_FLAG_PINNED, &em->flags); /* First, replace the em with a new extent_map starting from * em->start */ split_pre->start = em->start; split_pre->len = (pre ? pre : em->len - post); split_pre->orig_start = split_pre->start; split_pre->block_start = em->block_start; split_pre->block_len = split_pre->len; split_pre->orig_block_len = split_pre->block_len; split_pre->ram_bytes = split_pre->len; split_pre->flags = flags; split_pre->compress_type = em->compress_type; split_pre->generation = em->generation; replace_extent_mapping(em_tree, em, split_pre, 1); /* * Now we only have an extent_map at: * [em->start, em->start + pre] if pre != 0 * [em->start, em->start + em->len - post] if pre == 0 */ if (pre) { /* Insert the middle extent_map */ split_mid->start = em->start + pre; split_mid->len = em->len - pre - post; split_mid->orig_start = split_mid->start; split_mid->block_start = em->block_start + pre; split_mid->block_len = split_mid->len; split_mid->orig_block_len = split_mid->block_len; split_mid->ram_bytes = split_mid->len; split_mid->flags = flags; split_mid->compress_type = em->compress_type; split_mid->generation = em->generation; add_extent_mapping(em_tree, split_mid, 1); } if (post) { split_post->start = em->start + em->len - post; split_post->len = post; split_post->orig_start = split_post->start; split_post->block_start = em->block_start + em->len - post; split_post->block_len = split_post->len; split_post->orig_block_len = split_post->block_len; split_post->ram_bytes = split_post->len; split_post->flags = flags; split_post->compress_type = em->compress_type; split_post->generation = em->generation; add_extent_mapping(em_tree, split_post, 1); } /* Once for us */ free_extent_map(em); /* Once for the tree */ free_extent_map(em); out_unlock: write_unlock(&em_tree->lock); unlock_extent(&inode->io_tree, start, start + len - 1, NULL); out: free_extent_map(split_pre); free_extent_map(split_mid); free_extent_map(split_post); return ret; } static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, struct bio *bio, loff_t file_offset) { struct btrfs_ordered_extent *ordered; u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; u64 file_len; u64 len = bio->bi_iter.bi_size; u64 end = start + len; u64 ordered_end; u64 pre, post; int ret = 0; ordered = btrfs_lookup_ordered_extent(inode, file_offset); if (WARN_ON_ONCE(!ordered)) return BLK_STS_IOERR; /* No need to split */ if (ordered->disk_num_bytes == len) goto out; /* We cannot split once end_bio'd ordered extent */ if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { ret = -EINVAL; goto out; } /* We cannot split a compressed ordered extent */ if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { ret = -EINVAL; goto out; } ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; /* bio must be in one ordered extent */ if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { ret = -EINVAL; goto out; } /* Checksum list should be empty */ if (WARN_ON_ONCE(!list_empty(&ordered->list))) { ret = -EINVAL; goto out; } file_len = ordered->num_bytes; pre = start - ordered->disk_bytenr; post = ordered_end - end; ret = btrfs_split_ordered_extent(ordered, pre, post); if (ret) goto out; ret = split_zoned_em(inode, file_offset, file_len, pre, post); out: btrfs_put_ordered_extent(ordered); return errno_to_blk_status(ret); } void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_inode *bi = BTRFS_I(inode); blk_status_t ret; if (bio_op(bio) == REQ_OP_ZONE_APPEND) { ret = extract_ordered_extent(bi, bio, page_offset(bio_first_bvec_all(bio)->bv_page)); if (ret) { btrfs_bio_end_io(btrfs_bio(bio), ret); return; } } /* * If we need to checksum, and the I/O is not issued by fsync and * friends, that is ->sync_writers != 0, defer the submission to a * workqueue to parallelize it. * * Csum items for reloc roots have already been cloned at this point, * so they are handled as part of the no-checksum case. */ if (!(bi->flags & BTRFS_INODE_NODATASUM) && !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && !btrfs_is_data_reloc_root(bi->root)) { if (!atomic_read(&bi->sync_writers) && btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btrfs_submit_bio_start)) return; ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false); if (ret) { btrfs_bio_end_io(btrfs_bio(bio), ret); return; } } btrfs_submit_bio(fs_info, bio, mirror_num); } void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, int mirror_num, enum btrfs_compression_type compress_type) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); blk_status_t ret; if (compress_type != BTRFS_COMPRESS_NONE) { /* * btrfs_submit_compressed_read will handle completing the bio * if there were any errors, so just return here. */ btrfs_submit_compressed_read(inode, bio, mirror_num); return; } /* Save the original iter for read repair */ btrfs_bio(bio)->iter = bio->bi_iter; /* * Lookup bio sums does extra checks around whether we need to csum or * not, which is why we ignore skip_sum here. */ ret = btrfs_lookup_bio_sums(inode, bio, NULL); if (ret) { btrfs_bio_end_io(btrfs_bio(bio), ret); return; } btrfs_submit_bio(fs_info, bio, mirror_num); } /* * given a list of ordered sums record them in the inode. This happens * at IO completion time based on sums calculated at bio submission time. */ static int add_pending_csums(struct btrfs_trans_handle *trans, struct list_head *list) { struct btrfs_ordered_sum *sum; struct btrfs_root *csum_root = NULL; int ret; list_for_each_entry(sum, list, list) { trans->adding_csums = true; if (!csum_root) csum_root = btrfs_csum_root(trans->fs_info, sum->bytenr); ret = btrfs_csum_file_blocks(trans, csum_root, sum); trans->adding_csums = false; if (ret) return ret; } return 0; } static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, const u64 start, const u64 len, struct extent_state **cached_state) { u64 search_start = start; const u64 end = start + len - 1; while (search_start < end) { const u64 search_len = end - search_start + 1; struct extent_map *em; u64 em_len; int ret = 0; em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); if (IS_ERR(em)) return PTR_ERR(em); if (em->block_start != EXTENT_MAP_HOLE) goto next; em_len = em->len; if (em->start < search_start) em_len -= search_start - em->start; if (em_len > search_len) em_len = search_len; ret = set_extent_bit(&inode->io_tree, search_start, search_start + em_len - 1, EXTENT_DELALLOC_NEW, cached_state, GFP_NOFS); next: search_start = extent_map_end(em); free_extent_map(em); if (ret) return ret; } return 0; } int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, unsigned int extra_bits, struct extent_state **cached_state) { WARN_ON(PAGE_ALIGNED(end)); if (start >= i_size_read(&inode->vfs_inode) && !(inode->flags & BTRFS_INODE_PREALLOC)) { /* * There can't be any extents following eof in this case so just * set the delalloc new bit for the range directly. */ extra_bits |= EXTENT_DELALLOC_NEW; } else { int ret; ret = btrfs_find_new_delalloc_bytes(inode, start, end + 1 - start, cached_state); if (ret) return ret; } return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, cached_state); } /* see btrfs_writepage_start_hook for details on why this is required */ struct btrfs_writepage_fixup { struct page *page; struct inode *inode; struct btrfs_work work; }; static void btrfs_writepage_fixup_worker(struct btrfs_work *work) { struct btrfs_writepage_fixup *fixup; struct btrfs_ordered_extent *ordered; struct extent_state *cached_state = NULL; struct extent_changeset *data_reserved = NULL; struct page *page; struct btrfs_inode *inode; u64 page_start; u64 page_end; int ret = 0; bool free_delalloc_space = true; fixup = container_of(work, struct btrfs_writepage_fixup, work); page = fixup->page; inode = BTRFS_I(fixup->inode); page_start = page_offset(page); page_end = page_offset(page) + PAGE_SIZE - 1; /* * This is similar to page_mkwrite, we need to reserve the space before * we take the page lock. */ ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, PAGE_SIZE); again: lock_page(page); /* * Before we queued this fixup, we took a reference on the page. * page->mapping may go NULL, but it shouldn't be moved to a different * address space. */ if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { /* * Unfortunately this is a little tricky, either * * 1) We got here and our page had already been dealt with and * we reserved our space, thus ret == 0, so we need to just * drop our space reservation and bail. This can happen the * first time we come into the fixup worker, or could happen * while waiting for the ordered extent. * 2) Our page was already dealt with, but we happened to get an * ENOSPC above from the btrfs_delalloc_reserve_space. In * this case we obviously don't have anything to release, but * because the page was already dealt with we don't want to * mark the page with an error, so make sure we're resetting * ret to 0. This is why we have this check _before_ the ret * check, because we do not want to have a surprise ENOSPC * when the page was already properly dealt with. */ if (!ret) { btrfs_delalloc_release_extents(inode, PAGE_SIZE); btrfs_delalloc_release_space(inode, data_reserved, page_start, PAGE_SIZE, true); } ret = 0; goto out_page; } /* * We can't mess with the page state unless it is locked, so now that * it is locked bail if we failed to make our space reservation. */ if (ret) goto out_page; lock_extent(&inode->io_tree, page_start, page_end, &cached_state); /* already ordered? We're done */ if (PageOrdered(page)) goto out_reserved; ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); if (ordered) { unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); unlock_page(page); btrfs_start_ordered_extent(ordered, 1); btrfs_put_ordered_extent(ordered); goto again; } ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state); if (ret) goto out_reserved; /* * Everything went as planned, we're now the owner of a dirty page with * delayed allocation bits set and space reserved for our COW * destination. * * The page was dirty when we started, nothing should have cleaned it. */ BUG_ON(!PageDirty(page)); free_delalloc_space = false; out_reserved: btrfs_delalloc_release_extents(inode, PAGE_SIZE); if (free_delalloc_space) btrfs_delalloc_release_space(inode, data_reserved, page_start, PAGE_SIZE, true); unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); out_page: if (ret) { /* * We hit ENOSPC or other errors. Update the mapping and page * to reflect the errors and clean the page. */ mapping_set_error(page->mapping, ret); end_extent_writepage(page, ret, page_start, page_end); clear_page_dirty_for_io(page); SetPageError(page); } btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); unlock_page(page); put_page(page); kfree(fixup); extent_changeset_free(data_reserved); /* * As a precaution, do a delayed iput in case it would be the last iput * that could need flushing space. Recursing back to fixup worker would * deadlock. */ btrfs_add_delayed_iput(&inode->vfs_inode); } /* * There are a few paths in the higher layers of the kernel that directly * set the page dirty bit without asking the filesystem if it is a * good idea. This causes problems because we want to make sure COW * properly happens and the data=ordered rules are followed. * * In our case any range that doesn't have the ORDERED bit set * hasn't been properly setup for IO. We kick off an async process * to fix it up. The async helper will wait for ordered extents, set * the delalloc bit and make it safe to write the page. */ int btrfs_writepage_cow_fixup(struct page *page) { struct inode *inode = page->mapping->host; struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_writepage_fixup *fixup; /* This page has ordered extent covering it already */ if (PageOrdered(page)) return 0; /* * PageChecked is set below when we create a fixup worker for this page, * don't try to create another one if we're already PageChecked() * * The extent_io writepage code will redirty the page if we send back * EAGAIN. */ if (PageChecked(page)) return -EAGAIN; fixup = kzalloc(sizeof(*fixup), GFP_NOFS); if (!fixup) return -EAGAIN; /* * We are already holding a reference to this inode from * write_cache_pages. We need to hold it because the space reservation * takes place outside of the page lock, and we can't trust * page->mapping outside of the page lock. */ ihold(inode); btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); get_page(page); btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); fixup->page = page; fixup->inode = inode; btrfs_queue_work(fs_info->fixup_workers, &fixup->work); return -EAGAIN; } static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, struct btrfs_inode *inode, u64 file_pos, struct btrfs_file_extent_item *stack_fi, const bool update_inode_bytes, u64 qgroup_reserved) { struct btrfs_root *root = inode->root; const u64 sectorsize = root->fs_info->sectorsize; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key ins; u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); u64 offset = btrfs_stack_file_extent_offset(stack_fi); u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); struct btrfs_drop_extents_args drop_args = { 0 }; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* * we may be replacing one extent in the tree with another. * The new extent is pinned in the extent map, and we don't want * to drop it from the cache until it is completely in the btree. * * So, tell btrfs_drop_extents to leave this extent in the cache. * the caller is expected to unpin it and allow it to be merged * with the others. */ drop_args.path = path; drop_args.start = file_pos; drop_args.end = file_pos + num_bytes; drop_args.replace_extent = true; drop_args.extent_item_size = sizeof(*stack_fi); ret = btrfs_drop_extents(trans, root, inode, &drop_args); if (ret) goto out; if (!drop_args.extent_inserted) { ins.objectid = btrfs_ino(inode); ins.offset = file_pos; ins.type = BTRFS_EXTENT_DATA_KEY; ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*stack_fi)); if (ret) goto out; } leaf = path->nodes[0]; btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); write_extent_buffer(leaf, stack_fi, btrfs_item_ptr_offset(leaf, path->slots[0]), sizeof(struct btrfs_file_extent_item)); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); /* * If we dropped an inline extent here, we know the range where it is * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the * number of bytes only for that range containing the inline extent. * The remaining of the range will be processed when clearning the * EXTENT_DELALLOC_BIT bit through the ordered extent completion. */ if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { u64 inline_size = round_down(drop_args.bytes_found, sectorsize); inline_size = drop_args.bytes_found - inline_size; btrfs_update_inode_bytes(inode, sectorsize, inline_size); drop_args.bytes_found -= inline_size; num_bytes -= sectorsize; } if (update_inode_bytes) btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); ins.objectid = disk_bytenr; ins.offset = disk_num_bytes; ins.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); if (ret) goto out; ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), file_pos - offset, qgroup_reserved, &ins); out: btrfs_free_path(path); return ret; } static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, u64 start, u64 len) { struct btrfs_block_group *cache; cache = btrfs_lookup_block_group(fs_info, start); ASSERT(cache); spin_lock(&cache->lock); cache->delalloc_bytes -= len; spin_unlock(&cache->lock); btrfs_put_block_group(cache); } static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, struct btrfs_ordered_extent *oe) { struct btrfs_file_extent_item stack_fi; bool update_inode_bytes; u64 num_bytes = oe->num_bytes; u64 ram_bytes = oe->ram_bytes; memset(&stack_fi, 0, sizeof(stack_fi)); btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, oe->disk_num_bytes); btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { num_bytes = oe->truncated_len; ram_bytes = num_bytes; } btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); /* Encryption and other encoding is reserved and all 0 */ /* * For delalloc, when completing an ordered extent we update the inode's * bytes when clearing the range in the inode's io tree, so pass false * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), * except if the ordered extent was truncated. */ update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), oe->file_offset, &stack_fi, update_inode_bytes, oe->qgroup_rsv); } /* * As ordered data IO finishes, this gets called so we can finish * an ordered extent if the range of bytes in the file it covers are * fully written. */ int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) { struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_trans_handle *trans = NULL; struct extent_io_tree *io_tree = &inode->io_tree; struct extent_state *cached_state = NULL; u64 start, end; int compress_type = 0; int ret = 0; u64 logical_len = ordered_extent->num_bytes; bool freespace_inode; bool truncated = false; bool clear_reserved_extent = true; unsigned int clear_bits = EXTENT_DEFRAG; start = ordered_extent->file_offset; end = start + ordered_extent->num_bytes - 1; if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) clear_bits |= EXTENT_DELALLOC_NEW; freespace_inode = btrfs_is_free_space_inode(inode); if (!freespace_inode) btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { ret = -EIO; goto out; } /* A valid bdev implies a write on a sequential zone */ if (ordered_extent->bdev) { btrfs_rewrite_logical_zoned(ordered_extent); btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, ordered_extent->disk_num_bytes); } btrfs_free_io_failure_record(inode, start, end); if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { truncated = true; logical_len = ordered_extent->truncated_len; /* Truncated the entire extent, don't bother adding */ if (!logical_len) goto out; } if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ btrfs_inode_safe_disk_i_size_write(inode, 0); if (freespace_inode) trans = btrfs_join_transaction_spacecache(root); else trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); trans = NULL; goto out; } trans->block_rsv = &inode->block_rsv; ret = btrfs_update_inode_fallback(trans, root, inode); if (ret) /* -ENOMEM or corruption */ btrfs_abort_transaction(trans, ret); goto out; } clear_bits |= EXTENT_LOCKED; lock_extent(io_tree, start, end, &cached_state); if (freespace_inode) trans = btrfs_join_transaction_spacecache(root); else trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); trans = NULL; goto out; } trans->block_rsv = &inode->block_rsv; if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) compress_type = ordered_extent->compress_type; if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { BUG_ON(compress_type); ret = btrfs_mark_extent_written(trans, inode, ordered_extent->file_offset, ordered_extent->file_offset + logical_len); btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, ordered_extent->disk_num_bytes); } else { BUG_ON(root == fs_info->tree_root); ret = insert_ordered_extent_file_extent(trans, ordered_extent); if (!ret) { clear_reserved_extent = false; btrfs_release_delalloc_bytes(fs_info, ordered_extent->disk_bytenr, ordered_extent->disk_num_bytes); } } unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, ordered_extent->num_bytes, trans->transid); if (ret < 0) { btrfs_abort_transaction(trans, ret); goto out; } ret = add_pending_csums(trans, &ordered_extent->list); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } /* * If this is a new delalloc range, clear its new delalloc flag to * update the inode's number of bytes. This needs to be done first * before updating the inode item. */ if ((clear_bits & EXTENT_DELALLOC_NEW) && !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) clear_extent_bit(&inode->io_tree, start, end, EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, &cached_state); btrfs_inode_safe_disk_i_size_write(inode, 0); ret = btrfs_update_inode_fallback(trans, root, inode); if (ret) { /* -ENOMEM or corruption */ btrfs_abort_transaction(trans, ret); goto out; } ret = 0; out: clear_extent_bit(&inode->io_tree, start, end, clear_bits, &cached_state); if (trans) btrfs_end_transaction(trans); if (ret || truncated) { u64 unwritten_start = start; /* * If we failed to finish this ordered extent for any reason we * need to make sure BTRFS_ORDERED_IOERR is set on the ordered * extent, and mark the inode with the error if it wasn't * already set. Any error during writeback would have already * set the mapping error, so we need to set it if we're the ones * marking this ordered extent as failed. */ if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) mapping_set_error(ordered_extent->inode->i_mapping, -EIO); if (truncated) unwritten_start += logical_len; clear_extent_uptodate(io_tree, unwritten_start, end, NULL); /* Drop extent maps for the part of the extent we didn't write. */ btrfs_drop_extent_map_range(inode, unwritten_start, end, false); /* * If the ordered extent had an IOERR or something else went * wrong we need to return the space for this ordered extent * back to the allocator. We only free the extent in the * truncated case if we didn't write out the extent at all. * * If we made it past insert_reserved_file_extent before we * errored out then we don't need to do this as the accounting * has already been done. */ if ((ret || !logical_len) && clear_reserved_extent && !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { /* * Discard the range before returning it back to the * free space pool */ if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) btrfs_discard_extent(fs_info, ordered_extent->disk_bytenr, ordered_extent->disk_num_bytes, NULL); btrfs_free_reserved_extent(fs_info, ordered_extent->disk_bytenr, ordered_extent->disk_num_bytes, 1); } } /* * This needs to be done to make sure anybody waiting knows we are done * updating everything for this ordered extent. */ btrfs_remove_ordered_extent(inode, ordered_extent); /* once for us */ btrfs_put_ordered_extent(ordered_extent); /* once for the tree */ btrfs_put_ordered_extent(ordered_extent); return ret; } void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, struct page *page, u64 start, u64 end, bool uptodate) { trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate); } /* * Verify the checksum for a single sector without any extra action that depend * on the type of I/O. */ int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, u32 pgoff, u8 *csum, const u8 * const csum_expected) { SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); char *kaddr; ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); shash->tfm = fs_info->csum_shash; kaddr = kmap_local_page(page) + pgoff; crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); kunmap_local(kaddr); if (memcmp(csum, csum_expected, fs_info->csum_size)) return -EIO; return 0; } static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset) { u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; return csums + offset_in_sectors * fs_info->csum_size; } /* * check_data_csum - verify checksum of one sector of uncompressed data * @inode: inode * @bbio: btrfs_bio which contains the csum * @bio_offset: offset to the beginning of the bio (in bytes) * @page: page where is the data to be verified * @pgoff: offset inside the page * * The length of such check is always one sector size. * * When csum mismatch is detected, we will also report the error and fill the * corrupted range with zero. (Thus it needs the extra parameters) */ int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, u32 bio_offset, struct page *page, u32 pgoff) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); u32 len = fs_info->sectorsize; u8 *csum_expected; u8 csum[BTRFS_CSUM_SIZE]; ASSERT(pgoff + len <= PAGE_SIZE); csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset); if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected)) goto zeroit; return 0; zeroit: btrfs_print_data_csum_error(BTRFS_I(inode), bbio->file_offset + bio_offset, csum, csum_expected, bbio->mirror_num); if (bbio->device) btrfs_dev_stat_inc_and_print(bbio->device, BTRFS_DEV_STAT_CORRUPTION_ERRS); memzero_page(page, pgoff, len); return -EIO; } /* * When reads are done, we need to check csums to verify the data is correct. * if there's a match, we allow the bio to finish. If not, the code in * extent_io.c will try to find good copies for us. * * @bio_offset: offset to the beginning of the bio (in bytes) * @start: file offset of the range start * @end: file offset of the range end (inclusive) * * Return a bitmap where bit set means a csum mismatch, and bit not set means * csum match. */ unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, u32 bio_offset, struct page *page, u64 start, u64 end) { struct inode *inode = page->mapping->host; struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_root *root = BTRFS_I(inode)->root; const u32 sectorsize = root->fs_info->sectorsize; u32 pg_off; unsigned int result = 0; /* * This only happens for NODATASUM or compressed read. * Normally this should be covered by above check for compressed read * or the next check for NODATASUM. Just do a quicker exit here. */ if (bbio->csum == NULL) return 0; if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) return 0; if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) return 0; ASSERT(page_offset(page) <= start && end <= page_offset(page) + PAGE_SIZE - 1); for (pg_off = offset_in_page(start); pg_off < offset_in_page(end); pg_off += sectorsize, bio_offset += sectorsize) { u64 file_offset = pg_off + page_offset(page); int ret; if (btrfs_is_data_reloc_root(root) && test_range_bit(io_tree, file_offset, file_offset + sectorsize - 1, EXTENT_NODATASUM, 1, NULL)) { /* Skip the range without csum for data reloc inode */ clear_extent_bits(io_tree, file_offset, file_offset + sectorsize - 1, EXTENT_NODATASUM); continue; } ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off); if (ret < 0) { const int nr_bit = (pg_off - offset_in_page(start)) >> root->fs_info->sectorsize_bits; result |= (1U << nr_bit); } } return result; } /* * btrfs_add_delayed_iput - perform a delayed iput on @inode * * @inode: The inode we want to perform iput on * * This function uses the generic vfs_inode::i_count to track whether we should * just decrement it (in case it's > 1) or if this is the last iput then link * the inode to the delayed iput machinery. Delayed iputs are processed at * transaction commit time/superblock commit/cleaner kthread. */ void btrfs_add_delayed_iput(struct inode *inode) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_inode *binode = BTRFS_I(inode); if (atomic_add_unless(&inode->i_count, -1, 1)) return; atomic_inc(&fs_info->nr_delayed_iputs); spin_lock(&fs_info->delayed_iput_lock); ASSERT(list_empty(&binode->delayed_iput)); list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); spin_unlock(&fs_info->delayed_iput_lock); if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) wake_up_process(fs_info->cleaner_kthread); } static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode) { list_del_init(&inode->delayed_iput); spin_unlock(&fs_info->delayed_iput_lock); iput(&inode->vfs_inode); if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) wake_up(&fs_info->delayed_iputs_wait); spin_lock(&fs_info->delayed_iput_lock); } static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, struct btrfs_inode *inode) { if (!list_empty(&inode->delayed_iput)) { spin_lock(&fs_info->delayed_iput_lock); if (!list_empty(&inode->delayed_iput)) run_delayed_iput_locked(fs_info, inode); spin_unlock(&fs_info->delayed_iput_lock); } } void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) { spin_lock(&fs_info->delayed_iput_lock); while (!list_empty(&fs_info->delayed_iputs)) { struct btrfs_inode *inode; inode = list_first_entry(&fs_info->delayed_iputs, struct btrfs_inode, delayed_iput); run_delayed_iput_locked(fs_info, inode); cond_resched_lock(&fs_info->delayed_iput_lock); } spin_unlock(&fs_info->delayed_iput_lock); } /** * Wait for flushing all delayed iputs * * @fs_info: the filesystem * * This will wait on any delayed iputs that are currently running with KILLABLE * set. Once they are all done running we will return, unless we are killed in * which case we return EINTR. This helps in user operations like fallocate etc * that might get blocked on the iputs. * * Return EINTR if we were killed, 0 if nothing's pending */ int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) { int ret = wait_event_killable(fs_info->delayed_iputs_wait, atomic_read(&fs_info->nr_delayed_iputs) == 0); if (ret) return -EINTR; return 0; } /* * This creates an orphan entry for the given inode in case something goes wrong * in the middle of an unlink. */ int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) { int ret; ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); if (ret && ret != -EEXIST) { btrfs_abort_transaction(trans, ret); return ret; } return 0; } /* * We have done the delete so we can go ahead and remove the orphan item for * this particular inode. */ static int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) { return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); } /* * this cleans up any orphans that may be left on the list from the last use * of this root. */ int btrfs_orphan_cleanup(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key, found_key; struct btrfs_trans_handle *trans; struct inode *inode; u64 last_objectid = 0; int ret = 0, nr_unlink = 0; if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) return 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } path->reada = READA_BACK; key.objectid = BTRFS_ORPHAN_OBJECTID; key.type = BTRFS_ORPHAN_ITEM_KEY; key.offset = (u64)-1; while (1) { ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; /* * if ret == 0 means we found what we were searching for, which * is weird, but possible, so only screw with path if we didn't * find the key and see if we have stuff that matches */ if (ret > 0) { ret = 0; if (path->slots[0] == 0) break; path->slots[0]--; } /* pull out the item */ leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); /* make sure the item matches what we want */ if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) break; if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) break; /* release the path since we're done with it */ btrfs_release_path(path); /* * this is where we are basically btrfs_lookup, without the * crossing root thing. we store the inode number in the * offset of the orphan item. */ if (found_key.offset == last_objectid) { btrfs_err(fs_info, "Error removing orphan entry, stopping orphan cleanup"); ret = -EINVAL; goto out; } last_objectid = found_key.offset; found_key.objectid = found_key.offset; found_key.type = BTRFS_INODE_ITEM_KEY; found_key.offset = 0; inode = btrfs_iget(fs_info->sb, last_objectid, root); ret = PTR_ERR_OR_ZERO(inode); if (ret && ret != -ENOENT) goto out; if (ret == -ENOENT && root == fs_info->tree_root) { struct btrfs_root *dead_root; int is_dead_root = 0; /* * This is an orphan in the tree root. Currently these * could come from 2 sources: * a) a root (snapshot/subvolume) deletion in progress * b) a free space cache inode * We need to distinguish those two, as the orphan item * for a root must not get deleted before the deletion * of the snapshot/subvolume's tree completes. * * btrfs_find_orphan_roots() ran before us, which has * found all deleted roots and loaded them into * fs_info->fs_roots_radix. So here we can find if an * orphan item corresponds to a deleted root by looking * up the root from that radix tree. */ spin_lock(&fs_info->fs_roots_radix_lock); dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)found_key.objectid); if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) is_dead_root = 1; spin_unlock(&fs_info->fs_roots_radix_lock); if (is_dead_root) { /* prevent this orphan from being found again */ key.offset = found_key.objectid - 1; continue; } } /* * If we have an inode with links, there are a couple of * possibilities: * * 1. We were halfway through creating fsverity metadata for the * file. In that case, the orphan item represents incomplete * fsverity metadata which must be cleaned up with * btrfs_drop_verity_items and deleting the orphan item. * 2. Old kernels (before v3.12) used to create an * orphan item for truncate indicating that there were possibly * extent items past i_size that needed to be deleted. In v3.12, * truncate was changed to update i_size in sync with the extent * items, but the (useless) orphan item was still created. Since * v4.18, we don't create the orphan item for truncate at all. * * So, this item could mean that we need to do a truncate, but * only if this filesystem was last used on a pre-v3.12 kernel * and was not cleanly unmounted. The odds of that are quite * slim, and it's a pain to do the truncate now, so just delete * the orphan item. * * It's also possible that this orphan item was supposed to be * deleted but wasn't. The inode number may have been reused, * but either way, we can delete the orphan item. */ if (ret == -ENOENT || inode->i_nlink) { if (!ret) { ret = btrfs_drop_verity_items(BTRFS_I(inode)); iput(inode); if (ret) goto out; } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } btrfs_debug(fs_info, "auto deleting %Lu", found_key.objectid); ret = btrfs_del_orphan_item(trans, root, found_key.objectid); btrfs_end_transaction(trans); if (ret) goto out; continue; } nr_unlink++; /* this will do delete_inode and everything for us */ iput(inode); } /* release the path since we're done with it */ btrfs_release_path(path); if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { trans = btrfs_join_transaction(root); if (!IS_ERR(trans)) btrfs_end_transaction(trans); } if (nr_unlink) btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); out: if (ret) btrfs_err(fs_info, "could not do orphan cleanup %d", ret); btrfs_free_path(path); return ret; } /* * very simple check to peek ahead in the leaf looking for xattrs. If we * don't find any xattrs, we know there can't be any acls. * * slot is the slot the inode is in, objectid is the objectid of the inode */ static noinline int acls_after_inode_item(struct extent_buffer *leaf, int slot, u64 objectid, int *first_xattr_slot) { u32 nritems = btrfs_header_nritems(leaf); struct btrfs_key found_key; static u64 xattr_access = 0; static u64 xattr_default = 0; int scanned = 0; if (!xattr_access) { xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, strlen(XATTR_NAME_POSIX_ACL_ACCESS)); xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); } slot++; *first_xattr_slot = -1; while (slot < nritems) { btrfs_item_key_to_cpu(leaf, &found_key, slot); /* we found a different objectid, there must not be acls */ if (found_key.objectid != objectid) return 0; /* we found an xattr, assume we've got an acl */ if (found_key.type == BTRFS_XATTR_ITEM_KEY) { if (*first_xattr_slot == -1) *first_xattr_slot = slot; if (found_key.offset == xattr_access || found_key.offset == xattr_default) return 1; } /* * we found a key greater than an xattr key, there can't * be any acls later on */ if (found_key.type > BTRFS_XATTR_ITEM_KEY) return 0; slot++; scanned++; /* * it goes inode, inode backrefs, xattrs, extents, * so if there are a ton of hard links to an inode there can * be a lot of backrefs. Don't waste time searching too hard, * this is just an optimization */ if (scanned >= 8) break; } /* we hit the end of the leaf before we found an xattr or * something larger than an xattr. We have to assume the inode * has acls */ if (*first_xattr_slot == -1) *first_xattr_slot = slot; return 1; } /* * read an inode from the btree into the in-memory inode */ static int btrfs_read_locked_inode(struct inode *inode, struct btrfs_path *in_path) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_path *path = in_path; struct extent_buffer *leaf; struct btrfs_inode_item *inode_item; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_key location; unsigned long ptr; int maybe_acls; u32 rdev; int ret; bool filled = false; int first_xattr_slot; ret = btrfs_fill_inode(inode, &rdev); if (!ret) filled = true; if (!path) { path = btrfs_alloc_path(); if (!path) return -ENOMEM; } memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); ret = btrfs_lookup_inode(NULL, root, path, &location, 0); if (ret) { if (path != in_path) btrfs_free_path(path); return ret; } leaf = path->nodes[0]; if (filled) goto cache_index; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); inode->i_mode = btrfs_inode_mode(leaf, inode_item); set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, round_up(i_size_read(inode), fs_info->sectorsize)); inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); BTRFS_I(inode)->i_otime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->otime); BTRFS_I(inode)->i_otime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); inode_set_iversion_queried(inode, btrfs_inode_sequence(leaf, inode_item)); inode->i_generation = BTRFS_I(inode)->generation; inode->i_rdev = 0; rdev = btrfs_inode_rdev(leaf, inode_item); BTRFS_I(inode)->index_cnt = (u64)-1; btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); cache_index: /* * If we were modified in the current generation and evicted from memory * and then re-read we need to do a full sync since we don't have any * idea about which extents were modified before we were evicted from * cache. * * This is required for both inode re-read from disk and delayed inode * in delayed_nodes_tree. */ if (BTRFS_I(inode)->last_trans == fs_info->generation) set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); /* * We don't persist the id of the transaction where an unlink operation * against the inode was last made. So here we assume the inode might * have been evicted, and therefore the exact value of last_unlink_trans * lost, and set it to last_trans to avoid metadata inconsistencies * between the inode and its parent if the inode is fsync'ed and the log * replayed. For example, in the scenario: * * touch mydir/foo * ln mydir/foo mydir/bar * sync * unlink mydir/bar * echo 2 > /proc/sys/vm/drop_caches # evicts inode * xfs_io -c fsync mydir/foo * <power failure> * mount fs, triggers fsync log replay * * We must make sure that when we fsync our inode foo we also log its * parent inode, otherwise after log replay the parent still has the * dentry with the "bar" name but our inode foo has a link count of 1 * and doesn't have an inode ref with the name "bar" anymore. * * Setting last_unlink_trans to last_trans is a pessimistic approach, * but it guarantees correctness at the expense of occasional full * transaction commits on fsync if our inode is a directory, or if our * inode is not a directory, logging its parent unnecessarily. */ BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; /* * Same logic as for last_unlink_trans. We don't persist the generation * of the last transaction where this inode was used for a reflink * operation, so after eviction and reloading the inode we must be * pessimistic and assume the last transaction that modified the inode. */ BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; path->slots[0]++; if (inode->i_nlink != 1 || path->slots[0] >= btrfs_header_nritems(leaf)) goto cache_acl; btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); if (location.objectid != btrfs_ino(BTRFS_I(inode))) goto cache_acl; ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); if (location.type == BTRFS_INODE_REF_KEY) { struct btrfs_inode_ref *ref; ref = (struct btrfs_inode_ref *)ptr; BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); } else if (location.type == BTRFS_INODE_EXTREF_KEY) { struct btrfs_inode_extref *extref; extref = (struct btrfs_inode_extref *)ptr; BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, extref); } cache_acl: /* * try to precache a NULL acl entry for files that don't have * any xattrs or acls */ maybe_acls = acls_after_inode_item(leaf, path->slots[0], btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); if (first_xattr_slot != -1) { path->slots[0] = first_xattr_slot; ret = btrfs_load_inode_props(inode, path); if (ret) btrfs_err(fs_info, "error loading props for ino %llu (root %llu): %d", btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); } if (path != in_path) btrfs_free_path(path); if (!maybe_acls) cache_no_acl(inode); switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_mapping->a_ops = &btrfs_aops; inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; break; case S_IFDIR: inode->i_fop = &btrfs_dir_file_operations; inode->i_op = &btrfs_dir_inode_operations; break; case S_IFLNK: inode->i_op = &btrfs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &btrfs_aops; break; default: inode->i_op = &btrfs_special_inode_operations; init_special_inode(inode, inode->i_mode, rdev); break; } btrfs_sync_inode_flags_to_i_flags(inode); return 0; } /* * given a leaf and an inode, copy the inode fields into the leaf */ static void fill_inode_item(struct btrfs_trans_handle *trans, struct extent_buffer *leaf, struct btrfs_inode_item *item, struct inode *inode) { struct btrfs_map_token token; u64 flags; btrfs_init_map_token(&token, leaf); btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); btrfs_set_token_inode_mode(&token, item, inode->i_mode); btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); btrfs_set_token_timespec_sec(&token, &item->atime, inode->i_atime.tv_sec); btrfs_set_token_timespec_nsec(&token, &item->atime, inode->i_atime.tv_nsec); btrfs_set_token_timespec_sec(&token, &item->mtime, inode->i_mtime.tv_sec); btrfs_set_token_timespec_nsec(&token, &item->mtime, inode->i_mtime.tv_nsec); btrfs_set_token_timespec_sec(&token, &item->ctime, inode->i_ctime.tv_sec); btrfs_set_token_timespec_nsec(&token, &item->ctime, inode->i_ctime.tv_nsec); btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime.tv_sec); btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime.tv_nsec); btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); btrfs_set_token_inode_generation(&token, item, BTRFS_I(inode)->generation); btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); btrfs_set_token_inode_transid(&token, item, trans->transid); btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, BTRFS_I(inode)->ro_flags); btrfs_set_token_inode_flags(&token, item, flags); btrfs_set_token_inode_block_group(&token, item, 0); } /* * copy everything in the in-memory inode into the btree. */ static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode) { struct btrfs_inode_item *inode_item; struct btrfs_path *path; struct extent_buffer *leaf; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto failed; } leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); btrfs_mark_buffer_dirty(leaf); btrfs_set_inode_last_trans(trans, inode); ret = 0; failed: btrfs_free_path(path); return ret; } /* * copy everything in the in-memory inode into the btree. */ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode) { struct btrfs_fs_info *fs_info = root->fs_info; int ret; /* * If the inode is a free space inode, we can deadlock during commit * if we put it into the delayed code. * * The data relocation inode should also be directly updated * without delay */ if (!btrfs_is_free_space_inode(inode) && !btrfs_is_data_reloc_root(root) && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { btrfs_update_root_times(trans, root); ret = btrfs_delayed_update_inode(trans, root, inode); if (!ret) btrfs_set_inode_last_trans(trans, inode); return ret; } return btrfs_update_inode_item(trans, root, inode); } int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode) { int ret; ret = btrfs_update_inode(trans, root, inode); if (ret == -ENOSPC) return btrfs_update_inode_item(trans, root, inode); return ret; } /* * unlink helper that gets used here in inode.c and in the tree logging * recovery code. It remove a link in a directory with a given name, and * also drops the back refs in the inode to the directory */ static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *dir, struct btrfs_inode *inode, const char *name, int name_len, struct btrfs_rename_ctx *rename_ctx) { struct btrfs_root *root = dir->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path *path; int ret = 0; struct btrfs_dir_item *di; u64 index; u64 ino = btrfs_ino(inode); u64 dir_ino = btrfs_ino(dir); path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, name_len, -1); if (IS_ERR_OR_NULL(di)) { ret = di ? PTR_ERR(di) : -ENOENT; goto err; } ret = btrfs_delete_one_dir_name(trans, root, path, di); if (ret) goto err; btrfs_release_path(path); /* * If we don't have dir index, we have to get it by looking up * the inode ref, since we get the inode ref, remove it directly, * it is unnecessary to do delayed deletion. * * But if we have dir index, needn't search inode ref to get it. * Since the inode ref is close to the inode item, it is better * that we delay to delete it, and just do this deletion when * we update the inode item. */ if (inode->dir_index) { ret = btrfs_delayed_delete_inode_ref(inode); if (!ret) { index = inode->dir_index; goto skip_backref; } } ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, dir_ino, &index); if (ret) { btrfs_info(fs_info, "failed to delete reference to %.*s, inode %llu parent %llu", name_len, name, ino, dir_ino); btrfs_abort_transaction(trans, ret); goto err; } skip_backref: if (rename_ctx) rename_ctx->index = index; ret = btrfs_delete_delayed_dir_index(trans, dir, index); if (ret) { btrfs_abort_transaction(trans, ret); goto err; } /* * If we are in a rename context, we don't need to update anything in the * log. That will be done later during the rename by btrfs_log_new_name(). * Besides that, doing it here would only cause extra unnecessary btree * operations on the log tree, increasing latency for applications. */ if (!rename_ctx) { btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, dir_ino); btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, index); } /* * If we have a pending delayed iput we could end up with the final iput * being run in btrfs-cleaner context. If we have enough of these built * up we can end up burning a lot of time in btrfs-cleaner without any * way to throttle the unlinks. Since we're currently holding a ref on * the inode we can run the delayed iput here without any issues as the * final iput won't be done until after we drop the ref we're currently * holding. */ btrfs_run_delayed_iput(fs_info, inode); err: btrfs_free_path(path); if (ret) goto out; btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); inode_inc_iversion(&inode->vfs_inode); inode_inc_iversion(&dir->vfs_inode); inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime; dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime; ret = btrfs_update_inode(trans, root, dir); out: return ret; } int btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *dir, struct btrfs_inode *inode, const char *name, int name_len) { int ret; ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); if (!ret) { drop_nlink(&inode->vfs_inode); ret = btrfs_update_inode(trans, inode->root, inode); } return ret; } /* * helper to start transaction for unlink and rmdir. * * unlink and rmdir are special in btrfs, they do not always free space, so * if we cannot make our reservations the normal way try and see if there is * plenty of slack room in the global reserve to migrate, otherwise we cannot * allow the unlink to occur. */ static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) { struct btrfs_root *root = BTRFS_I(dir)->root; /* * 1 for the possible orphan item * 1 for the dir item * 1 for the dir index * 1 for the inode ref * 1 for the inode * 1 for the parent inode */ return btrfs_start_transaction_fallback_global_rsv(root, 6); } static int btrfs_unlink(struct inode *dir, struct dentry *dentry) { struct btrfs_trans_handle *trans; struct inode *inode = d_inode(dentry); int ret; trans = __unlink_start_trans(dir); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 0); ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), dentry->d_name.name, dentry->d_name.len); if (ret) goto out; if (inode->i_nlink == 0) { ret = btrfs_orphan_add(trans, BTRFS_I(inode)); if (ret) goto out; } out: btrfs_end_transaction(trans); btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); return ret; } static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, struct inode *dir, struct dentry *dentry) { struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_dir_item *di; struct btrfs_key key; const char *name = dentry->d_name.name; int name_len = dentry->d_name.len; u64 index; int ret; u64 objectid; u64 dir_ino = btrfs_ino(BTRFS_I(dir)); if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { objectid = inode->root->root_key.objectid; } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { objectid = inode->location.objectid; } else { WARN_ON(1); return -EINVAL; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, name_len, -1); if (IS_ERR_OR_NULL(di)) { ret = di ? PTR_ERR(di) : -ENOENT; goto out; } leaf = path->nodes[0]; btrfs_dir_item_key_to_cpu(leaf, di, &key); WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); ret = btrfs_delete_one_dir_name(trans, root, path, di); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } btrfs_release_path(path); /* * This is a placeholder inode for a subvolume we didn't have a * reference to at the time of the snapshot creation. In the meantime * we could have renamed the real subvol link into our snapshot, so * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. * Instead simply lookup the dir_index_item for this entry so we can * remove it. Otherwise we know we have a ref to the root and we can * call btrfs_del_root_ref, and it _shouldn't_ fail. */ if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { di = btrfs_search_dir_index_item(root, path, dir_ino, name, name_len); if (IS_ERR_OR_NULL(di)) { if (!di) ret = -ENOENT; else ret = PTR_ERR(di); btrfs_abort_transaction(trans, ret); goto out; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); index = key.offset; btrfs_release_path(path); } else { ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, dir_ino, &index, name, name_len); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } } ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); inode_inc_iversion(dir); dir->i_mtime = current_time(dir); dir->i_ctime = dir->i_mtime; ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); if (ret) btrfs_abort_transaction(trans, ret); out: btrfs_free_path(path); return ret; } /* * Helper to check if the subvolume references other subvolumes or if it's * default. */ static noinline int may_destroy_subvol(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path *path; struct btrfs_dir_item *di; struct btrfs_key key; u64 dir_id; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* Make sure this root isn't set as the default subvol */ dir_id = btrfs_super_root_dir(fs_info->super_copy); di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, dir_id, "default", 7, 0); if (di && !IS_ERR(di)) { btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); if (key.objectid == root->root_key.objectid) { ret = -EPERM; btrfs_err(fs_info, "deleting default subvolume %llu is not allowed", key.objectid); goto out; } btrfs_release_path(path); } key.objectid = root->root_key.objectid; key.type = BTRFS_ROOT_REF_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); if (ret < 0) goto out; BUG_ON(ret == 0); ret = 0; if (path->slots[0] > 0) { path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == root->root_key.objectid && key.type == BTRFS_ROOT_REF_KEY) ret = -ENOTEMPTY; } out: btrfs_free_path(path); return ret; } /* Delete all dentries for inodes belonging to the root */ static void btrfs_prune_dentries(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct rb_node *node; struct rb_node *prev; struct btrfs_inode *entry; struct inode *inode; u64 objectid = 0; if (!BTRFS_FS_ERROR(fs_info)) WARN_ON(btrfs_root_refs(&root->root_item) != 0); spin_lock(&root->inode_lock); again: node = root->inode_tree.rb_node; prev = NULL; while (node) { prev = node; entry = rb_entry(node, struct btrfs_inode, rb_node); if (objectid < btrfs_ino(entry)) node = node->rb_left; else if (objectid > btrfs_ino(entry)) node = node->rb_right; else break; } if (!node) { while (prev) { entry = rb_entry(prev, struct btrfs_inode, rb_node); if (objectid <= btrfs_ino(entry)) { node = prev; break; } prev = rb_next(prev); } } while (node) { entry = rb_entry(node, struct btrfs_inode, rb_node); objectid = btrfs_ino(entry) + 1; inode = igrab(&entry->vfs_inode); if (inode) { spin_unlock(&root->inode_lock); if (atomic_read(&inode->i_count) > 1) d_prune_aliases(inode); /* * btrfs_drop_inode will have it removed from the inode * cache when its usage count hits zero. */ iput(inode); cond_resched(); spin_lock(&root->inode_lock); goto again; } if (cond_resched_lock(&root->inode_lock)) goto again; node = rb_next(node); } spin_unlock(&root->inode_lock); } int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) { struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode = d_inode(dentry); struct btrfs_root *dest = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; struct btrfs_block_rsv block_rsv; u64 root_flags; int ret; /* * Don't allow to delete a subvolume with send in progress. This is * inside the inode lock so the error handling that has to drop the bit * again is not run concurrently. */ spin_lock(&dest->root_item_lock); if (dest->send_in_progress) { spin_unlock(&dest->root_item_lock); btrfs_warn(fs_info, "attempt to delete subvolume %llu during send", dest->root_key.objectid); return -EPERM; } if (atomic_read(&dest->nr_swapfiles)) { spin_unlock(&dest->root_item_lock); btrfs_warn(fs_info, "attempt to delete subvolume %llu with active swapfile", root->root_key.objectid); return -EPERM; } root_flags = btrfs_root_flags(&dest->root_item); btrfs_set_root_flags(&dest->root_item, root_flags | BTRFS_ROOT_SUBVOL_DEAD); spin_unlock(&dest->root_item_lock); down_write(&fs_info->subvol_sem); ret = may_destroy_subvol(dest); if (ret) goto out_up_write; btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); /* * One for dir inode, * two for dir entries, * two for root ref/backref. */ ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); if (ret) goto out_up_write; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_release; } trans->block_rsv = &block_rsv; trans->bytes_reserved = block_rsv.size; btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); ret = btrfs_unlink_subvol(trans, dir, dentry); if (ret) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } ret = btrfs_record_root_in_trans(trans, dest); if (ret) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } memset(&dest->root_item.drop_progress, 0, sizeof(dest->root_item.drop_progress)); btrfs_set_root_drop_level(&dest->root_item, 0); btrfs_set_root_refs(&dest->root_item, 0); if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, dest->root_key.objectid); if (ret) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } } ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, dest->root_key.objectid); if (ret && ret != -ENOENT) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { ret = btrfs_uuid_tree_remove(trans, dest->root_item.received_uuid, BTRFS_UUID_KEY_RECEIVED_SUBVOL, dest->root_key.objectid); if (ret && ret != -ENOENT) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } } free_anon_bdev(dest->anon_dev); dest->anon_dev = 0; out_end_trans: trans->block_rsv = NULL; trans->bytes_reserved = 0; ret = btrfs_end_transaction(trans); inode->i_flags |= S_DEAD; out_release: btrfs_subvolume_release_metadata(root, &block_rsv); out_up_write: up_write(&fs_info->subvol_sem); if (ret) { spin_lock(&dest->root_item_lock); root_flags = btrfs_root_flags(&dest->root_item); btrfs_set_root_flags(&dest->root_item, root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); spin_unlock(&dest->root_item_lock); } else { d_invalidate(dentry); btrfs_prune_dentries(dest); ASSERT(dest->send_in_progress == 0); } return ret; } static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; int err = 0; struct btrfs_trans_handle *trans; u64 last_unlink_trans; if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) return -ENOTEMPTY; if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { btrfs_err(fs_info, "extent tree v2 doesn't support snapshot deletion yet"); return -EOPNOTSUPP; } return btrfs_delete_subvolume(dir, dentry); } trans = __unlink_start_trans(dir); if (IS_ERR(trans)) return PTR_ERR(trans); if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { err = btrfs_unlink_subvol(trans, dir, dentry); goto out; } err = btrfs_orphan_add(trans, BTRFS_I(inode)); if (err) goto out; last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; /* now the directory is empty */ err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), dentry->d_name.name, dentry->d_name.len); if (!err) { btrfs_i_size_write(BTRFS_I(inode), 0); /* * Propagate the last_unlink_trans value of the deleted dir to * its parent directory. This is to prevent an unrecoverable * log tree in the case we do something like this: * 1) create dir foo * 2) create snapshot under dir foo * 3) delete the snapshot * 4) rmdir foo * 5) mkdir foo * 6) fsync foo or some file inside foo */ if (last_unlink_trans >= trans->transid) BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; } out: btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); return err; } /* * btrfs_truncate_block - read, zero a chunk and write a block * @inode - inode that we're zeroing * @from - the offset to start zeroing * @len - the length to zero, 0 to zero the entire range respective to the * offset * @front - zero up to the offset instead of from the offset on * * This will find the block for the "from" offset and cow the block and zero the * part we want to zero. This is used with truncate and hole punching. */ int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, int front) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct address_space *mapping = inode->vfs_inode.i_mapping; struct extent_io_tree *io_tree = &inode->io_tree; struct btrfs_ordered_extent *ordered; struct extent_state *cached_state = NULL; struct extent_changeset *data_reserved = NULL; bool only_release_metadata = false; u32 blocksize = fs_info->sectorsize; pgoff_t index = from >> PAGE_SHIFT; unsigned offset = from & (blocksize - 1); struct page *page; gfp_t mask = btrfs_alloc_write_mask(mapping); size_t write_bytes = blocksize; int ret = 0; u64 block_start; u64 block_end; if (IS_ALIGNED(offset, blocksize) && (!len || IS_ALIGNED(len, blocksize))) goto out; block_start = round_down(from, blocksize); block_end = block_start + blocksize - 1; ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, blocksize, false); if (ret < 0) { if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { /* For nocow case, no need to reserve data space */ only_release_metadata = true; } else { goto out; } } ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); if (ret < 0) { if (!only_release_metadata) btrfs_free_reserved_data_space(inode, data_reserved, block_start, blocksize); goto out; } again: page = find_or_create_page(mapping, index, mask); if (!page) { btrfs_delalloc_release_space(inode, data_reserved, block_start, blocksize, true); btrfs_delalloc_release_extents(inode, blocksize); ret = -ENOMEM; goto out; } ret = set_page_extent_mapped(page); if (ret < 0) goto out_unlock; if (!PageUptodate(page)) { ret = btrfs_read_folio(NULL, page_folio(page)); lock_page(page); if (page->mapping != mapping) { unlock_page(page); put_page(page); goto again; } if (!PageUptodate(page)) { ret = -EIO; goto out_unlock; } } wait_on_page_writeback(page); lock_extent(io_tree, block_start, block_end, &cached_state); ordered = btrfs_lookup_ordered_extent(inode, block_start); if (ordered) { unlock_extent(io_tree, block_start, block_end, &cached_state); unlock_page(page); put_page(page); btrfs_start_ordered_extent(ordered, 1); btrfs_put_ordered_extent(ordered); goto again; } clear_extent_bit(&inode->io_tree, block_start, block_end, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, &cached_state); ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, &cached_state); if (ret) { unlock_extent(io_tree, block_start, block_end, &cached_state); goto out_unlock; } if (offset != blocksize) { if (!len) len = blocksize - offset; if (front) memzero_page(page, (block_start - page_offset(page)), offset); else memzero_page(page, (block_start - page_offset(page)) + offset, len); } btrfs_page_clear_checked(fs_info, page, block_start, block_end + 1 - block_start); btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); unlock_extent(io_tree, block_start, block_end, &cached_state); if (only_release_metadata) set_extent_bit(&inode->io_tree, block_start, block_end, EXTENT_NORESERVE, NULL, GFP_NOFS); out_unlock: if (ret) { if (only_release_metadata) btrfs_delalloc_release_metadata(inode, blocksize, true); else btrfs_delalloc_release_space(inode, data_reserved, block_start, blocksize, true); } btrfs_delalloc_release_extents(inode, blocksize); unlock_page(page); put_page(page); out: if (only_release_metadata) btrfs_check_nocow_unlock(inode); extent_changeset_free(data_reserved); return ret; } static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, u64 offset, u64 len) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_trans_handle *trans; struct btrfs_drop_extents_args drop_args = { 0 }; int ret; /* * If NO_HOLES is enabled, we don't need to do anything. * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() * or btrfs_update_inode() will be called, which guarantee that the next * fsync will know this inode was changed and needs to be logged. */ if (btrfs_fs_incompat(fs_info, NO_HOLES)) return 0; /* * 1 - for the one we're dropping * 1 - for the one we're adding * 1 - for updating the inode. */ trans = btrfs_start_transaction(root, 3); if (IS_ERR(trans)) return PTR_ERR(trans); drop_args.start = offset; drop_args.end = offset + len; drop_args.drop_cache = true; ret = btrfs_drop_extents(trans, root, inode, &drop_args); if (ret) { btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); return ret; } ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); if (ret) { btrfs_abort_transaction(trans, ret); } else { btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); btrfs_update_inode(trans, root, inode); } btrfs_end_transaction(trans); return ret; } /* * This function puts in dummy file extents for the area we're creating a hole * for. So if we are truncating this file to a larger size we need to insert * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for * the range between oldsize and size */ int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) { struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_io_tree *io_tree = &inode->io_tree; struct extent_map *em = NULL; struct extent_state *cached_state = NULL; u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); u64 block_end = ALIGN(size, fs_info->sectorsize); u64 last_byte; u64 cur_offset; u64 hole_size; int err = 0; /* * If our size started in the middle of a block we need to zero out the * rest of the block before we expand the i_size, otherwise we could * expose stale data. */ err = btrfs_truncate_block(inode, oldsize, 0, 0); if (err) return err; if (size <= hole_start) return 0; btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, &cached_state); cur_offset = hole_start; while (1) { em = btrfs_get_extent(inode, NULL, 0, cur_offset, block_end - cur_offset); if (IS_ERR(em)) { err = PTR_ERR(em); em = NULL; break; } last_byte = min(extent_map_end(em), block_end); last_byte = ALIGN(last_byte, fs_info->sectorsize); hole_size = last_byte - cur_offset; if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { struct extent_map *hole_em; err = maybe_insert_hole(root, inode, cur_offset, hole_size); if (err) break; err = btrfs_inode_set_file_extent_range(inode, cur_offset, hole_size); if (err) break; hole_em = alloc_extent_map(); if (!hole_em) { btrfs_drop_extent_map_range(inode, cur_offset, cur_offset + hole_size - 1, false); btrfs_set_inode_full_sync(inode); goto next; } hole_em->start = cur_offset; hole_em->len = hole_size; hole_em->orig_start = cur_offset; hole_em->block_start = EXTENT_MAP_HOLE; hole_em->block_len = 0; hole_em->orig_block_len = 0; hole_em->ram_bytes = hole_size; hole_em->compress_type = BTRFS_COMPRESS_NONE; hole_em->generation = fs_info->generation; err = btrfs_replace_extent_map_range(inode, hole_em, true); free_extent_map(hole_em); } else { err = btrfs_inode_set_file_extent_range(inode, cur_offset, hole_size); if (err) break; } next: free_extent_map(em); em = NULL; cur_offset = last_byte; if (cur_offset >= block_end) break; } free_extent_map(em); unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); return err; } static int btrfs_setsize(struct inode *inode, struct iattr *attr) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; loff_t oldsize = i_size_read(inode); loff_t newsize = attr->ia_size; int mask = attr->ia_valid; int ret; /* * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a * special case where we need to update the times despite not having * these flags set. For all other operations the VFS set these flags * explicitly if it wants a timestamp update. */ if (newsize != oldsize) { inode_inc_iversion(inode); if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { inode->i_mtime = current_time(inode); inode->i_ctime = inode->i_mtime; } } if (newsize > oldsize) { /* * Don't do an expanding truncate while snapshotting is ongoing. * This is to ensure the snapshot captures a fully consistent * state of this file - if the snapshot captures this expanding * truncation, it must capture all writes that happened before * this truncation. */ btrfs_drew_write_lock(&root->snapshot_lock); ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); if (ret) { btrfs_drew_write_unlock(&root->snapshot_lock); return ret; } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { btrfs_drew_write_unlock(&root->snapshot_lock); return PTR_ERR(trans); } i_size_write(inode, newsize); btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); pagecache_isize_extended(inode, oldsize, newsize); ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); btrfs_drew_write_unlock(&root->snapshot_lock); btrfs_end_transaction(trans); } else { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); if (btrfs_is_zoned(fs_info)) { ret = btrfs_wait_ordered_range(inode, ALIGN(newsize, fs_info->sectorsize), (u64)-1); if (ret) return ret; } /* * We're truncating a file that used to have good data down to * zero. Make sure any new writes to the file get on disk * on close. */ if (newsize == 0) set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, &BTRFS_I(inode)->runtime_flags); truncate_setsize(inode, newsize); inode_dio_wait(inode); ret = btrfs_truncate(inode, newsize == oldsize); if (ret && inode->i_nlink) { int err; /* * Truncate failed, so fix up the in-memory size. We * adjusted disk_i_size down as we removed extents, so * wait for disk_i_size to be stable and then update the * in-memory size to match. */ err = btrfs_wait_ordered_range(inode, 0, (u64)-1); if (err) return err; i_size_write(inode, BTRFS_I(inode)->disk_i_size); } } return ret; } static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct btrfs_root *root = BTRFS_I(inode)->root; int err; if (btrfs_root_readonly(root)) return -EROFS; err = setattr_prepare(mnt_userns, dentry, attr); if (err) return err; if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { err = btrfs_setsize(inode, attr); if (err) return err; } if (attr->ia_valid) { setattr_copy(mnt_userns, inode, attr); inode_inc_iversion(inode); err = btrfs_dirty_inode(inode); if (!err && attr->ia_valid & ATTR_MODE) err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); } return err; } /* * While truncating the inode pages during eviction, we get the VFS * calling btrfs_invalidate_folio() against each folio of the inode. This * is slow because the calls to btrfs_invalidate_folio() result in a * huge amount of calls to lock_extent() and clear_extent_bit(), * which keep merging and splitting extent_state structures over and over, * wasting lots of time. * * Therefore if the inode is being evicted, let btrfs_invalidate_folio() * skip all those expensive operations on a per folio basis and do only * the ordered io finishing, while we release here the extent_map and * extent_state structures, without the excessive merging and splitting. */ static void evict_inode_truncate_pages(struct inode *inode) { struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct rb_node *node; ASSERT(inode->i_state & I_FREEING); truncate_inode_pages_final(&inode->i_data); btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); /* * Keep looping until we have no more ranges in the io tree. * We can have ongoing bios started by readahead that have * their endio callback (extent_io.c:end_bio_extent_readpage) * still in progress (unlocked the pages in the bio but did not yet * unlocked the ranges in the io tree). Therefore this means some * ranges can still be locked and eviction started because before * submitting those bios, which are executed by a separate task (work * queue kthread), inode references (inode->i_count) were not taken * (which would be dropped in the end io callback of each bio). * Therefore here we effectively end up waiting for those bios and * anyone else holding locked ranges without having bumped the inode's * reference count - if we don't do it, when they access the inode's * io_tree to unlock a range it may be too late, leading to an * use-after-free issue. */ spin_lock(&io_tree->lock); while (!RB_EMPTY_ROOT(&io_tree->state)) { struct extent_state *state; struct extent_state *cached_state = NULL; u64 start; u64 end; unsigned state_flags; node = rb_first(&io_tree->state); state = rb_entry(node, struct extent_state, rb_node); start = state->start; end = state->end; state_flags = state->state; spin_unlock(&io_tree->lock); lock_extent(io_tree, start, end, &cached_state); /* * If still has DELALLOC flag, the extent didn't reach disk, * and its reserved space won't be freed by delayed_ref. * So we need to free its reserved space here. * (Refer to comment in btrfs_invalidate_folio, case 2) * * Note, end is the bytenr of last byte, so we need + 1 here. */ if (state_flags & EXTENT_DELALLOC) btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, end - start + 1); clear_extent_bit(io_tree, start, end, EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, &cached_state); cond_resched(); spin_lock(&io_tree->lock); } spin_unlock(&io_tree->lock); } static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, struct btrfs_block_rsv *rsv) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_trans_handle *trans; u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); int ret; /* * Eviction should be taking place at some place safe because of our * delayed iputs. However the normal flushing code will run delayed * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. * * We reserve the delayed_refs_extra here again because we can't use * btrfs_start_transaction(root, 0) for the same deadlocky reason as * above. We reserve our extra bit here because we generate a ton of * delayed refs activity by truncating. * * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, * if we fail to make this reservation we can re-try without the * delayed_refs_extra so we can make some forward progress. */ ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, BTRFS_RESERVE_FLUSH_EVICT); if (ret) { ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, BTRFS_RESERVE_FLUSH_EVICT); if (ret) { btrfs_warn(fs_info, "could not allocate space for delete; will truncate on mount"); return ERR_PTR(-ENOSPC); } delayed_refs_extra = 0; } trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return trans; if (delayed_refs_extra) { trans->block_rsv = &fs_info->trans_block_rsv; trans->bytes_reserved = delayed_refs_extra; btrfs_block_rsv_migrate(rsv, trans->block_rsv, delayed_refs_extra, 1); } return trans; } void btrfs_evict_inode(struct inode *inode) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_block_rsv *rsv; int ret; trace_btrfs_inode_evict(inode); if (!root) { fsverity_cleanup_inode(inode); clear_inode(inode); return; } evict_inode_truncate_pages(inode); if (inode->i_nlink && ((btrfs_root_refs(&root->root_item) != 0 && root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || btrfs_is_free_space_inode(BTRFS_I(inode)))) goto no_delete; if (is_bad_inode(inode)) goto no_delete; btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) goto no_delete; if (inode->i_nlink > 0) { BUG_ON(btrfs_root_refs(&root->root_item) != 0 && root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); goto no_delete; } /* * This makes sure the inode item in tree is uptodate and the space for * the inode update is released. */ ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); if (ret) goto no_delete; /* * This drops any pending insert or delete operations we have for this * inode. We could have a delayed dir index deletion queued up, but * we're removing the inode completely so that'll be taken care of in * the truncate. */ btrfs_kill_delayed_inode_items(BTRFS_I(inode)); rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); if (!rsv) goto no_delete; rsv->size = btrfs_calc_metadata_size(fs_info, 1); rsv->failfast = true; btrfs_i_size_write(BTRFS_I(inode), 0); while (1) { struct btrfs_truncate_control control = { .inode = BTRFS_I(inode), .ino = btrfs_ino(BTRFS_I(inode)), .new_size = 0, .min_type = 0, }; trans = evict_refill_and_join(root, rsv); if (IS_ERR(trans)) goto free_rsv; trans->block_rsv = rsv; ret = btrfs_truncate_inode_items(trans, root, &control); trans->block_rsv = &fs_info->trans_block_rsv; btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); if (ret && ret != -ENOSPC && ret != -EAGAIN) goto free_rsv; else if (!ret) break; } /* * Errors here aren't a big deal, it just means we leave orphan items in * the tree. They will be cleaned up on the next mount. If the inode * number gets reused, cleanup deletes the orphan item without doing * anything, and unlink reuses the existing orphan item. * * If it turns out that we are dropping too many of these, we might want * to add a mechanism for retrying these after a commit. */ trans = evict_refill_and_join(root, rsv); if (!IS_ERR(trans)) { trans->block_rsv = rsv; btrfs_orphan_del(trans, BTRFS_I(inode)); trans->block_rsv = &fs_info->trans_block_rsv; btrfs_end_transaction(trans); } free_rsv: btrfs_free_block_rsv(fs_info, rsv); no_delete: /* * If we didn't successfully delete, the orphan item will still be in * the tree and we'll retry on the next mount. Again, we might also want * to retry these periodically in the future. */ btrfs_remove_delayed_node(BTRFS_I(inode)); fsverity_cleanup_inode(inode); clear_inode(inode); } /* * Return the key found in the dir entry in the location pointer, fill @type * with BTRFS_FT_*, and return 0. * * If no dir entries were found, returns -ENOENT. * If found a corrupted location in dir entry, returns -EUCLEAN. */ static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, struct btrfs_key *location, u8 *type) { const char *name = dentry->d_name.name; int namelen = dentry->d_name.len; struct btrfs_dir_item *di; struct btrfs_path *path; struct btrfs_root *root = BTRFS_I(dir)->root; int ret = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), name, namelen, 0); if (IS_ERR_OR_NULL(di)) { ret = di ? PTR_ERR(di) : -ENOENT; goto out; } btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); if (location->type != BTRFS_INODE_ITEM_KEY && location->type != BTRFS_ROOT_ITEM_KEY) { ret = -EUCLEAN; btrfs_warn(root->fs_info, "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", __func__, name, btrfs_ino(BTRFS_I(dir)), location->objectid, location->type, location->offset); } if (!ret) *type = btrfs_dir_type(path->nodes[0], di); out: btrfs_free_path(path); return ret; } /* * when we hit a tree root in a directory, the btrfs part of the inode * needs to be changed to reflect the root directory of the tree root. This * is kind of like crossing a mount point. */ static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, struct inode *dir, struct dentry *dentry, struct btrfs_key *location, struct btrfs_root **sub_root) { struct btrfs_path *path; struct btrfs_root *new_root; struct btrfs_root_ref *ref; struct extent_buffer *leaf; struct btrfs_key key; int ret; int err = 0; path = btrfs_alloc_path(); if (!path) { err = -ENOMEM; goto out; } err = -ENOENT; key.objectid = BTRFS_I(dir)->root->root_key.objectid; key.type = BTRFS_ROOT_REF_KEY; key.offset = location->objectid; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); if (ret) { if (ret < 0) err = ret; goto out; } leaf = path->nodes[0]; ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) goto out; ret = memcmp_extent_buffer(leaf, dentry->d_name.name, (unsigned long)(ref + 1), dentry->d_name.len); if (ret) goto out; btrfs_release_path(path); new_root = btrfs_get_fs_root(fs_info, location->objectid, true); if (IS_ERR(new_root)) { err = PTR_ERR(new_root); goto out; } *sub_root = new_root; location->objectid = btrfs_root_dirid(&new_root->root_item); location->type = BTRFS_INODE_ITEM_KEY; location->offset = 0; err = 0; out: btrfs_free_path(path); return err; } static void inode_tree_add(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_inode *entry; struct rb_node **p; struct rb_node *parent; struct rb_node *new = &BTRFS_I(inode)->rb_node; u64 ino = btrfs_ino(BTRFS_I(inode)); if (inode_unhashed(inode)) return; parent = NULL; spin_lock(&root->inode_lock); p = &root->inode_tree.rb_node; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_inode, rb_node); if (ino < btrfs_ino(entry)) p = &parent->rb_left; else if (ino > btrfs_ino(entry)) p = &parent->rb_right; else { WARN_ON(!(entry->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); rb_replace_node(parent, new, &root->inode_tree); RB_CLEAR_NODE(parent); spin_unlock(&root->inode_lock); return; } } rb_link_node(new, parent, p); rb_insert_color(new, &root->inode_tree); spin_unlock(&root->inode_lock); } static void inode_tree_del(struct btrfs_inode *inode) { struct btrfs_root *root = inode->root; int empty = 0; spin_lock(&root->inode_lock); if (!RB_EMPTY_NODE(&inode->rb_node)) { rb_erase(&inode->rb_node, &root->inode_tree); RB_CLEAR_NODE(&inode->rb_node); empty = RB_EMPTY_ROOT(&root->inode_tree); } spin_unlock(&root->inode_lock); if (empty && btrfs_root_refs(&root->root_item) == 0) { spin_lock(&root->inode_lock); empty = RB_EMPTY_ROOT(&root->inode_tree); spin_unlock(&root->inode_lock); if (empty) btrfs_add_dead_root(root); } } static int btrfs_init_locked_inode(struct inode *inode, void *p) { struct btrfs_iget_args *args = p; inode->i_ino = args->ino; BTRFS_I(inode)->location.objectid = args->ino; BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; BTRFS_I(inode)->location.offset = 0; BTRFS_I(inode)->root = btrfs_grab_root(args->root); BUG_ON(args->root && !BTRFS_I(inode)->root); if (args->root && args->root == args->root->fs_info->tree_root && args->ino != BTRFS_BTREE_INODE_OBJECTID) set_bit(BTRFS_INODE_FREE_SPACE_INODE, &BTRFS_I(inode)->runtime_flags); return 0; } static int btrfs_find_actor(struct inode *inode, void *opaque) { struct btrfs_iget_args *args = opaque; return args->ino == BTRFS_I(inode)->location.objectid && args->root == BTRFS_I(inode)->root; } static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, struct btrfs_root *root) { struct inode *inode; struct btrfs_iget_args args; unsigned long hashval = btrfs_inode_hash(ino, root); args.ino = ino; args.root = root; inode = iget5_locked(s, hashval, btrfs_find_actor, btrfs_init_locked_inode, (void *)&args); return inode; } /* * Get an inode object given its inode number and corresponding root. * Path can be preallocated to prevent recursing back to iget through * allocator. NULL is also valid but may require an additional allocation * later. */ struct inode *btrfs_iget_path(struct super_block *s, u64 ino, struct btrfs_root *root, struct btrfs_path *path) { struct inode *inode; inode = btrfs_iget_locked(s, ino, root); if (!inode) return ERR_PTR(-ENOMEM); if (inode->i_state & I_NEW) { int ret; ret = btrfs_read_locked_inode(inode, path); if (!ret) { inode_tree_add(inode); unlock_new_inode(inode); } else { iget_failed(inode); /* * ret > 0 can come from btrfs_search_slot called by * btrfs_read_locked_inode, this means the inode item * was not found. */ if (ret > 0) ret = -ENOENT; inode = ERR_PTR(ret); } } return inode; } struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) { return btrfs_iget_path(s, ino, root, NULL); } static struct inode *new_simple_dir(struct super_block *s, struct btrfs_key *key, struct btrfs_root *root) { struct inode *inode = new_inode(s); if (!inode) return ERR_PTR(-ENOMEM); BTRFS_I(inode)->root = btrfs_grab_root(root); memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; /* * We only need lookup, the rest is read-only and there's no inode * associated with the dentry */ inode->i_op = &simple_dir_inode_operations; inode->i_opflags &= ~IOP_XATTR; inode->i_fop = &simple_dir_operations; inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; inode->i_mtime = current_time(inode); inode->i_atime = inode->i_mtime; inode->i_ctime = inode->i_mtime; BTRFS_I(inode)->i_otime = inode->i_mtime; return inode; } static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); static_assert(BTRFS_FT_DIR == FT_DIR); static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); static_assert(BTRFS_FT_FIFO == FT_FIFO); static_assert(BTRFS_FT_SOCK == FT_SOCK); static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); static inline u8 btrfs_inode_type(struct inode *inode) { return fs_umode_to_ftype(inode->i_mode); } struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) { struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct inode *inode; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_root *sub_root = root; struct btrfs_key location; u8 di_type = 0; int ret = 0; if (dentry->d_name.len > BTRFS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); if (ret < 0) return ERR_PTR(ret); if (location.type == BTRFS_INODE_ITEM_KEY) { inode = btrfs_iget(dir->i_sb, location.objectid, root); if (IS_ERR(inode)) return inode; /* Do extra check against inode mode with di_type */ if (btrfs_inode_type(inode) != di_type) { btrfs_crit(fs_info, "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", inode->i_mode, btrfs_inode_type(inode), di_type); iput(inode); return ERR_PTR(-EUCLEAN); } return inode; } ret = fixup_tree_root_location(fs_info, dir, dentry, &location, &sub_root); if (ret < 0) { if (ret != -ENOENT) inode = ERR_PTR(ret); else inode = new_simple_dir(dir->i_sb, &location, root); } else { inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); btrfs_put_root(sub_root); if (IS_ERR(inode)) return inode; down_read(&fs_info->cleanup_work_sem); if (!sb_rdonly(inode->i_sb)) ret = btrfs_orphan_cleanup(sub_root); up_read(&fs_info->cleanup_work_sem); if (ret) { iput(inode); inode = ERR_PTR(ret); } } return inode; } static int btrfs_dentry_delete(const struct dentry *dentry) { struct btrfs_root *root; struct inode *inode = d_inode(dentry); if (!inode && !IS_ROOT(dentry)) inode = d_inode(dentry->d_parent); if (inode) { root = BTRFS_I(inode)->root; if (btrfs_root_refs(&root->root_item) == 0) return 1; if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) return 1; } return 0; } static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode = btrfs_lookup_dentry(dir, dentry); if (inode == ERR_PTR(-ENOENT)) inode = NULL; return d_splice_alias(inode, dentry); } /* * All this infrastructure exists because dir_emit can fault, and we are holding * the tree lock when doing readdir. For now just allocate a buffer and copy * our information into that, and then dir_emit from the buffer. This is * similar to what NFS does, only we don't keep the buffer around in pagecache * because I'm afraid I'll mess that up. Long term we need to make filldir do * copy_to_user_inatomic so we don't have to worry about page faulting under the * tree lock. */ static int btrfs_opendir(struct inode *inode, struct file *file) { struct btrfs_file_private *private; private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); if (!private) return -ENOMEM; private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!private->filldir_buf) { kfree(private); return -ENOMEM; } file->private_data = private; return 0; } struct dir_entry { u64 ino; u64 offset; unsigned type; int name_len; }; static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) { while (entries--) { struct dir_entry *entry = addr; char *name = (char *)(entry + 1); ctx->pos = get_unaligned(&entry->offset); if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), get_unaligned(&entry->ino), get_unaligned(&entry->type))) return 1; addr += sizeof(struct dir_entry) + get_unaligned(&entry->name_len); ctx->pos++; } return 0; } static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_file_private *private = file->private_data; struct btrfs_dir_item *di; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_path *path; void *addr; struct list_head ins_list; struct list_head del_list; int ret; char *name_ptr; int name_len; int entries = 0; int total_len = 0; bool put = false; struct btrfs_key location; if (!dir_emit_dots(file, ctx)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; addr = private->filldir_buf; path->reada = READA_FORWARD; INIT_LIST_HEAD(&ins_list); INIT_LIST_HEAD(&del_list); put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); again: key.type = BTRFS_DIR_INDEX_KEY; key.offset = ctx->pos; key.objectid = btrfs_ino(BTRFS_I(inode)); btrfs_for_each_slot(root, &key, &found_key, path, ret) { struct dir_entry *entry; struct extent_buffer *leaf = path->nodes[0]; if (found_key.objectid != key.objectid) break; if (found_key.type != BTRFS_DIR_INDEX_KEY) break; if (found_key.offset < ctx->pos) continue; if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) continue; di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); name_len = btrfs_dir_name_len(leaf, di); if ((total_len + sizeof(struct dir_entry) + name_len) >= PAGE_SIZE) { btrfs_release_path(path); ret = btrfs_filldir(private->filldir_buf, entries, ctx); if (ret) goto nopos; addr = private->filldir_buf; entries = 0; total_len = 0; goto again; } entry = addr; put_unaligned(name_len, &entry->name_len); name_ptr = (char *)(entry + 1); read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), name_len); put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), &entry->type); btrfs_dir_item_key_to_cpu(leaf, di, &location); put_unaligned(location.objectid, &entry->ino); put_unaligned(found_key.offset, &entry->offset); entries++; addr += sizeof(struct dir_entry) + name_len; total_len += sizeof(struct dir_entry) + name_len; } /* Catch error encountered during iteration */ if (ret < 0) goto err; btrfs_release_path(path); ret = btrfs_filldir(private->filldir_buf, entries, ctx); if (ret) goto nopos; ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); if (ret) goto nopos; /* * Stop new entries from being returned after we return the last * entry. * * New directory entries are assigned a strictly increasing * offset. This means that new entries created during readdir * are *guaranteed* to be seen in the future by that readdir. * This has broken buggy programs which operate on names as * they're returned by readdir. Until we re-use freed offsets * we have this hack to stop new entries from being returned * under the assumption that they'll never reach this huge * offset. * * This is being careful not to overflow 32bit loff_t unless the * last entry requires it because doing so has broken 32bit apps * in the past. */ if (ctx->pos >= INT_MAX) ctx->pos = LLONG_MAX; else ctx->pos = INT_MAX; nopos: ret = 0; err: if (put) btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); btrfs_free_path(path); return ret; } /* * This is somewhat expensive, updating the tree every time the * inode changes. But, it is most likely to find the inode in cache. * FIXME, needs more benchmarking...there are no reasons other than performance * to keep or drop this code. */ static int btrfs_dirty_inode(struct inode *inode) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; int ret; if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) return 0; trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return PTR_ERR(trans); ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { /* whoops, lets try again with the full transaction */ btrfs_end_transaction(trans); trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); } btrfs_end_transaction(trans); if (BTRFS_I(inode)->delayed_node) btrfs_balance_delayed_items(fs_info); return ret; } /* * This is a copy of file_update_time. We need this so we can return error on * ENOSPC for updating the inode in the case of file write and mmap writes. */ static int btrfs_update_time(struct inode *inode, struct timespec64 *now, int flags) { struct btrfs_root *root = BTRFS_I(inode)->root; bool dirty = flags & ~S_VERSION; if (btrfs_root_readonly(root)) return -EROFS; if (flags & S_VERSION) dirty |= inode_maybe_inc_iversion(inode, dirty); if (flags & S_CTIME) inode->i_ctime = *now; if (flags & S_MTIME) inode->i_mtime = *now; if (flags & S_ATIME) inode->i_atime = *now; return dirty ? btrfs_dirty_inode(inode) : 0; } /* * find the highest existing sequence number in a directory * and then set the in-memory index_cnt variable to reflect * free sequence numbers */ static int btrfs_set_inode_index_count(struct btrfs_inode *inode) { struct btrfs_root *root = inode->root; struct btrfs_key key, found_key; struct btrfs_path *path; struct extent_buffer *leaf; int ret; key.objectid = btrfs_ino(inode); key.type = BTRFS_DIR_INDEX_KEY; key.offset = (u64)-1; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; /* FIXME: we should be able to handle this */ if (ret == 0) goto out; ret = 0; if (path->slots[0] == 0) { inode->index_cnt = BTRFS_DIR_START_INDEX; goto out; } path->slots[0]--; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != btrfs_ino(inode) || found_key.type != BTRFS_DIR_INDEX_KEY) { inode->index_cnt = BTRFS_DIR_START_INDEX; goto out; } inode->index_cnt = found_key.offset + 1; out: btrfs_free_path(path); return ret; } /* * helper to find a free sequence number in a given directory. This current * code is very simple, later versions will do smarter things in the btree */ int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) { int ret = 0; if (dir->index_cnt == (u64)-1) { ret = btrfs_inode_delayed_dir_index_count(dir); if (ret) { ret = btrfs_set_inode_index_count(dir); if (ret) return ret; } } *index = dir->index_cnt; dir->index_cnt++; return ret; } static int btrfs_insert_inode_locked(struct inode *inode) { struct btrfs_iget_args args; args.ino = BTRFS_I(inode)->location.objectid; args.root = BTRFS_I(inode)->root; return insert_inode_locked4(inode, btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), btrfs_find_actor, &args); } int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, unsigned int *trans_num_items) { struct inode *dir = args->dir; struct inode *inode = args->inode; int ret; ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); if (ret) return ret; /* 1 to add inode item */ *trans_num_items = 1; /* 1 to add compression property */ if (BTRFS_I(dir)->prop_compress) (*trans_num_items)++; /* 1 to add default ACL xattr */ if (args->default_acl) (*trans_num_items)++; /* 1 to add access ACL xattr */ if (args->acl) (*trans_num_items)++; #ifdef CONFIG_SECURITY /* 1 to add LSM xattr */ if (dir->i_security) (*trans_num_items)++; #endif if (args->orphan) { /* 1 to add orphan item */ (*trans_num_items)++; } else { /* * 1 to add dir item * 1 to add dir index * 1 to update parent inode item * * No need for 1 unit for the inode ref item because it is * inserted in a batch together with the inode item at * btrfs_create_new_inode(). */ *trans_num_items += 3; } return 0; } void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) { posix_acl_release(args->acl); posix_acl_release(args->default_acl); } /* * Inherit flags from the parent inode. * * Currently only the compression flags and the cow flags are inherited. */ static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) { unsigned int flags; flags = BTRFS_I(dir)->flags; if (flags & BTRFS_INODE_NOCOMPRESS) { BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; } else if (flags & BTRFS_INODE_COMPRESS) { BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; } if (flags & BTRFS_INODE_NODATACOW) { BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; if (S_ISREG(inode->i_mode)) BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; } btrfs_sync_inode_flags_to_i_flags(inode); } int btrfs_create_new_inode(struct btrfs_trans_handle *trans, struct btrfs_new_inode_args *args) { struct inode *dir = args->dir; struct inode *inode = args->inode; const char *name = args->orphan ? NULL : args->dentry->d_name.name; int name_len = args->orphan ? 0 : args->dentry->d_name.len; struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct btrfs_root *root; struct btrfs_inode_item *inode_item; struct btrfs_key *location; struct btrfs_path *path; u64 objectid; struct btrfs_inode_ref *ref; struct btrfs_key key[2]; u32 sizes[2]; struct btrfs_item_batch batch; unsigned long ptr; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (!args->subvol) BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); root = BTRFS_I(inode)->root; ret = btrfs_get_free_objectid(root, &objectid); if (ret) goto out; inode->i_ino = objectid; if (args->orphan) { /* * O_TMPFILE, set link count to 0, so that after this point, we * fill in an inode item with the correct link count. */ set_nlink(inode, 0); } else { trace_btrfs_inode_request(dir); ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); if (ret) goto out; } /* index_cnt is ignored for everything but a dir. */ BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; BTRFS_I(inode)->generation = trans->transid; inode->i_generation = BTRFS_I(inode)->generation; /* * Subvolumes don't inherit flags from their parent directory. * Originally this was probably by accident, but we probably can't * change it now without compatibility issues. */ if (!args->subvol) btrfs_inherit_iflags(inode, dir); if (S_ISREG(inode->i_mode)) { if (btrfs_test_opt(fs_info, NODATASUM)) BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; if (btrfs_test_opt(fs_info, NODATACOW)) BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | BTRFS_INODE_NODATASUM; } location = &BTRFS_I(inode)->location; location->objectid = objectid; location->offset = 0; location->type = BTRFS_INODE_ITEM_KEY; ret = btrfs_insert_inode_locked(inode); if (ret < 0) { if (!args->orphan) BTRFS_I(dir)->index_cnt--; goto out; } /* * We could have gotten an inode number from somebody who was fsynced * and then removed in this same transaction, so let's just set full * sync since it will be a full sync anyway and this will blow away the * old info in the log. */ btrfs_set_inode_full_sync(BTRFS_I(inode)); key[0].objectid = objectid; key[0].type = BTRFS_INODE_ITEM_KEY; key[0].offset = 0; sizes[0] = sizeof(struct btrfs_inode_item); if (!args->orphan) { /* * Start new inodes with an inode_ref. This is slightly more * efficient for small numbers of hard links since they will * be packed into one item. Extended refs will kick in if we * add more hard links than can fit in the ref item. */ key[1].objectid = objectid; key[1].type = BTRFS_INODE_REF_KEY; if (args->subvol) { key[1].offset = objectid; sizes[1] = 2 + sizeof(*ref); } else { key[1].offset = btrfs_ino(BTRFS_I(dir)); sizes[1] = name_len + sizeof(*ref); } } batch.keys = &key[0]; batch.data_sizes = &sizes[0]; batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); batch.nr = args->orphan ? 1 : 2; ret = btrfs_insert_empty_items(trans, root, path, &batch); if (ret != 0) { btrfs_abort_transaction(trans, ret); goto discard; } inode->i_mtime = current_time(inode); inode->i_atime = inode->i_mtime; inode->i_ctime = inode->i_mtime; BTRFS_I(inode)->i_otime = inode->i_mtime; /* * We're going to fill the inode item now, so at this point the inode * must be fully initialized. */ inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, sizeof(*inode_item)); fill_inode_item(trans, path->nodes[0], inode_item, inode); if (!args->orphan) { ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, struct btrfs_inode_ref); ptr = (unsigned long)(ref + 1); if (args->subvol) { btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); btrfs_set_inode_ref_index(path->nodes[0], ref, 0); write_extent_buffer(path->nodes[0], "..", ptr, 2); } else { btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); btrfs_set_inode_ref_index(path->nodes[0], ref, BTRFS_I(inode)->dir_index); write_extent_buffer(path->nodes[0], name, ptr, name_len); } } btrfs_mark_buffer_dirty(path->nodes[0]); /* * We don't need the path anymore, plus inheriting properties, adding * ACLs, security xattrs, orphan item or adding the link, will result in * allocating yet another path. So just free our path. */ btrfs_free_path(path); path = NULL; if (args->subvol) { struct inode *parent; /* * Subvolumes inherit properties from their parent subvolume, * not the directory they were created in. */ parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); if (IS_ERR(parent)) { ret = PTR_ERR(parent); } else { ret = btrfs_inode_inherit_props(trans, inode, parent); iput(parent); } } else { ret = btrfs_inode_inherit_props(trans, inode, dir); } if (ret) { btrfs_err(fs_info, "error inheriting props for ino %llu (root %llu): %d", btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); } /* * Subvolumes don't inherit ACLs or get passed to the LSM. This is * probably a bug. */ if (!args->subvol) { ret = btrfs_init_inode_security(trans, args); if (ret) { btrfs_abort_transaction(trans, ret); goto discard; } } inode_tree_add(inode); trace_btrfs_inode_new(inode); btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); btrfs_update_root_times(trans, root); if (args->orphan) { ret = btrfs_orphan_add(trans, BTRFS_I(inode)); } else { ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, name_len, 0, BTRFS_I(inode)->dir_index); } if (ret) { btrfs_abort_transaction(trans, ret); goto discard; } return 0; discard: /* * discard_new_inode() calls iput(), but the caller owns the reference * to the inode. */ ihold(inode); discard_new_inode(inode); out: btrfs_free_path(path); return ret; } /* * utility function to add 'inode' into 'parent_inode' with * a give name and a given sequence number. * if 'add_backref' is true, also insert a backref from the * inode to the parent directory. */ int btrfs_add_link(struct btrfs_trans_handle *trans, struct btrfs_inode *parent_inode, struct btrfs_inode *inode, const char *name, int name_len, int add_backref, u64 index) { int ret = 0; struct btrfs_key key; struct btrfs_root *root = parent_inode->root; u64 ino = btrfs_ino(inode); u64 parent_ino = btrfs_ino(parent_inode); if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { memcpy(&key, &inode->root->root_key, sizeof(key)); } else { key.objectid = ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; } if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { ret = btrfs_add_root_ref(trans, key.objectid, root->root_key.objectid, parent_ino, index, name, name_len); } else if (add_backref) { ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, parent_ino, index); } /* Nothing to clean up yet */ if (ret) return ret; ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, btrfs_inode_type(&inode->vfs_inode), index); if (ret == -EEXIST || ret == -EOVERFLOW) goto fail_dir_item; else if (ret) { btrfs_abort_transaction(trans, ret); return ret; } btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + name_len * 2); inode_inc_iversion(&parent_inode->vfs_inode); /* * If we are replaying a log tree, we do not want to update the mtime * and ctime of the parent directory with the current time, since the * log replay procedure is responsible for setting them to their correct * values (the ones it had when the fsync was done). */ if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { struct timespec64 now = current_time(&parent_inode->vfs_inode); parent_inode->vfs_inode.i_mtime = now; parent_inode->vfs_inode.i_ctime = now; } ret = btrfs_update_inode(trans, root, parent_inode); if (ret) btrfs_abort_transaction(trans, ret); return ret; fail_dir_item: if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { u64 local_index; int err; err = btrfs_del_root_ref(trans, key.objectid, root->root_key.objectid, parent_ino, &local_index, name, name_len); if (err) btrfs_abort_transaction(trans, err); } else if (add_backref) { u64 local_index; int err; err = btrfs_del_inode_ref(trans, root, name, name_len, ino, parent_ino, &local_index); if (err) btrfs_abort_transaction(trans, err); } /* Return the original error code */ return ret; } static int btrfs_create_common(struct inode *dir, struct dentry *dentry, struct inode *inode) { struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_new_inode_args new_inode_args = { .dir = dir, .dentry = dentry, .inode = inode, }; unsigned int trans_num_items; struct btrfs_trans_handle *trans; int err; err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); if (err) goto out_inode; trans = btrfs_start_transaction(root, trans_num_items); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_new_inode_args; } err = btrfs_create_new_inode(trans, &new_inode_args); if (!err) d_instantiate_new(dentry, inode); btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); out_new_inode_args: btrfs_new_inode_args_destroy(&new_inode_args); out_inode: if (err) iput(inode); return err; } static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct inode *inode; inode = new_inode(dir->i_sb); if (!inode) return -ENOMEM; inode_init_owner(mnt_userns, inode, dir, mode); inode->i_op = &btrfs_special_inode_operations; init_special_inode(inode, inode->i_mode, rdev); return btrfs_create_common(dir, dentry, inode); } static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { struct inode *inode; inode = new_inode(dir->i_sb); if (!inode) return -ENOMEM; inode_init_owner(mnt_userns, inode, dir, mode); inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; inode->i_mapping->a_ops = &btrfs_aops; return btrfs_create_common(dir, dentry, inode); } static int btrfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct btrfs_trans_handle *trans = NULL; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode = d_inode(old_dentry); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); u64 index; int err; int drop_inode = 0; /* do not allow sys_link's with other subvols of the same device */ if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) return -EXDEV; if (inode->i_nlink >= BTRFS_LINK_MAX) return -EMLINK; err = btrfs_set_inode_index(BTRFS_I(dir), &index); if (err) goto fail; /* * 2 items for inode and inode ref * 2 items for dir items * 1 item for parent inode * 1 item for orphan item deletion if O_TMPFILE */ trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); if (IS_ERR(trans)) { err = PTR_ERR(trans); trans = NULL; goto fail; } /* There are several dir indexes for this inode, clear the cache. */ BTRFS_I(inode)->dir_index = 0ULL; inc_nlink(inode); inode_inc_iversion(inode); inode->i_ctime = current_time(inode); ihold(inode); set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), dentry->d_name.name, dentry->d_name.len, 1, index); if (err) { drop_inode = 1; } else { struct dentry *parent = dentry->d_parent; err = btrfs_update_inode(trans, root, BTRFS_I(inode)); if (err) goto fail; if (inode->i_nlink == 1) { /* * If new hard link count is 1, it's a file created * with open(2) O_TMPFILE flag. */ err = btrfs_orphan_del(trans, BTRFS_I(inode)); if (err) goto fail; } d_instantiate(dentry, inode); btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); } fail: if (trans) btrfs_end_transaction(trans); if (drop_inode) { inode_dec_link_count(inode); iput(inode); } btrfs_btree_balance_dirty(fs_info); return err; } static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode) { struct inode *inode; inode = new_inode(dir->i_sb); if (!inode) return -ENOMEM; inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode); inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; return btrfs_create_common(dir, dentry, inode); } static noinline int uncompress_inline(struct btrfs_path *path, struct page *page, size_t pg_offset, u64 extent_offset, struct btrfs_file_extent_item *item) { int ret; struct extent_buffer *leaf = path->nodes[0]; char *tmp; size_t max_size; unsigned long inline_size; unsigned long ptr; int compress_type; WARN_ON(pg_offset != 0); compress_type = btrfs_file_extent_compression(leaf, item); max_size = btrfs_file_extent_ram_bytes(leaf, item); inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); tmp = kmalloc(inline_size, GFP_NOFS); if (!tmp) return -ENOMEM; ptr = btrfs_file_extent_inline_start(item); read_extent_buffer(leaf, tmp, ptr, inline_size); max_size = min_t(unsigned long, PAGE_SIZE, max_size); ret = btrfs_decompress(compress_type, tmp, page, extent_offset, inline_size, max_size); /* * decompression code contains a memset to fill in any space between the end * of the uncompressed data and the end of max_size in case the decompressed * data ends up shorter than ram_bytes. That doesn't cover the hole between * the end of an inline extent and the beginning of the next block, so we * cover that region here. */ if (max_size + pg_offset < PAGE_SIZE) memzero_page(page, pg_offset + max_size, PAGE_SIZE - max_size - pg_offset); kfree(tmp); return ret; } /** * btrfs_get_extent - Lookup the first extent overlapping a range in a file. * @inode: file to search in * @page: page to read extent data into if the extent is inline * @pg_offset: offset into @page to copy to * @start: file offset * @len: length of range starting at @start * * This returns the first &struct extent_map which overlaps with the given * range, reading it from the B-tree and caching it if necessary. Note that * there may be more extents which overlap the given range after the returned * extent_map. * * If @page is not NULL and the extent is inline, this also reads the extent * data directly into the page and marks the extent up to date in the io_tree. * * Return: ERR_PTR on error, non-NULL extent_map on success. */ struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, struct page *page, size_t pg_offset, u64 start, u64 len) { struct btrfs_fs_info *fs_info = inode->root->fs_info; int ret = 0; u64 extent_start = 0; u64 extent_end = 0; u64 objectid = btrfs_ino(inode); int extent_type = -1; struct btrfs_path *path = NULL; struct btrfs_root *root = inode->root; struct btrfs_file_extent_item *item; struct extent_buffer *leaf; struct btrfs_key found_key; struct extent_map *em = NULL; struct extent_map_tree *em_tree = &inode->extent_tree; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); read_unlock(&em_tree->lock); if (em) { if (em->start > start || em->start + em->len <= start) free_extent_map(em); else if (em->block_start == EXTENT_MAP_INLINE && page) free_extent_map(em); else goto out; } em = alloc_extent_map(); if (!em) { ret = -ENOMEM; goto out; } em->start = EXTENT_MAP_HOLE; em->orig_start = EXTENT_MAP_HOLE; em->len = (u64)-1; em->block_len = (u64)-1; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } /* Chances are we'll be called again, so go ahead and do readahead */ path->reada = READA_FORWARD; /* * The same explanation in load_free_space_cache applies here as well, * we only read when we're loading the free space cache, and at that * point the commit_root has everything we need. */ if (btrfs_is_free_space_inode(inode)) { path->search_commit_root = 1; path->skip_locking = 1; } ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); if (ret < 0) { goto out; } else if (ret > 0) { if (path->slots[0] == 0) goto not_found; path->slots[0]--; ret = 0; } leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != objectid || found_key.type != BTRFS_EXTENT_DATA_KEY) { /* * If we backup past the first extent we want to move forward * and see if there is an extent in front of us, otherwise we'll * say there is a hole for our whole search range which can * cause problems. */ extent_end = start; goto next; } extent_type = btrfs_file_extent_type(leaf, item); extent_start = found_key.offset; extent_end = btrfs_file_extent_end(path); if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { /* Only regular file could have regular/prealloc extent */ if (!S_ISREG(inode->vfs_inode.i_mode)) { ret = -EUCLEAN; btrfs_crit(fs_info, "regular/prealloc extent found for non-regular inode %llu", btrfs_ino(inode)); goto out; } trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, extent_start); } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, path->slots[0], extent_start); } next: if (start >= extent_end) { path->slots[0]++; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto out; else if (ret > 0) goto not_found; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != objectid || found_key.type != BTRFS_EXTENT_DATA_KEY) goto not_found; if (start + len <= found_key.offset) goto not_found; if (start > found_key.offset) goto next; /* New extent overlaps with existing one */ em->start = start; em->orig_start = start; em->len = found_key.offset - start; em->block_start = EXTENT_MAP_HOLE; goto insert; } btrfs_extent_item_to_extent_map(inode, path, item, !page, em); if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { goto insert; } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { unsigned long ptr; char *map; size_t size; size_t extent_offset; size_t copy_size; if (!page) goto out; size = btrfs_file_extent_ram_bytes(leaf, item); extent_offset = page_offset(page) + pg_offset - extent_start; copy_size = min_t(u64, PAGE_SIZE - pg_offset, size - extent_offset); em->start = extent_start + extent_offset; em->len = ALIGN(copy_size, fs_info->sectorsize); em->orig_block_len = em->len; em->orig_start = em->start; ptr = btrfs_file_extent_inline_start(item) + extent_offset; if (!PageUptodate(page)) { if (btrfs_file_extent_compression(leaf, item) != BTRFS_COMPRESS_NONE) { ret = uncompress_inline(path, page, pg_offset, extent_offset, item); if (ret) goto out; } else { map = kmap_local_page(page); read_extent_buffer(leaf, map + pg_offset, ptr, copy_size); if (pg_offset + copy_size < PAGE_SIZE) { memset(map + pg_offset + copy_size, 0, PAGE_SIZE - pg_offset - copy_size); } kunmap_local(map); } flush_dcache_page(page); } goto insert; } not_found: em->start = start; em->orig_start = start; em->len = len; em->block_start = EXTENT_MAP_HOLE; insert: ret = 0; btrfs_release_path(path); if (em->start > start || extent_map_end(em) <= start) { btrfs_err(fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", em->start, em->len, start, len); ret = -EIO; goto out; } write_lock(&em_tree->lock); ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); write_unlock(&em_tree->lock); out: btrfs_free_path(path); trace_btrfs_get_extent(root, inode, em); if (ret) { free_extent_map(em); return ERR_PTR(ret); } return em; } static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, const u64 start, const u64 len, const u64 orig_start, const u64 block_start, const u64 block_len, const u64 orig_block_len, const u64 ram_bytes, const int type) { struct extent_map *em = NULL; int ret; if (type != BTRFS_ORDERED_NOCOW) { em = create_io_em(inode, start, len, orig_start, block_start, block_len, orig_block_len, ram_bytes, BTRFS_COMPRESS_NONE, /* compress_type */ type); if (IS_ERR(em)) goto out; } ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, block_len, 0, (1 << type) | (1 << BTRFS_ORDERED_DIRECT), BTRFS_COMPRESS_NONE); if (ret) { if (em) { free_extent_map(em); btrfs_drop_extent_map_range(inode, start, start + len - 1, false); } em = ERR_PTR(ret); } out: return em; } static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, u64 start, u64 len) { struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_map *em; struct btrfs_key ins; u64 alloc_hint; int ret; alloc_hint = get_extent_allocation_hint(inode, start, len); ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 0, alloc_hint, &ins, 1, 1); if (ret) return ERR_PTR(ret); em = btrfs_create_dio_extent(inode, start, ins.offset, start, ins.objectid, ins.offset, ins.offset, ins.offset, BTRFS_ORDERED_REGULAR); btrfs_dec_block_group_reservations(fs_info, ins.objectid); if (IS_ERR(em)) btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); return em; } static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_block_group *block_group; bool readonly = false; block_group = btrfs_lookup_block_group(fs_info, bytenr); if (!block_group || block_group->ro) readonly = true; if (block_group) btrfs_put_block_group(block_group); return readonly; } /* * Check if we can do nocow write into the range [@offset, @offset + @len) * * @offset: File offset * @len: The length to write, will be updated to the nocow writeable * range * @orig_start: (optional) Return the original file offset of the file extent * @orig_len: (optional) Return the original on-disk length of the file extent * @ram_bytes: (optional) Return the ram_bytes of the file extent * @strict: if true, omit optimizations that might force us into unnecessary * cow. e.g., don't trust generation number. * * Return: * >0 and update @len if we can do nocow write * 0 if we can't do nocow write * <0 if error happened * * NOTE: This only checks the file extents, caller is responsible to wait for * any ordered extents. */ noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, u64 *orig_start, u64 *orig_block_len, u64 *ram_bytes, bool nowait, bool strict) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct can_nocow_file_extent_args nocow_args = { 0 }; struct btrfs_path *path; int ret; struct extent_buffer *leaf; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_file_extent_item *fi; struct btrfs_key key; int found_type; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->nowait = nowait; ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(BTRFS_I(inode)), offset, 0); if (ret < 0) goto out; if (ret == 1) { if (path->slots[0] == 0) { /* can't find the item, must cow */ ret = 0; goto out; } path->slots[0]--; } ret = 0; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != btrfs_ino(BTRFS_I(inode)) || key.type != BTRFS_EXTENT_DATA_KEY) { /* not our file or wrong item type, must cow */ goto out; } if (key.offset > offset) { /* Wrong offset, must cow */ goto out; } if (btrfs_file_extent_end(path) <= offset) goto out; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(leaf, fi); if (ram_bytes) *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); nocow_args.start = offset; nocow_args.end = offset + *len - 1; nocow_args.strict = strict; nocow_args.free_path = true; ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); /* can_nocow_file_extent() has freed the path. */ path = NULL; if (ret != 1) { /* Treat errors as not being able to NOCOW. */ ret = 0; goto out; } ret = 0; if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) goto out; if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && found_type == BTRFS_FILE_EXTENT_PREALLOC) { u64 range_end; range_end = round_up(offset + nocow_args.num_bytes, root->fs_info->sectorsize) - 1; ret = test_range_bit(io_tree, offset, range_end, EXTENT_DELALLOC, 0, NULL); if (ret) { ret = -EAGAIN; goto out; } } if (orig_start) *orig_start = key.offset - nocow_args.extent_offset; if (orig_block_len) *orig_block_len = nocow_args.disk_num_bytes; *len = nocow_args.num_bytes; ret = 1; out: btrfs_free_path(path); return ret; } static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, struct extent_state **cached_state, unsigned int iomap_flags) { const bool writing = (iomap_flags & IOMAP_WRITE); const bool nowait = (iomap_flags & IOMAP_NOWAIT); struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_ordered_extent *ordered; int ret = 0; while (1) { if (nowait) { if (!try_lock_extent(io_tree, lockstart, lockend)) return -EAGAIN; } else { lock_extent(io_tree, lockstart, lockend, cached_state); } /* * We're concerned with the entire range that we're going to be * doing DIO to, so we need to make sure there's no ordered * extents in this range. */ ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, lockend - lockstart + 1); /* * We need to make sure there are no buffered pages in this * range either, we could have raced between the invalidate in * generic_file_direct_write and locking the extent. The * invalidate needs to happen so that reads after a write do not * get stale data. */ if (!ordered && (!writing || !filemap_range_has_page(inode->i_mapping, lockstart, lockend))) break; unlock_extent(io_tree, lockstart, lockend, cached_state); if (ordered) { if (nowait) { btrfs_put_ordered_extent(ordered); ret = -EAGAIN; break; } /* * If we are doing a DIO read and the ordered extent we * found is for a buffered write, we can not wait for it * to complete and retry, because if we do so we can * deadlock with concurrent buffered writes on page * locks. This happens only if our DIO read covers more * than one extent map, if at this point has already * created an ordered extent for a previous extent map * and locked its range in the inode's io tree, and a * concurrent write against that previous extent map's * range and this range started (we unlock the ranges * in the io tree only when the bios complete and * buffered writes always lock pages before attempting * to lock range in the io tree). */ if (writing || test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) btrfs_start_ordered_extent(ordered, 1); else ret = nowait ? -EAGAIN : -ENOTBLK; btrfs_put_ordered_extent(ordered); } else { /* * We could trigger writeback for this range (and wait * for it to complete) and then invalidate the pages for * this range (through invalidate_inode_pages2_range()), * but that can lead us to a deadlock with a concurrent * call to readahead (a buffered read or a defrag call * triggered a readahead) on a page lock due to an * ordered dio extent we created before but did not have * yet a corresponding bio submitted (whence it can not * complete), which makes readahead wait for that * ordered extent to complete while holding a lock on * that page. */ ret = nowait ? -EAGAIN : -ENOTBLK; } if (ret) break; cond_resched(); } return ret; } /* The callers of this must take lock_extent() */ static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, u64 len, u64 orig_start, u64 block_start, u64 block_len, u64 orig_block_len, u64 ram_bytes, int compress_type, int type) { struct extent_map *em; int ret; ASSERT(type == BTRFS_ORDERED_PREALLOC || type == BTRFS_ORDERED_COMPRESSED || type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_REGULAR); em = alloc_extent_map(); if (!em) return ERR_PTR(-ENOMEM); em->start = start; em->orig_start = orig_start; em->len = len; em->block_len = block_len; em->block_start = block_start; em->orig_block_len = orig_block_len; em->ram_bytes = ram_bytes; em->generation = -1; set_bit(EXTENT_FLAG_PINNED, &em->flags); if (type == BTRFS_ORDERED_PREALLOC) { set_bit(EXTENT_FLAG_FILLING, &em->flags); } else if (type == BTRFS_ORDERED_COMPRESSED) { set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); em->compress_type = compress_type; } ret = btrfs_replace_extent_map_range(inode, em, true); if (ret) { free_extent_map(em); return ERR_PTR(ret); } /* em got 2 refs now, callers needs to do free_extent_map once. */ return em; } static int btrfs_get_blocks_direct_write(struct extent_map **map, struct inode *inode, struct btrfs_dio_data *dio_data, u64 start, u64 len, unsigned int iomap_flags) { const bool nowait = (iomap_flags & IOMAP_NOWAIT); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_map *em = *map; int type; u64 block_start, orig_start, orig_block_len, ram_bytes; struct btrfs_block_group *bg; bool can_nocow = false; bool space_reserved = false; u64 prev_len; int ret = 0; /* * We don't allocate a new extent in the following cases * * 1) The inode is marked as NODATACOW. In this case we'll just use the * existing extent. * 2) The extent is marked as PREALLOC. We're good to go here and can * just use the extent. * */ if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && em->block_start != EXTENT_MAP_HOLE)) { if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) type = BTRFS_ORDERED_PREALLOC; else type = BTRFS_ORDERED_NOCOW; len = min(len, em->len - (start - em->start)); block_start = em->block_start + (start - em->start); if (can_nocow_extent(inode, start, &len, &orig_start, &orig_block_len, &ram_bytes, false, false) == 1) { bg = btrfs_inc_nocow_writers(fs_info, block_start); if (bg) can_nocow = true; } } prev_len = len; if (can_nocow) { struct extent_map *em2; /* We can NOCOW, so only need to reserve metadata space. */ ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, nowait); if (ret < 0) { /* Our caller expects us to free the input extent map. */ free_extent_map(em); *map = NULL; btrfs_dec_nocow_writers(bg); if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) ret = -EAGAIN; goto out; } space_reserved = true; em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, orig_start, block_start, len, orig_block_len, ram_bytes, type); btrfs_dec_nocow_writers(bg); if (type == BTRFS_ORDERED_PREALLOC) { free_extent_map(em); *map = em2; em = em2; } if (IS_ERR(em2)) { ret = PTR_ERR(em2); goto out; } dio_data->nocow_done = true; } else { /* Our caller expects us to free the input extent map. */ free_extent_map(em); *map = NULL; if (nowait) return -EAGAIN; /* * If we could not allocate data space before locking the file * range and we can't do a NOCOW write, then we have to fail. */ if (!dio_data->data_space_reserved) return -ENOSPC; /* * We have to COW and we have already reserved data space before, * so now we reserve only metadata. */ ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, false); if (ret < 0) goto out; space_reserved = true; em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out; } *map = em; len = min(len, em->len - (start - em->start)); if (len < prev_len) btrfs_delalloc_release_metadata(BTRFS_I(inode), prev_len - len, true); } /* * We have created our ordered extent, so we can now release our reservation * for an outstanding extent. */ btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); /* * Need to update the i_size under the extent lock so buffered * readers will get the updated i_size when we unlock. */ if (start + len > i_size_read(inode)) i_size_write(inode, start + len); out: if (ret && space_reserved) { btrfs_delalloc_release_extents(BTRFS_I(inode), len); btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); } return ret; } static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, loff_t length, unsigned int flags, struct iomap *iomap, struct iomap *srcmap) { struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_map *em; struct extent_state *cached_state = NULL; struct btrfs_dio_data *dio_data = iter->private; u64 lockstart, lockend; const bool write = !!(flags & IOMAP_WRITE); int ret = 0; u64 len = length; const u64 data_alloc_len = length; bool unlock_extents = false; /* * We could potentially fault if we have a buffer > PAGE_SIZE, and if * we're NOWAIT we may submit a bio for a partial range and return * EIOCBQUEUED, which would result in an errant short read. * * The best way to handle this would be to allow for partial completions * of iocb's, so we could submit the partial bio, return and fault in * the rest of the pages, and then submit the io for the rest of the * range. However we don't have that currently, so simply return * -EAGAIN at this point so that the normal path is used. */ if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) return -EAGAIN; /* * Cap the size of reads to that usually seen in buffered I/O as we need * to allocate a contiguous array for the checksums. */ if (!write) len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); lockstart = start; lockend = start + len - 1; /* * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't * enough if we've written compressed pages to this area, so we need to * flush the dirty pages again to make absolutely sure that any * outstanding dirty pages are on disk - the first flush only starts * compression on the data, while keeping the pages locked, so by the * time the second flush returns we know bios for the compressed pages * were submitted and finished, and the pages no longer under writeback. * * If we have a NOWAIT request and we have any pages in the range that * are locked, likely due to compression still in progress, we don't want * to block on page locks. We also don't want to block on pages marked as * dirty or under writeback (same as for the non-compression case). * iomap_dio_rw() did the same check, but after that and before we got * here, mmap'ed writes may have happened or buffered reads started * (readpage() and readahead(), which lock pages), as we haven't locked * the file range yet. */ if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &BTRFS_I(inode)->runtime_flags)) { if (flags & IOMAP_NOWAIT) { if (filemap_range_needs_writeback(inode->i_mapping, lockstart, lockend)) return -EAGAIN; } else { ret = filemap_fdatawrite_range(inode->i_mapping, start, start + length - 1); if (ret) return ret; } } memset(dio_data, 0, sizeof(*dio_data)); /* * We always try to allocate data space and must do it before locking * the file range, to avoid deadlocks with concurrent writes to the same * range if the range has several extents and the writes don't expand the * current i_size (the inode lock is taken in shared mode). If we fail to * allocate data space here we continue and later, after locking the * file range, we fail with ENOSPC only if we figure out we can not do a * NOCOW write. */ if (write && !(flags & IOMAP_NOWAIT)) { ret = btrfs_check_data_free_space(BTRFS_I(inode), &dio_data->data_reserved, start, data_alloc_len, false); if (!ret) dio_data->data_space_reserved = true; else if (ret && !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) goto err; } /* * If this errors out it's because we couldn't invalidate pagecache for * this range and we need to fallback to buffered IO, or we are doing a * NOWAIT read/write and we need to block. */ ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); if (ret < 0) goto err; em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); if (IS_ERR(em)) { ret = PTR_ERR(em); goto unlock_err; } /* * Ok for INLINE and COMPRESSED extents we need to fallback on buffered * io. INLINE is special, and we could probably kludge it in here, but * it's still buffered so for safety lets just fall back to the generic * buffered path. * * For COMPRESSED we _have_ to read the entire extent in so we can * decompress it, so there will be buffering required no matter what we * do, so go ahead and fallback to buffered. * * We return -ENOTBLK because that's what makes DIO go ahead and go back * to buffered IO. Don't blame me, this is the price we pay for using * the generic code. */ if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || em->block_start == EXTENT_MAP_INLINE) { free_extent_map(em); /* * If we are in a NOWAIT context, return -EAGAIN in order to * fallback to buffered IO. This is not only because we can * block with buffered IO (no support for NOWAIT semantics at * the moment) but also to avoid returning short reads to user * space - this happens if we were able to read some data from * previous non-compressed extents and then when we fallback to * buffered IO, at btrfs_file_read_iter() by calling * filemap_read(), we fail to fault in pages for the read buffer, * in which case filemap_read() returns a short read (the number * of bytes previously read is > 0, so it does not return -EFAULT). */ ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; goto unlock_err; } len = min(len, em->len - (start - em->start)); /* * If we have a NOWAIT request and the range contains multiple extents * (or a mix of extents and holes), then we return -EAGAIN to make the * caller fallback to a context where it can do a blocking (without * NOWAIT) request. This way we avoid doing partial IO and returning * success to the caller, which is not optimal for writes and for reads * it can result in unexpected behaviour for an application. * * When doing a read, because we use IOMAP_DIO_PARTIAL when calling * iomap_dio_rw(), we can end up returning less data then what the caller * asked for, resulting in an unexpected, and incorrect, short read. * That is, the caller asked to read N bytes and we return less than that, * which is wrong unless we are crossing EOF. This happens if we get a * page fault error when trying to fault in pages for the buffer that is * associated to the struct iov_iter passed to iomap_dio_rw(), and we * have previously submitted bios for other extents in the range, in * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of * those bios have completed by the time we get the page fault error, * which we return back to our caller - we should only return EIOCBQUEUED * after we have submitted bios for all the extents in the range. */ if ((flags & IOMAP_NOWAIT) && len < length) { free_extent_map(em); ret = -EAGAIN; goto unlock_err; } if (write) { ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, start, len, flags); if (ret < 0) goto unlock_err; unlock_extents = true; /* Recalc len in case the new em is smaller than requested */ len = min(len, em->len - (start - em->start)); if (dio_data->data_space_reserved) { u64 release_offset; u64 release_len = 0; if (dio_data->nocow_done) { release_offset = start; release_len = data_alloc_len; } else if (len < data_alloc_len) { release_offset = start + len; release_len = data_alloc_len - len; } if (release_len > 0) btrfs_free_reserved_data_space(BTRFS_I(inode), dio_data->data_reserved, release_offset, release_len); } } else { /* * We need to unlock only the end area that we aren't using. * The rest is going to be unlocked by the endio routine. */ lockstart = start + len; if (lockstart < lockend) unlock_extents = true; } if (unlock_extents) unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, &cached_state); else free_extent_state(cached_state); /* * Translate extent map information to iomap. * We trim the extents (and move the addr) even though iomap code does * that, since we have locked only the parts we are performing I/O in. */ if ((em->block_start == EXTENT_MAP_HOLE) || (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { iomap->addr = IOMAP_NULL_ADDR; iomap->type = IOMAP_HOLE; } else { iomap->addr = em->block_start + (start - em->start); iomap->type = IOMAP_MAPPED; } iomap->offset = start; iomap->bdev = fs_info->fs_devices->latest_dev->bdev; iomap->length = len; if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) iomap->flags |= IOMAP_F_ZONE_APPEND; free_extent_map(em); return 0; unlock_err: unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, &cached_state); err: if (dio_data->data_space_reserved) { btrfs_free_reserved_data_space(BTRFS_I(inode), dio_data->data_reserved, start, data_alloc_len); extent_changeset_free(dio_data->data_reserved); } return ret; } static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, ssize_t written, unsigned int flags, struct iomap *iomap) { struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); struct btrfs_dio_data *dio_data = iter->private; size_t submitted = dio_data->submitted; const bool write = !!(flags & IOMAP_WRITE); int ret = 0; if (!write && (iomap->type == IOMAP_HOLE)) { /* If reading from a hole, unlock and return */ unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, NULL); return 0; } if (submitted < length) { pos += submitted; length -= submitted; if (write) btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, pos, length, false); else unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, NULL); ret = -ENOTBLK; } if (write) extent_changeset_free(dio_data->data_reserved); return ret; } static void btrfs_dio_private_put(struct btrfs_dio_private *dip) { /* * This implies a barrier so that stores to dio_bio->bi_status before * this and loads of dio_bio->bi_status after this are fully ordered. */ if (!refcount_dec_and_test(&dip->refs)) return; if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) { btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL, dip->file_offset, dip->bytes, !dip->bio.bi_status); } else { unlock_extent(&BTRFS_I(dip->inode)->io_tree, dip->file_offset, dip->file_offset + dip->bytes - 1, NULL); } kfree(dip->csums); bio_endio(&dip->bio); } static void submit_dio_repair_bio(struct inode *inode, struct bio *bio, int mirror_num, enum btrfs_compression_type compress_type) { struct btrfs_dio_private *dip = btrfs_bio(bio)->private; struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); BUG_ON(bio_op(bio) == REQ_OP_WRITE); refcount_inc(&dip->refs); btrfs_submit_bio(fs_info, bio, mirror_num); } static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, struct btrfs_bio *bbio, const bool uptodate) { struct inode *inode = dip->inode; struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); blk_status_t err = BLK_STS_OK; struct bvec_iter iter; struct bio_vec bv; u32 offset; btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) { u64 start = bbio->file_offset + offset; if (uptodate && (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page, bv.bv_offset))) { btrfs_clean_io_failure(BTRFS_I(inode), start, bv.bv_page, bv.bv_offset); } else { int ret; ret = btrfs_repair_one_sector(inode, bbio, offset, bv.bv_page, bv.bv_offset, submit_dio_repair_bio); if (ret) err = errno_to_blk_status(ret); } } return err; } static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, struct bio *bio, u64 dio_file_offset) { return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); } static void btrfs_end_dio_bio(struct btrfs_bio *bbio) { struct btrfs_dio_private *dip = bbio->private; struct bio *bio = &bbio->bio; blk_status_t err = bio->bi_status; if (err) btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, bio->bi_iter.bi_size, err); if (bio_op(bio) == REQ_OP_READ) err = btrfs_check_read_dio_bio(dip, bbio, !err); if (err) dip->bio.bi_status = err; btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio); bio_put(bio); btrfs_dio_private_put(dip); } static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, int async_submit) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_dio_private *dip = btrfs_bio(bio)->private; blk_status_t ret; /* Save the original iter for read repair */ if (btrfs_op(bio) == BTRFS_MAP_READ) btrfs_bio(bio)->iter = bio->bi_iter; if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) goto map; if (btrfs_op(bio) == BTRFS_MAP_WRITE) { /* Check btrfs_submit_data_write_bio() for async submit rules */ if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) && btrfs_wq_submit_bio(inode, bio, 0, file_offset, btrfs_submit_bio_start_direct_io)) return; /* * If we aren't doing async submit, calculate the csum of the * bio now. */ ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); if (ret) { btrfs_bio_end_io(btrfs_bio(bio), ret); return; } } else { btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums, file_offset - dip->file_offset); } map: btrfs_submit_bio(fs_info, bio, 0); } static void btrfs_submit_direct(const struct iomap_iter *iter, struct bio *dio_bio, loff_t file_offset) { struct btrfs_dio_private *dip = container_of(dio_bio, struct btrfs_dio_private, bio); struct inode *inode = iter->inode; const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); const bool raid56 = (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK); struct bio *bio; u64 start_sector; int async_submit = 0; u64 submit_len; u64 clone_offset = 0; u64 clone_len; u64 logical; int ret; blk_status_t status; struct btrfs_io_geometry geom; struct btrfs_dio_data *dio_data = iter->private; struct extent_map *em = NULL; dip->inode = inode; dip->file_offset = file_offset; dip->bytes = dio_bio->bi_iter.bi_size; refcount_set(&dip->refs, 1); dip->csums = NULL; if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { unsigned int nr_sectors = (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits); /* * Load the csums up front to reduce csum tree searches and * contention when submitting bios. */ status = BLK_STS_RESOURCE; dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS); if (!dip->csums) goto out_err; status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); if (status != BLK_STS_OK) goto out_err; } start_sector = dio_bio->bi_iter.bi_sector; submit_len = dio_bio->bi_iter.bi_size; do { logical = start_sector << 9; em = btrfs_get_chunk_map(fs_info, logical, submit_len); if (IS_ERR(em)) { status = errno_to_blk_status(PTR_ERR(em)); em = NULL; goto out_err_em; } ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), logical, &geom); if (ret) { status = errno_to_blk_status(ret); goto out_err_em; } clone_len = min(submit_len, geom.len); ASSERT(clone_len <= UINT_MAX); /* * This will never fail as it's passing GPF_NOFS and * the allocation is backed by btrfs_bioset. */ bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len, btrfs_end_dio_bio, dip); btrfs_bio(bio)->file_offset = file_offset; if (bio_op(bio) == REQ_OP_ZONE_APPEND) { status = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); if (status) { bio_put(bio); goto out_err; } } ASSERT(submit_len >= clone_len); submit_len -= clone_len; /* * Increase the count before we submit the bio so we know * the end IO handler won't happen before we increase the * count. Otherwise, the dip might get freed before we're * done setting it up. * * We transfer the initial reference to the last bio, so we * don't need to increment the reference count for the last one. */ if (submit_len > 0) { refcount_inc(&dip->refs); /* * If we are submitting more than one bio, submit them * all asynchronously. The exception is RAID 5 or 6, as * asynchronous checksums make it difficult to collect * full stripe writes. */ if (!raid56) async_submit = 1; } btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); dio_data->submitted += clone_len; clone_offset += clone_len; start_sector += clone_len >> 9; file_offset += clone_len; free_extent_map(em); } while (submit_len > 0); return; out_err_em: free_extent_map(em); out_err: dio_bio->bi_status = status; btrfs_dio_private_put(dip); } static const struct iomap_ops btrfs_dio_iomap_ops = { .iomap_begin = btrfs_dio_iomap_begin, .iomap_end = btrfs_dio_iomap_end, }; static const struct iomap_dio_ops btrfs_dio_ops = { .submit_io = btrfs_submit_direct, .bio_set = &btrfs_dio_bioset, }; ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) { struct btrfs_dio_data data; return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, IOMAP_DIO_PARTIAL, &data, done_before); } struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) { struct btrfs_dio_data data; return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, IOMAP_DIO_PARTIAL, &data, done_before); } static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len) { int ret; ret = fiemap_prep(inode, fieinfo, start, &len, 0); if (ret) return ret; /* * fiemap_prep() called filemap_write_and_wait() for the whole possible * file range (0 to LLONG_MAX), but that is not enough if we have * compression enabled. The first filemap_fdatawrite_range() only kicks * in the compression of data (in an async thread) and will return * before the compression is done and writeback is started. A second * filemap_fdatawrite_range() is needed to wait for the compression to * complete and writeback to start. We also need to wait for ordered * extents to complete, because our fiemap implementation uses mainly * file extent items to list the extents, searching for extent maps * only for file ranges with holes or prealloc extents to figure out * if we have delalloc in those ranges. */ if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); if (ret) return ret; } return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); } static int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) { return extent_writepages(mapping, wbc); } static void btrfs_readahead(struct readahead_control *rac) { extent_readahead(rac); } /* * For release_folio() and invalidate_folio() we have a race window where * folio_end_writeback() is called but the subpage spinlock is not yet released. * If we continue to release/invalidate the page, we could cause use-after-free * for subpage spinlock. So this function is to spin and wait for subpage * spinlock. */ static void wait_subpage_spinlock(struct page *page) { struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); struct btrfs_subpage *subpage; if (!btrfs_is_subpage(fs_info, page)) return; ASSERT(PagePrivate(page) && page->private); subpage = (struct btrfs_subpage *)page->private; /* * This may look insane as we just acquire the spinlock and release it, * without doing anything. But we just want to make sure no one is * still holding the subpage spinlock. * And since the page is not dirty nor writeback, and we have page * locked, the only possible way to hold a spinlock is from the endio * function to clear page writeback. * * Here we just acquire the spinlock so that all existing callers * should exit and we're safe to release/invalidate the page. */ spin_lock_irq(&subpage->lock); spin_unlock_irq(&subpage->lock); } static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) { int ret = try_release_extent_mapping(&folio->page, gfp_flags); if (ret == 1) { wait_subpage_spinlock(&folio->page); clear_page_extent_mapped(&folio->page); } return ret; } static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) { if (folio_test_writeback(folio) || folio_test_dirty(folio)) return false; return __btrfs_release_folio(folio, gfp_flags); } #ifdef CONFIG_MIGRATION static int btrfs_migrate_folio(struct address_space *mapping, struct folio *dst, struct folio *src, enum migrate_mode mode) { int ret = filemap_migrate_folio(mapping, dst, src, mode); if (ret != MIGRATEPAGE_SUCCESS) return ret; if (folio_test_ordered(src)) { folio_clear_ordered(src); folio_set_ordered(dst); } return MIGRATEPAGE_SUCCESS; } #else #define btrfs_migrate_folio NULL #endif static void btrfs_invalidate_folio(struct folio *folio, size_t offset, size_t length) { struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_io_tree *tree = &inode->io_tree; struct extent_state *cached_state = NULL; u64 page_start = folio_pos(folio); u64 page_end = page_start + folio_size(folio) - 1; u64 cur; int inode_evicting = inode->vfs_inode.i_state & I_FREEING; /* * We have folio locked so no new ordered extent can be created on this * page, nor bio can be submitted for this folio. * * But already submitted bio can still be finished on this folio. * Furthermore, endio function won't skip folio which has Ordered * (Private2) already cleared, so it's possible for endio and * invalidate_folio to do the same ordered extent accounting twice * on one folio. * * So here we wait for any submitted bios to finish, so that we won't * do double ordered extent accounting on the same folio. */ folio_wait_writeback(folio); wait_subpage_spinlock(&folio->page); /* * For subpage case, we have call sites like * btrfs_punch_hole_lock_range() which passes range not aligned to * sectorsize. * If the range doesn't cover the full folio, we don't need to and * shouldn't clear page extent mapped, as folio->private can still * record subpage dirty bits for other part of the range. * * For cases that invalidate the full folio even the range doesn't * cover the full folio, like invalidating the last folio, we're * still safe to wait for ordered extent to finish. */ if (!(offset == 0 && length == folio_size(folio))) { btrfs_release_folio(folio, GFP_NOFS); return; } if (!inode_evicting) lock_extent(tree, page_start, page_end, &cached_state); cur = page_start; while (cur < page_end) { struct btrfs_ordered_extent *ordered; u64 range_end; u32 range_len; u32 extra_flags = 0; ordered = btrfs_lookup_first_ordered_range(inode, cur, page_end + 1 - cur); if (!ordered) { range_end = page_end; /* * No ordered extent covering this range, we are safe * to delete all extent states in the range. */ extra_flags = EXTENT_CLEAR_ALL_BITS; goto next; } if (ordered->file_offset > cur) { /* * There is a range between [cur, oe->file_offset) not * covered by any ordered extent. * We are safe to delete all extent states, and handle * the ordered extent in the next iteration. */ range_end = ordered->file_offset - 1; extra_flags = EXTENT_CLEAR_ALL_BITS; goto next; } range_end = min(ordered->file_offset + ordered->num_bytes - 1, page_end); ASSERT(range_end + 1 - cur < U32_MAX); range_len = range_end + 1 - cur; if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { /* * If Ordered (Private2) is cleared, it means endio has * already been executed for the range. * We can't delete the extent states as * btrfs_finish_ordered_io() may still use some of them. */ goto next; } btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); /* * IO on this page will never be started, so we need to account * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW * here, must leave that up for the ordered extent completion. * * This will also unlock the range for incoming * btrfs_finish_ordered_io(). */ if (!inode_evicting) clear_extent_bit(tree, cur, range_end, EXTENT_DELALLOC | EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, &cached_state); spin_lock_irq(&inode->ordered_tree.lock); set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); ordered->truncated_len = min(ordered->truncated_len, cur - ordered->file_offset); spin_unlock_irq(&inode->ordered_tree.lock); /* * If the ordered extent has finished, we're safe to delete all * the extent states of the range, otherwise * btrfs_finish_ordered_io() will get executed by endio for * other pages, so we can't delete extent states. */ if (btrfs_dec_test_ordered_pending(inode, &ordered, cur, range_end + 1 - cur)) { btrfs_finish_ordered_io(ordered); /* * The ordered extent has finished, now we're again * safe to delete all extent states of the range. */ extra_flags = EXTENT_CLEAR_ALL_BITS; } next: if (ordered) btrfs_put_ordered_extent(ordered); /* * Qgroup reserved space handler * Sector(s) here will be either: * * 1) Already written to disk or bio already finished * Then its QGROUP_RESERVED bit in io_tree is already cleared. * Qgroup will be handled by its qgroup_record then. * btrfs_qgroup_free_data() call will do nothing here. * * 2) Not written to disk yet * Then btrfs_qgroup_free_data() call will clear the * QGROUP_RESERVED bit of its io_tree, and free the qgroup * reserved data space. * Since the IO will never happen for this page. */ btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); if (!inode_evicting) { clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | extra_flags, &cached_state); } cur = range_end + 1; } /* * We have iterated through all ordered extents of the page, the page * should not have Ordered (Private2) anymore, or the above iteration * did something wrong. */ ASSERT(!folio_test_ordered(folio)); btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); if (!inode_evicting) __btrfs_release_folio(folio, GFP_NOFS); clear_page_extent_mapped(&folio->page); } /* * btrfs_page_mkwrite() is not allowed to change the file size as it gets * called from a page fault handler when a page is first dirtied. Hence we must * be careful to check for EOF conditions here. We set the page up correctly * for a written page which means we get ENOSPC checking when writing into * holes and correct delalloc and unwritten extent mapping on filesystems that * support these features. * * We are not allowed to take the i_mutex here so we have to play games to * protect against truncate races as the page could now be beyond EOF. Because * truncate_setsize() writes the inode size before removing pages, once we have * the page lock we can determine safely if the page is beyond EOF. If it is not * beyond EOF, then the page is guaranteed safe against truncation until we * unlock the page. */ vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vmf->vma->vm_file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct btrfs_ordered_extent *ordered; struct extent_state *cached_state = NULL; struct extent_changeset *data_reserved = NULL; unsigned long zero_start; loff_t size; vm_fault_t ret; int ret2; int reserved = 0; u64 reserved_space; u64 page_start; u64 page_end; u64 end; reserved_space = PAGE_SIZE; sb_start_pagefault(inode->i_sb); page_start = page_offset(page); page_end = page_start + PAGE_SIZE - 1; end = page_end; /* * Reserving delalloc space after obtaining the page lock can lead to * deadlock. For example, if a dirty page is locked by this function * and the call to btrfs_delalloc_reserve_space() ends up triggering * dirty page write out, then the btrfs_writepages() function could * end up waiting indefinitely to get a lock on the page currently * being processed by btrfs_page_mkwrite() function. */ ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, page_start, reserved_space); if (!ret2) { ret2 = file_update_time(vmf->vma->vm_file); reserved = 1; } if (ret2) { ret = vmf_error(ret2); if (reserved) goto out; goto out_noreserve; } ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ again: down_read(&BTRFS_I(inode)->i_mmap_lock); lock_page(page); size = i_size_read(inode); if ((page->mapping != inode->i_mapping) || (page_start >= size)) { /* page got truncated out from underneath us */ goto out_unlock; } wait_on_page_writeback(page); lock_extent(io_tree, page_start, page_end, &cached_state); ret2 = set_page_extent_mapped(page); if (ret2 < 0) { ret = vmf_error(ret2); unlock_extent(io_tree, page_start, page_end, &cached_state); goto out_unlock; } /* * we can't set the delalloc bits if there are pending ordered * extents. Drop our locks and wait for them to finish */ ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); if (ordered) { unlock_extent(io_tree, page_start, page_end, &cached_state); unlock_page(page); up_read(&BTRFS_I(inode)->i_mmap_lock); btrfs_start_ordered_extent(ordered, 1); btrfs_put_ordered_extent(ordered); goto again; } if (page->index == ((size - 1) >> PAGE_SHIFT)) { reserved_space = round_up(size - page_start, fs_info->sectorsize); if (reserved_space < PAGE_SIZE) { end = page_start + reserved_space - 1; btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, PAGE_SIZE - reserved_space, true); } } /* * page_mkwrite gets called when the page is firstly dirtied after it's * faulted in, but write(2) could also dirty a page and set delalloc * bits, thus in this case for space account reason, we still need to * clear any delalloc bits within this page range since we have to * reserve data&meta space before lock_page() (see above comments). */ clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, &cached_state); ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, &cached_state); if (ret2) { unlock_extent(io_tree, page_start, page_end, &cached_state); ret = VM_FAULT_SIGBUS; goto out_unlock; } /* page is wholly or partially inside EOF */ if (page_start + PAGE_SIZE > size) zero_start = offset_in_page(size); else zero_start = PAGE_SIZE; if (zero_start != PAGE_SIZE) memzero_page(page, zero_start, PAGE_SIZE - zero_start); btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); unlock_extent(io_tree, page_start, page_end, &cached_state); up_read(&BTRFS_I(inode)->i_mmap_lock); btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); sb_end_pagefault(inode->i_sb); extent_changeset_free(data_reserved); return VM_FAULT_LOCKED; out_unlock: unlock_page(page); up_read(&BTRFS_I(inode)->i_mmap_lock); out: btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, reserved_space, (ret != 0)); out_noreserve: sb_end_pagefault(inode->i_sb); extent_changeset_free(data_reserved); return ret; } static int btrfs_truncate(struct inode *inode, bool skip_writeback) { struct btrfs_truncate_control control = { .inode = BTRFS_I(inode), .ino = btrfs_ino(BTRFS_I(inode)), .min_type = BTRFS_EXTENT_DATA_KEY, .clear_extent_range = true, }; struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_block_rsv *rsv; int ret; struct btrfs_trans_handle *trans; u64 mask = fs_info->sectorsize - 1; u64 min_size = btrfs_calc_metadata_size(fs_info, 1); if (!skip_writeback) { ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); if (ret) return ret; } /* * Yes ladies and gentlemen, this is indeed ugly. We have a couple of * things going on here: * * 1) We need to reserve space to update our inode. * * 2) We need to have something to cache all the space that is going to * be free'd up by the truncate operation, but also have some slack * space reserved in case it uses space during the truncate (thank you * very much snapshotting). * * And we need these to be separate. The fact is we can use a lot of * space doing the truncate, and we have no earthly idea how much space * we will use, so we need the truncate reservation to be separate so it * doesn't end up using space reserved for updating the inode. We also * need to be able to stop the transaction and start a new one, which * means we need to be able to update the inode several times, and we * have no idea of knowing how many times that will be, so we can't just * reserve 1 item for the entirety of the operation, so that has to be * done separately as well. * * So that leaves us with * * 1) rsv - for the truncate reservation, which we will steal from the * transaction reservation. * 2) fs_info->trans_block_rsv - this will have 1 items worth left for * updating the inode. */ rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); if (!rsv) return -ENOMEM; rsv->size = min_size; rsv->failfast = true; /* * 1 for the truncate slack space * 1 for updating the inode. */ trans = btrfs_start_transaction(root, 2); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } /* Migrate the slack space for the truncate to our reserve */ ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, min_size, false); BUG_ON(ret); trans->block_rsv = rsv; while (1) { struct extent_state *cached_state = NULL; const u64 new_size = inode->i_size; const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); control.new_size = new_size; lock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, &cached_state); /* * We want to drop from the next block forward in case this new * size is not block aligned since we will be keeping the last * block of the extent just the way it is. */ btrfs_drop_extent_map_range(BTRFS_I(inode), ALIGN(new_size, fs_info->sectorsize), (u64)-1, false); ret = btrfs_truncate_inode_items(trans, root, &control); inode_sub_bytes(inode, control.sub_bytes); btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, &cached_state); trans->block_rsv = &fs_info->trans_block_rsv; if (ret != -ENOSPC && ret != -EAGAIN) break; ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); if (ret) break; btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); trans = btrfs_start_transaction(root, 2); if (IS_ERR(trans)) { ret = PTR_ERR(trans); trans = NULL; break; } btrfs_block_rsv_release(fs_info, rsv, -1, NULL); ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, min_size, false); BUG_ON(ret); /* shouldn't happen */ trans->block_rsv = rsv; } /* * We can't call btrfs_truncate_block inside a trans handle as we could * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we * know we've truncated everything except the last little bit, and can * do btrfs_truncate_block and then update the disk_i_size. */ if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); if (ret) goto out; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); } if (trans) { int ret2; trans->block_rsv = &fs_info->trans_block_rsv; ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); if (ret2 && !ret) ret = ret2; ret2 = btrfs_end_transaction(trans); if (ret2 && !ret) ret = ret2; btrfs_btree_balance_dirty(fs_info); } out: btrfs_free_block_rsv(fs_info, rsv); /* * So if we truncate and then write and fsync we normally would just * write the extents that changed, which is a problem if we need to * first truncate that entire inode. So set this flag so we write out * all of the extents in the inode to the sync log so we're completely * safe. * * If no extents were dropped or trimmed we don't need to force the next * fsync to truncate all the inode's items from the log and re-log them * all. This means the truncate operation did not change the file size, * or changed it to a smaller size but there was only an implicit hole * between the old i_size and the new i_size, and there were no prealloc * extents beyond i_size to drop. */ if (control.extents_found > 0) btrfs_set_inode_full_sync(BTRFS_I(inode)); return ret; } struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, struct inode *dir) { struct inode *inode; inode = new_inode(dir->i_sb); if (inode) { /* * Subvolumes don't inherit the sgid bit or the parent's gid if * the parent's sgid bit is set. This is probably a bug. */ inode_init_owner(mnt_userns, inode, NULL, S_IFDIR | (~current_umask() & S_IRWXUGO)); inode->i_op = &btrfs_dir_inode_operations; inode->i_fop = &btrfs_dir_file_operations; } return inode; } struct inode *btrfs_alloc_inode(struct super_block *sb) { struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_inode *ei; struct inode *inode; ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); if (!ei) return NULL; ei->root = NULL; ei->generation = 0; ei->last_trans = 0; ei->last_sub_trans = 0; ei->logged_trans = 0; ei->delalloc_bytes = 0; ei->new_delalloc_bytes = 0; ei->defrag_bytes = 0; ei->disk_i_size = 0; ei->flags = 0; ei->ro_flags = 0; ei->csum_bytes = 0; ei->index_cnt = (u64)-1; ei->dir_index = 0; ei->last_unlink_trans = 0; ei->last_reflink_trans = 0; ei->last_log_commit = 0; spin_lock_init(&ei->lock); spin_lock_init(&ei->io_failure_lock); ei->outstanding_extents = 0; if (sb->s_magic != BTRFS_TEST_MAGIC) btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, BTRFS_BLOCK_RSV_DELALLOC); ei->runtime_flags = 0; ei->prop_compress = BTRFS_COMPRESS_NONE; ei->defrag_compress = BTRFS_COMPRESS_NONE; ei->delayed_node = NULL; ei->i_otime.tv_sec = 0; ei->i_otime.tv_nsec = 0; inode = &ei->vfs_inode; extent_map_tree_init(&ei->extent_tree); extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); extent_io_tree_init(fs_info, &ei->file_extent_tree, IO_TREE_INODE_FILE_EXTENT, NULL); ei->io_failure_tree = RB_ROOT; atomic_set(&ei->sync_writers, 0); mutex_init(&ei->log_mutex); btrfs_ordered_inode_tree_init(&ei->ordered_tree); INIT_LIST_HEAD(&ei->delalloc_inodes); INIT_LIST_HEAD(&ei->delayed_iput); RB_CLEAR_NODE(&ei->rb_node); init_rwsem(&ei->i_mmap_lock); return inode; } #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS void btrfs_test_destroy_inode(struct inode *inode) { btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); } #endif void btrfs_free_inode(struct inode *inode) { kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); } void btrfs_destroy_inode(struct inode *vfs_inode) { struct btrfs_ordered_extent *ordered; struct btrfs_inode *inode = BTRFS_I(vfs_inode); struct btrfs_root *root = inode->root; bool freespace_inode; WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); WARN_ON(vfs_inode->i_data.nrpages); WARN_ON(inode->block_rsv.reserved); WARN_ON(inode->block_rsv.size); WARN_ON(inode->outstanding_extents); if (!S_ISDIR(vfs_inode->i_mode)) { WARN_ON(inode->delalloc_bytes); WARN_ON(inode->new_delalloc_bytes); } WARN_ON(inode->csum_bytes); WARN_ON(inode->defrag_bytes); /* * This can happen where we create an inode, but somebody else also * created the same inode and we need to destroy the one we already * created. */ if (!root) return; /* * If this is a free space inode do not take the ordered extents lockdep * map. */ freespace_inode = btrfs_is_free_space_inode(inode); while (1) { ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); if (!ordered) break; else { btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", ordered->file_offset, ordered->num_bytes); if (!freespace_inode) btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); btrfs_remove_ordered_extent(inode, ordered); btrfs_put_ordered_extent(ordered); btrfs_put_ordered_extent(ordered); } } btrfs_qgroup_check_reserved_leak(inode); inode_tree_del(inode); btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); btrfs_put_root(inode->root); } int btrfs_drop_inode(struct inode *inode) { struct btrfs_root *root = BTRFS_I(inode)->root; if (root == NULL) return 1; /* the snap/subvol tree is on deleting */ if (btrfs_root_refs(&root->root_item) == 0) return 1; else return generic_drop_inode(inode); } static void init_once(void *foo) { struct btrfs_inode *ei = foo; inode_init_once(&ei->vfs_inode); } void __cold btrfs_destroy_cachep(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); bioset_exit(&btrfs_dio_bioset); kmem_cache_destroy(btrfs_inode_cachep); kmem_cache_destroy(btrfs_trans_handle_cachep); kmem_cache_destroy(btrfs_path_cachep); kmem_cache_destroy(btrfs_free_space_cachep); kmem_cache_destroy(btrfs_free_space_bitmap_cachep); } int __init btrfs_init_cachep(void) { btrfs_inode_cachep = kmem_cache_create("btrfs_inode", sizeof(struct btrfs_inode), 0, SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, init_once); if (!btrfs_inode_cachep) goto fail; btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", sizeof(struct btrfs_trans_handle), 0, SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); if (!btrfs_trans_handle_cachep) goto fail; btrfs_path_cachep = kmem_cache_create("btrfs_path", sizeof(struct btrfs_path), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_path_cachep) goto fail; btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", sizeof(struct btrfs_free_space), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_free_space_cachep) goto fail; btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", PAGE_SIZE, PAGE_SIZE, SLAB_MEM_SPREAD, NULL); if (!btrfs_free_space_bitmap_cachep) goto fail; if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, offsetof(struct btrfs_dio_private, bio), BIOSET_NEED_BVECS)) goto fail; return 0; fail: btrfs_destroy_cachep(); return -ENOMEM; } static int btrfs_getattr(struct user_namespace *mnt_userns, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags) { u64 delalloc_bytes; u64 inode_bytes; struct inode *inode = d_inode(path->dentry); u32 blocksize = inode->i_sb->s_blocksize; u32 bi_flags = BTRFS_I(inode)->flags; u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; stat->result_mask |= STATX_BTIME; stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; if (bi_flags & BTRFS_INODE_APPEND) stat->attributes |= STATX_ATTR_APPEND; if (bi_flags & BTRFS_INODE_COMPRESS) stat->attributes |= STATX_ATTR_COMPRESSED; if (bi_flags & BTRFS_INODE_IMMUTABLE) stat->attributes |= STATX_ATTR_IMMUTABLE; if (bi_flags & BTRFS_INODE_NODUMP) stat->attributes |= STATX_ATTR_NODUMP; if (bi_ro_flags & BTRFS_INODE_RO_VERITY) stat->attributes |= STATX_ATTR_VERITY; stat->attributes_mask |= (STATX_ATTR_APPEND | STATX_ATTR_COMPRESSED | STATX_ATTR_IMMUTABLE | STATX_ATTR_NODUMP); generic_fillattr(mnt_userns, inode, stat); stat->dev = BTRFS_I(inode)->root->anon_dev; spin_lock(&BTRFS_I(inode)->lock); delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; inode_bytes = inode_get_bytes(inode); spin_unlock(&BTRFS_I(inode)->lock); stat->blocks = (ALIGN(inode_bytes, blocksize) + ALIGN(delalloc_bytes, blocksize)) >> 9; return 0; } static int btrfs_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); struct btrfs_trans_handle *trans; unsigned int trans_num_items; struct btrfs_root *root = BTRFS_I(old_dir)->root; struct btrfs_root *dest = BTRFS_I(new_dir)->root; struct inode *new_inode = new_dentry->d_inode; struct inode *old_inode = old_dentry->d_inode; struct timespec64 ctime = current_time(old_inode); struct btrfs_rename_ctx old_rename_ctx; struct btrfs_rename_ctx new_rename_ctx; u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); u64 old_idx = 0; u64 new_idx = 0; int ret; int ret2; bool need_abort = false; /* * For non-subvolumes allow exchange only within one subvolume, in the * same inode namespace. Two subvolumes (represented as directory) can * be exchanged as they're a logical link and have a fixed inode number. */ if (root != dest && (old_ino != BTRFS_FIRST_FREE_OBJECTID || new_ino != BTRFS_FIRST_FREE_OBJECTID)) return -EXDEV; /* close the race window with snapshot create/destroy ioctl */ if (old_ino == BTRFS_FIRST_FREE_OBJECTID || new_ino == BTRFS_FIRST_FREE_OBJECTID) down_read(&fs_info->subvol_sem); /* * For each inode: * 1 to remove old dir item * 1 to remove old dir index * 1 to add new dir item * 1 to add new dir index * 1 to update parent inode * * If the parents are the same, we only need to account for one */ trans_num_items = (old_dir == new_dir ? 9 : 10); if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { /* * 1 to remove old root ref * 1 to remove old root backref * 1 to add new root ref * 1 to add new root backref */ trans_num_items += 4; } else { /* * 1 to update inode item * 1 to remove old inode ref * 1 to add new inode ref */ trans_num_items += 3; } if (new_ino == BTRFS_FIRST_FREE_OBJECTID) trans_num_items += 4; else trans_num_items += 3; trans = btrfs_start_transaction(root, trans_num_items); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_notrans; } if (dest != root) { ret = btrfs_record_root_in_trans(trans, dest); if (ret) goto out_fail; } /* * We need to find a free sequence number both in the source and * in the destination directory for the exchange. */ ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); if (ret) goto out_fail; ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); if (ret) goto out_fail; BTRFS_I(old_inode)->dir_index = 0ULL; BTRFS_I(new_inode)->dir_index = 0ULL; /* Reference for the source. */ if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { /* force full log commit if subvolume involved. */ btrfs_set_log_full_commit(trans); } else { ret = btrfs_insert_inode_ref(trans, dest, new_dentry->d_name.name, new_dentry->d_name.len, old_ino, btrfs_ino(BTRFS_I(new_dir)), old_idx); if (ret) goto out_fail; need_abort = true; } /* And now for the dest. */ if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { /* force full log commit if subvolume involved. */ btrfs_set_log_full_commit(trans); } else { ret = btrfs_insert_inode_ref(trans, root, old_dentry->d_name.name, old_dentry->d_name.len, new_ino, btrfs_ino(BTRFS_I(old_dir)), new_idx); if (ret) { if (need_abort) btrfs_abort_transaction(trans, ret); goto out_fail; } } /* Update inode version and ctime/mtime. */ inode_inc_iversion(old_dir); inode_inc_iversion(new_dir); inode_inc_iversion(old_inode); inode_inc_iversion(new_inode); old_dir->i_mtime = ctime; old_dir->i_ctime = ctime; new_dir->i_mtime = ctime; new_dir->i_ctime = ctime; old_inode->i_ctime = ctime; new_inode->i_ctime = ctime; if (old_dentry->d_parent != new_dentry->d_parent) { btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), BTRFS_I(old_inode), 1); btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), BTRFS_I(new_inode), 1); } /* src is a subvolume */ if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); } else { /* src is an inode */ ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), BTRFS_I(old_dentry->d_inode), old_dentry->d_name.name, old_dentry->d_name.len, &old_rename_ctx); if (!ret) ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); } if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } /* dest is a subvolume */ if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); } else { /* dest is an inode */ ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), BTRFS_I(new_dentry->d_inode), new_dentry->d_name.name, new_dentry->d_name.len, &new_rename_ctx); if (!ret) ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); } if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), new_dentry->d_name.name, new_dentry->d_name.len, 0, old_idx); if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), old_dentry->d_name.name, old_dentry->d_name.len, 0, new_idx); if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } if (old_inode->i_nlink == 1) BTRFS_I(old_inode)->dir_index = old_idx; if (new_inode->i_nlink == 1) BTRFS_I(new_inode)->dir_index = new_idx; /* * Now pin the logs of the roots. We do it to ensure that no other task * can sync the logs while we are in progress with the rename, because * that could result in an inconsistency in case any of the inodes that * are part of this rename operation were logged before. */ if (old_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_pin_log_trans(root); if (new_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_pin_log_trans(dest); /* Do the log updates for all inodes. */ if (old_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), old_rename_ctx.index, new_dentry->d_parent); if (new_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), new_rename_ctx.index, old_dentry->d_parent); /* Now unpin the logs. */ if (old_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_end_log_trans(root); if (new_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_end_log_trans(dest); out_fail: ret2 = btrfs_end_transaction(trans); ret = ret ? ret : ret2; out_notrans: if (new_ino == BTRFS_FIRST_FREE_OBJECTID || old_ino == BTRFS_FIRST_FREE_OBJECTID) up_read(&fs_info->subvol_sem); return ret; } static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns, struct inode *dir) { struct inode *inode; inode = new_inode(dir->i_sb); if (inode) { inode_init_owner(mnt_userns, inode, dir, S_IFCHR | WHITEOUT_MODE); inode->i_op = &btrfs_special_inode_operations; init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); } return inode; } static int btrfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); struct btrfs_new_inode_args whiteout_args = { .dir = old_dir, .dentry = old_dentry, }; struct btrfs_trans_handle *trans; unsigned int trans_num_items; struct btrfs_root *root = BTRFS_I(old_dir)->root; struct btrfs_root *dest = BTRFS_I(new_dir)->root; struct inode *new_inode = d_inode(new_dentry); struct inode *old_inode = d_inode(old_dentry); struct btrfs_rename_ctx rename_ctx; u64 index = 0; int ret; int ret2; u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) return -EPERM; /* we only allow rename subvolume link between subvolumes */ if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) return -EXDEV; if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) return -ENOTEMPTY; if (S_ISDIR(old_inode->i_mode) && new_inode && new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) return -ENOTEMPTY; /* check for collisions, even if the name isn't there */ ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, new_dentry->d_name.name, new_dentry->d_name.len); if (ret) { if (ret == -EEXIST) { /* we shouldn't get * eexist without a new_inode */ if (WARN_ON(!new_inode)) { return ret; } } else { /* maybe -EOVERFLOW */ return ret; } } ret = 0; /* * we're using rename to replace one file with another. Start IO on it * now so we don't add too much work to the end of the transaction */ if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) filemap_flush(old_inode->i_mapping); if (flags & RENAME_WHITEOUT) { whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir); if (!whiteout_args.inode) return -ENOMEM; ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); if (ret) goto out_whiteout_inode; } else { /* 1 to update the old parent inode. */ trans_num_items = 1; } if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { /* Close the race window with snapshot create/destroy ioctl */ down_read(&fs_info->subvol_sem); /* * 1 to remove old root ref * 1 to remove old root backref * 1 to add new root ref * 1 to add new root backref */ trans_num_items += 4; } else { /* * 1 to update inode * 1 to remove old inode ref * 1 to add new inode ref */ trans_num_items += 3; } /* * 1 to remove old dir item * 1 to remove old dir index * 1 to add new dir item * 1 to add new dir index */ trans_num_items += 4; /* 1 to update new parent inode if it's not the same as the old parent */ if (new_dir != old_dir) trans_num_items++; if (new_inode) { /* * 1 to update inode * 1 to remove inode ref * 1 to remove dir item * 1 to remove dir index * 1 to possibly add orphan item */ trans_num_items += 5; } trans = btrfs_start_transaction(root, trans_num_items); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_notrans; } if (dest != root) { ret = btrfs_record_root_in_trans(trans, dest); if (ret) goto out_fail; } ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); if (ret) goto out_fail; BTRFS_I(old_inode)->dir_index = 0ULL; if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { /* force full log commit if subvolume involved. */ btrfs_set_log_full_commit(trans); } else { ret = btrfs_insert_inode_ref(trans, dest, new_dentry->d_name.name, new_dentry->d_name.len, old_ino, btrfs_ino(BTRFS_I(new_dir)), index); if (ret) goto out_fail; } inode_inc_iversion(old_dir); inode_inc_iversion(new_dir); inode_inc_iversion(old_inode); old_dir->i_mtime = current_time(old_dir); old_dir->i_ctime = old_dir->i_mtime; new_dir->i_mtime = old_dir->i_mtime; new_dir->i_ctime = old_dir->i_mtime; old_inode->i_ctime = old_dir->i_mtime; if (old_dentry->d_parent != new_dentry->d_parent) btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), BTRFS_I(old_inode), 1); if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); } else { ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), BTRFS_I(d_inode(old_dentry)), old_dentry->d_name.name, old_dentry->d_name.len, &rename_ctx); if (!ret) ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); } if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } if (new_inode) { inode_inc_iversion(new_inode); new_inode->i_ctime = current_time(new_inode); if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); BUG_ON(new_inode->i_nlink == 0); } else { ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), BTRFS_I(d_inode(new_dentry)), new_dentry->d_name.name, new_dentry->d_name.len); } if (!ret && new_inode->i_nlink == 0) ret = btrfs_orphan_add(trans, BTRFS_I(d_inode(new_dentry))); if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } } ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), new_dentry->d_name.name, new_dentry->d_name.len, 0, index); if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } if (old_inode->i_nlink == 1) BTRFS_I(old_inode)->dir_index = index; if (old_ino != BTRFS_FIRST_FREE_OBJECTID) btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), rename_ctx.index, new_dentry->d_parent); if (flags & RENAME_WHITEOUT) { ret = btrfs_create_new_inode(trans, &whiteout_args); if (ret) { btrfs_abort_transaction(trans, ret); goto out_fail; } else { unlock_new_inode(whiteout_args.inode); iput(whiteout_args.inode); whiteout_args.inode = NULL; } } out_fail: ret2 = btrfs_end_transaction(trans); ret = ret ? ret : ret2; out_notrans: if (old_ino == BTRFS_FIRST_FREE_OBJECTID) up_read(&fs_info->subvol_sem); if (flags & RENAME_WHITEOUT) btrfs_new_inode_args_destroy(&whiteout_args); out_whiteout_inode: if (flags & RENAME_WHITEOUT) iput(whiteout_args.inode); return ret; } static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { int ret; if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) return -EINVAL; if (flags & RENAME_EXCHANGE) ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); else ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, new_dentry, flags); btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); return ret; } struct btrfs_delalloc_work { struct inode *inode; struct completion completion; struct list_head list; struct btrfs_work work; }; static void btrfs_run_delalloc_work(struct btrfs_work *work) { struct btrfs_delalloc_work *delalloc_work; struct inode *inode; delalloc_work = container_of(work, struct btrfs_delalloc_work, work); inode = delalloc_work->inode; filemap_flush(inode->i_mapping); if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &BTRFS_I(inode)->runtime_flags)) filemap_flush(inode->i_mapping); iput(inode); complete(&delalloc_work->completion); } static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) { struct btrfs_delalloc_work *work; work = kmalloc(sizeof(*work), GFP_NOFS); if (!work) return NULL; init_completion(&work->completion); INIT_LIST_HEAD(&work->list); work->inode = inode; btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); return work; } /* * some fairly slow code that needs optimization. This walks the list * of all the inodes with pending delalloc and forces them to disk. */ static int start_delalloc_inodes(struct btrfs_root *root, struct writeback_control *wbc, bool snapshot, bool in_reclaim_context) { struct btrfs_inode *binode; struct inode *inode; struct btrfs_delalloc_work *work, *next; struct list_head works; struct list_head splice; int ret = 0; bool full_flush = wbc->nr_to_write == LONG_MAX; INIT_LIST_HEAD(&works); INIT_LIST_HEAD(&splice); mutex_lock(&root->delalloc_mutex); spin_lock(&root->delalloc_lock); list_splice_init(&root->delalloc_inodes, &splice); while (!list_empty(&splice)) { binode = list_entry(splice.next, struct btrfs_inode, delalloc_inodes); list_move_tail(&binode->delalloc_inodes, &root->delalloc_inodes); if (in_reclaim_context && test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) continue; inode = igrab(&binode->vfs_inode); if (!inode) { cond_resched_lock(&root->delalloc_lock); continue; } spin_unlock(&root->delalloc_lock); if (snapshot) set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &binode->runtime_flags); if (full_flush) { work = btrfs_alloc_delalloc_work(inode); if (!work) { iput(inode); ret = -ENOMEM; goto out; } list_add_tail(&work->list, &works); btrfs_queue_work(root->fs_info->flush_workers, &work->work); } else { ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); btrfs_add_delayed_iput(inode); if (ret || wbc->nr_to_write <= 0) goto out; } cond_resched(); spin_lock(&root->delalloc_lock); } spin_unlock(&root->delalloc_lock); out: list_for_each_entry_safe(work, next, &works, list) { list_del_init(&work->list); wait_for_completion(&work->completion); kfree(work); } if (!list_empty(&splice)) { spin_lock(&root->delalloc_lock); list_splice_tail(&splice, &root->delalloc_inodes); spin_unlock(&root->delalloc_lock); } mutex_unlock(&root->delalloc_mutex); return ret; } int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) { struct writeback_control wbc = { .nr_to_write = LONG_MAX, .sync_mode = WB_SYNC_NONE, .range_start = 0, .range_end = LLONG_MAX, }; struct btrfs_fs_info *fs_info = root->fs_info; if (BTRFS_FS_ERROR(fs_info)) return -EROFS; return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); } int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, bool in_reclaim_context) { struct writeback_control wbc = { .nr_to_write = nr, .sync_mode = WB_SYNC_NONE, .range_start = 0, .range_end = LLONG_MAX, }; struct btrfs_root *root; struct list_head splice; int ret; if (BTRFS_FS_ERROR(fs_info)) return -EROFS; INIT_LIST_HEAD(&splice); mutex_lock(&fs_info->delalloc_root_mutex); spin_lock(&fs_info->delalloc_root_lock); list_splice_init(&fs_info->delalloc_roots, &splice); while (!list_empty(&splice)) { /* * Reset nr_to_write here so we know that we're doing a full * flush. */ if (nr == LONG_MAX) wbc.nr_to_write = LONG_MAX; root = list_first_entry(&splice, struct btrfs_root, delalloc_root); root = btrfs_grab_root(root); BUG_ON(!root); list_move_tail(&root->delalloc_root, &fs_info->delalloc_roots); spin_unlock(&fs_info->delalloc_root_lock); ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); btrfs_put_root(root); if (ret < 0 || wbc.nr_to_write <= 0) goto out; spin_lock(&fs_info->delalloc_root_lock); } spin_unlock(&fs_info->delalloc_root_lock); ret = 0; out: if (!list_empty(&splice)) { spin_lock(&fs_info->delalloc_root_lock); list_splice_tail(&splice, &fs_info->delalloc_roots); spin_unlock(&fs_info->delalloc_root_lock); } mutex_unlock(&fs_info->delalloc_root_mutex); return ret; } static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, const char *symname) { struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_path *path; struct btrfs_key key; struct inode *inode; struct btrfs_new_inode_args new_inode_args = { .dir = dir, .dentry = dentry, }; unsigned int trans_num_items; int err; int name_len; int datasize; unsigned long ptr; struct btrfs_file_extent_item *ei; struct extent_buffer *leaf; name_len = strlen(symname); if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) return -ENAMETOOLONG; inode = new_inode(dir->i_sb); if (!inode) return -ENOMEM; inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO); inode->i_op = &btrfs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &btrfs_aops; btrfs_i_size_write(BTRFS_I(inode), name_len); inode_set_bytes(inode, name_len); new_inode_args.inode = inode; err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); if (err) goto out_inode; /* 1 additional item for the inline extent */ trans_num_items++; trans = btrfs_start_transaction(root, trans_num_items); if (IS_ERR(trans)) { err = PTR_ERR(trans); goto out_new_inode_args; } err = btrfs_create_new_inode(trans, &new_inode_args); if (err) goto out; path = btrfs_alloc_path(); if (!path) { err = -ENOMEM; btrfs_abort_transaction(trans, err); discard_new_inode(inode); inode = NULL; goto out; } key.objectid = btrfs_ino(BTRFS_I(inode)); key.offset = 0; key.type = BTRFS_EXTENT_DATA_KEY; datasize = btrfs_file_extent_calc_inline_size(name_len); err = btrfs_insert_empty_item(trans, root, path, &key, datasize); if (err) { btrfs_abort_transaction(trans, err); btrfs_free_path(path); discard_new_inode(inode); inode = NULL; goto out; } leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(leaf, ei, trans->transid); btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); btrfs_set_file_extent_encryption(leaf, ei, 0); btrfs_set_file_extent_compression(leaf, ei, 0); btrfs_set_file_extent_other_encoding(leaf, ei, 0); btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); ptr = btrfs_file_extent_inline_start(ei); write_extent_buffer(leaf, symname, ptr, name_len); btrfs_mark_buffer_dirty(leaf); btrfs_free_path(path); d_instantiate_new(dentry, inode); err = 0; out: btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); out_new_inode_args: btrfs_new_inode_args_destroy(&new_inode_args); out_inode: if (err) iput(inode); return err; } static struct btrfs_trans_handle *insert_prealloc_file_extent( struct btrfs_trans_handle *trans_in, struct btrfs_inode *inode, struct btrfs_key *ins, u64 file_offset) { struct btrfs_file_extent_item stack_fi; struct btrfs_replace_extent_info extent_info; struct btrfs_trans_handle *trans = trans_in; struct btrfs_path *path; u64 start = ins->objectid; u64 len = ins->offset; int qgroup_released; int ret; memset(&stack_fi, 0, sizeof(stack_fi)); btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); /* Encryption and other encoding is reserved and all 0 */ qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); if (qgroup_released < 0) return ERR_PTR(qgroup_released); if (trans) { ret = insert_reserved_file_extent(trans, inode, file_offset, &stack_fi, true, qgroup_released); if (ret) goto free_qgroup; return trans; } extent_info.disk_offset = start; extent_info.disk_len = len; extent_info.data_offset = 0; extent_info.data_len = len; extent_info.file_offset = file_offset; extent_info.extent_buf = (char *)&stack_fi; extent_info.is_new_extent = true; extent_info.update_times = true; extent_info.qgroup_reserved = qgroup_released; extent_info.insertions = 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto free_qgroup; } ret = btrfs_replace_file_extents(inode, path, file_offset, file_offset + len - 1, &extent_info, &trans); btrfs_free_path(path); if (ret) goto free_qgroup; return trans; free_qgroup: /* * We have released qgroup data range at the beginning of the function, * and normally qgroup_released bytes will be freed when committing * transaction. * But if we error out early, we have to free what we have released * or we leak qgroup data reservation. */ btrfs_qgroup_free_refroot(inode->root->fs_info, inode->root->root_key.objectid, qgroup_released, BTRFS_QGROUP_RSV_DATA); return ERR_PTR(ret); } static int __btrfs_prealloc_file_range(struct inode *inode, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint, struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_map *em; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_key ins; u64 cur_offset = start; u64 clear_offset = start; u64 i_size; u64 cur_bytes; u64 last_alloc = (u64)-1; int ret = 0; bool own_trans = true; u64 end = start + num_bytes - 1; if (trans) own_trans = false; while (num_bytes > 0) { cur_bytes = min_t(u64, num_bytes, SZ_256M); cur_bytes = max(cur_bytes, min_size); /* * If we are severely fragmented we could end up with really * small allocations, so if the allocator is returning small * chunks lets make its job easier by only searching for those * sized chunks. */ cur_bytes = min(cur_bytes, last_alloc); ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, min_size, 0, *alloc_hint, &ins, 1, 0); if (ret) break; /* * We've reserved this space, and thus converted it from * ->bytes_may_use to ->bytes_reserved. Any error that happens * from here on out we will only need to clear our reservation * for the remaining unreserved area, so advance our * clear_offset by our extent size. */ clear_offset += ins.offset; last_alloc = ins.offset; trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), &ins, cur_offset); /* * Now that we inserted the prealloc extent we can finally * decrement the number of reservations in the block group. * If we did it before, we could race with relocation and have * relocation miss the reserved extent, making it fail later. */ btrfs_dec_block_group_reservations(fs_info, ins.objectid); if (IS_ERR(trans)) { ret = PTR_ERR(trans); btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); break; } em = alloc_extent_map(); if (!em) { btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, cur_offset + ins.offset - 1, false); btrfs_set_inode_full_sync(BTRFS_I(inode)); goto next; } em->start = cur_offset; em->orig_start = cur_offset; em->len = ins.offset; em->block_start = ins.objectid; em->block_len = ins.offset; em->orig_block_len = ins.offset; em->ram_bytes = ins.offset; set_bit(EXTENT_FLAG_PREALLOC, &em->flags); em->generation = trans->transid; ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); free_extent_map(em); next: num_bytes -= ins.offset; cur_offset += ins.offset; *alloc_hint = ins.objectid + ins.offset; inode_inc_iversion(inode); inode->i_ctime = current_time(inode); BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; if (!(mode & FALLOC_FL_KEEP_SIZE) && (actual_len > inode->i_size) && (cur_offset > inode->i_size)) { if (cur_offset > actual_len) i_size = actual_len; else i_size = cur_offset; i_size_write(inode, i_size); btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); } ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); if (ret) { btrfs_abort_transaction(trans, ret); if (own_trans) btrfs_end_transaction(trans); break; } if (own_trans) { btrfs_end_transaction(trans); trans = NULL; } } if (clear_offset < end) btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, end - clear_offset + 1); return ret; } int btrfs_prealloc_file_range(struct inode *inode, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint) { return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, min_size, actual_len, alloc_hint, NULL); } int btrfs_prealloc_file_range_trans(struct inode *inode, struct btrfs_trans_handle *trans, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint) { return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, min_size, actual_len, alloc_hint, trans); } static int btrfs_permission(struct user_namespace *mnt_userns, struct inode *inode, int mask) { struct btrfs_root *root = BTRFS_I(inode)->root; umode_t mode = inode->i_mode; if (mask & MAY_WRITE && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { if (btrfs_root_readonly(root)) return -EROFS; if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) return -EACCES; } return generic_permission(mnt_userns, inode, mask); } static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, struct file *file, umode_t mode) { struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct btrfs_trans_handle *trans; struct btrfs_root *root = BTRFS_I(dir)->root; struct inode *inode; struct btrfs_new_inode_args new_inode_args = { .dir = dir, .dentry = file->f_path.dentry, .orphan = true, }; unsigned int trans_num_items; int ret; inode = new_inode(dir->i_sb); if (!inode) return -ENOMEM; inode_init_owner(mnt_userns, inode, dir, mode); inode->i_fop = &btrfs_file_operations; inode->i_op = &btrfs_file_inode_operations; inode->i_mapping->a_ops = &btrfs_aops; new_inode_args.inode = inode; ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); if (ret) goto out_inode; trans = btrfs_start_transaction(root, trans_num_items); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_new_inode_args; } ret = btrfs_create_new_inode(trans, &new_inode_args); /* * We set number of links to 0 in btrfs_create_new_inode(), and here we * set it to 1 because d_tmpfile() will issue a warning if the count is * 0, through: * * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() */ set_nlink(inode, 1); if (!ret) { d_tmpfile(file, inode); unlock_new_inode(inode); mark_inode_dirty(inode); } btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); out_new_inode_args: btrfs_new_inode_args_destroy(&new_inode_args); out_inode: if (ret) iput(inode); return finish_open_simple(file, ret); } void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) { struct btrfs_fs_info *fs_info = inode->root->fs_info; unsigned long index = start >> PAGE_SHIFT; unsigned long end_index = end >> PAGE_SHIFT; struct page *page; u32 len; ASSERT(end + 1 - start <= U32_MAX); len = end + 1 - start; while (index <= end_index) { page = find_get_page(inode->vfs_inode.i_mapping, index); ASSERT(page); /* Pages should be in the extent_io_tree */ btrfs_page_set_writeback(fs_info, page, start, len); put_page(page); index++; } } int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, int compress_type) { switch (compress_type) { case BTRFS_COMPRESS_NONE: return BTRFS_ENCODED_IO_COMPRESSION_NONE; case BTRFS_COMPRESS_ZLIB: return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; case BTRFS_COMPRESS_LZO: /* * The LZO format depends on the sector size. 64K is the maximum * sector size that we support. */ if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) return -EINVAL; return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + (fs_info->sectorsize_bits - 12); case BTRFS_COMPRESS_ZSTD: return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; default: return -EUCLEAN; } } static ssize_t btrfs_encoded_read_inline( struct kiocb *iocb, struct iov_iter *iter, u64 start, u64 lockend, struct extent_state **cached_state, u64 extent_start, size_t count, struct btrfs_ioctl_encoded_io_args *encoded, bool *unlocked) { struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_io_tree *io_tree = &inode->io_tree; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_file_extent_item *item; u64 ram_bytes; unsigned long ptr; void *tmp; ssize_t ret; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), extent_start, 0); if (ret) { if (ret > 0) { /* The extent item disappeared? */ ret = -EIO; } goto out; } leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); ptr = btrfs_file_extent_inline_start(item); encoded->len = min_t(u64, extent_start + ram_bytes, inode->vfs_inode.i_size) - iocb->ki_pos; ret = btrfs_encoded_io_compression_from_extent(fs_info, btrfs_file_extent_compression(leaf, item)); if (ret < 0) goto out; encoded->compression = ret; if (encoded->compression) { size_t inline_size; inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); if (inline_size > count) { ret = -ENOBUFS; goto out; } count = inline_size; encoded->unencoded_len = ram_bytes; encoded->unencoded_offset = iocb->ki_pos - extent_start; } else { count = min_t(u64, count, encoded->len); encoded->len = count; encoded->unencoded_len = count; ptr += iocb->ki_pos - extent_start; } tmp = kmalloc(count, GFP_NOFS); if (!tmp) { ret = -ENOMEM; goto out; } read_extent_buffer(leaf, tmp, ptr, count); btrfs_release_path(path); unlock_extent(io_tree, start, lockend, cached_state); btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); *unlocked = true; ret = copy_to_iter(tmp, count, iter); if (ret != count) ret = -EFAULT; kfree(tmp); out: btrfs_free_path(path); return ret; } struct btrfs_encoded_read_private { struct btrfs_inode *inode; u64 file_offset; wait_queue_head_t wait; atomic_t pending; blk_status_t status; bool skip_csum; }; static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num) { struct btrfs_encoded_read_private *priv = btrfs_bio(bio)->private; struct btrfs_fs_info *fs_info = inode->root->fs_info; blk_status_t ret; if (!priv->skip_csum) { ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); if (ret) return ret; } atomic_inc(&priv->pending); btrfs_submit_bio(fs_info, bio, mirror_num); return BLK_STS_OK; } static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) { const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); struct btrfs_encoded_read_private *priv = bbio->private; struct btrfs_inode *inode = priv->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; u32 sectorsize = fs_info->sectorsize; struct bio_vec *bvec; struct bvec_iter_all iter_all; u32 bio_offset = 0; if (priv->skip_csum || !uptodate) return bbio->bio.bi_status; bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { unsigned int i, nr_sectors, pgoff; nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); pgoff = bvec->bv_offset; for (i = 0; i < nr_sectors; i++) { ASSERT(pgoff < PAGE_SIZE); if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset, bvec->bv_page, pgoff)) return BLK_STS_IOERR; bio_offset += sectorsize; pgoff += sectorsize; } } return BLK_STS_OK; } static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) { struct btrfs_encoded_read_private *priv = bbio->private; blk_status_t status; status = btrfs_encoded_read_verify_csum(bbio); if (status) { /* * The memory barrier implied by the atomic_dec_return() here * pairs with the memory barrier implied by the * atomic_dec_return() or io_wait_event() in * btrfs_encoded_read_regular_fill_pages() to ensure that this * write is observed before the load of status in * btrfs_encoded_read_regular_fill_pages(). */ WRITE_ONCE(priv->status, status); } if (!atomic_dec_return(&priv->pending)) wake_up(&priv->wait); btrfs_bio_free_csum(bbio); bio_put(&bbio->bio); } int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 disk_io_size, struct page **pages) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_encoded_read_private priv = { .inode = inode, .file_offset = file_offset, .pending = ATOMIC_INIT(1), .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), }; unsigned long i = 0; u64 cur = 0; int ret; init_waitqueue_head(&priv.wait); /* * Submit bios for the extent, splitting due to bio or stripe limits as * necessary. */ while (cur < disk_io_size) { struct extent_map *em; struct btrfs_io_geometry geom; struct bio *bio = NULL; u64 remaining; em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, disk_io_size - cur); if (IS_ERR(em)) { ret = PTR_ERR(em); } else { ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, disk_bytenr + cur, &geom); free_extent_map(em); } if (ret) { WRITE_ONCE(priv.status, errno_to_blk_status(ret)); break; } remaining = min(geom.len, disk_io_size - cur); while (bio || remaining) { size_t bytes = min_t(u64, remaining, PAGE_SIZE); if (!bio) { bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, btrfs_encoded_read_endio, &priv); bio->bi_iter.bi_sector = (disk_bytenr + cur) >> SECTOR_SHIFT; } if (!bytes || bio_add_page(bio, pages[i], bytes, 0) < bytes) { blk_status_t status; status = submit_encoded_read_bio(inode, bio, 0); if (status) { WRITE_ONCE(priv.status, status); bio_put(bio); goto out; } bio = NULL; continue; } i++; cur += bytes; remaining -= bytes; } } out: if (atomic_dec_return(&priv.pending)) io_wait_event(priv.wait, !atomic_read(&priv.pending)); /* See btrfs_encoded_read_endio() for ordering. */ return blk_status_to_errno(READ_ONCE(priv.status)); } static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, u64 start, u64 lockend, struct extent_state **cached_state, u64 disk_bytenr, u64 disk_io_size, size_t count, bool compressed, bool *unlocked) { struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); struct extent_io_tree *io_tree = &inode->io_tree; struct page **pages; unsigned long nr_pages, i; u64 cur; size_t page_offset; ssize_t ret; nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); if (!pages) return -ENOMEM; ret = btrfs_alloc_page_array(nr_pages, pages); if (ret) { ret = -ENOMEM; goto out; } ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, disk_io_size, pages); if (ret) goto out; unlock_extent(io_tree, start, lockend, cached_state); btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); *unlocked = true; if (compressed) { i = 0; page_offset = 0; } else { i = (iocb->ki_pos - start) >> PAGE_SHIFT; page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); } cur = 0; while (cur < count) { size_t bytes = min_t(size_t, count - cur, PAGE_SIZE - page_offset); if (copy_page_to_iter(pages[i], page_offset, bytes, iter) != bytes) { ret = -EFAULT; goto out; } i++; cur += bytes; page_offset = 0; } ret = count; out: for (i = 0; i < nr_pages; i++) { if (pages[i]) __free_page(pages[i]); } kfree(pages); return ret; } ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, struct btrfs_ioctl_encoded_io_args *encoded) { struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_io_tree *io_tree = &inode->io_tree; ssize_t ret; size_t count = iov_iter_count(iter); u64 start, lockend, disk_bytenr, disk_io_size; struct extent_state *cached_state = NULL; struct extent_map *em; bool unlocked = false; file_accessed(iocb->ki_filp); btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); if (iocb->ki_pos >= inode->vfs_inode.i_size) { btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); return 0; } start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); /* * We don't know how long the extent containing iocb->ki_pos is, but if * it's compressed we know that it won't be longer than this. */ lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; for (;;) { struct btrfs_ordered_extent *ordered; ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, lockend - start + 1); if (ret) goto out_unlock_inode; lock_extent(io_tree, start, lockend, &cached_state); ordered = btrfs_lookup_ordered_range(inode, start, lockend - start + 1); if (!ordered) break; btrfs_put_ordered_extent(ordered); unlock_extent(io_tree, start, lockend, &cached_state); cond_resched(); } em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out_unlock_extent; } if (em->block_start == EXTENT_MAP_INLINE) { u64 extent_start = em->start; /* * For inline extents we get everything we need out of the * extent item. */ free_extent_map(em); em = NULL; ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, &cached_state, extent_start, count, encoded, &unlocked); goto out; } /* * We only want to return up to EOF even if the extent extends beyond * that. */ encoded->len = min_t(u64, extent_map_end(em), inode->vfs_inode.i_size) - iocb->ki_pos; if (em->block_start == EXTENT_MAP_HOLE || test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { disk_bytenr = EXTENT_MAP_HOLE; count = min_t(u64, count, encoded->len); encoded->len = count; encoded->unencoded_len = count; } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { disk_bytenr = em->block_start; /* * Bail if the buffer isn't large enough to return the whole * compressed extent. */ if (em->block_len > count) { ret = -ENOBUFS; goto out_em; } disk_io_size = em->block_len; count = em->block_len; encoded->unencoded_len = em->ram_bytes; encoded->unencoded_offset = iocb->ki_pos - em->orig_start; ret = btrfs_encoded_io_compression_from_extent(fs_info, em->compress_type); if (ret < 0) goto out_em; encoded->compression = ret; } else { disk_bytenr = em->block_start + (start - em->start); if (encoded->len > count) encoded->len = count; /* * Don't read beyond what we locked. This also limits the page * allocations that we'll do. */ disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; count = start + disk_io_size - iocb->ki_pos; encoded->len = count; encoded->unencoded_len = count; disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); } free_extent_map(em); em = NULL; if (disk_bytenr == EXTENT_MAP_HOLE) { unlock_extent(io_tree, start, lockend, &cached_state); btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); unlocked = true; ret = iov_iter_zero(count, iter); if (ret != count) ret = -EFAULT; } else { ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, &cached_state, disk_bytenr, disk_io_size, count, encoded->compression, &unlocked); } out: if (ret >= 0) iocb->ki_pos += encoded->len; out_em: free_extent_map(em); out_unlock_extent: if (!unlocked) unlock_extent(io_tree, start, lockend, &cached_state); out_unlock_inode: if (!unlocked) btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); return ret; } ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, const struct btrfs_ioctl_encoded_io_args *encoded) { struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_io_tree *io_tree = &inode->io_tree; struct extent_changeset *data_reserved = NULL; struct extent_state *cached_state = NULL; int compression; size_t orig_count; u64 start, end; u64 num_bytes, ram_bytes, disk_num_bytes; unsigned long nr_pages, i; struct page **pages; struct btrfs_key ins; bool extent_reserved = false; struct extent_map *em; ssize_t ret; switch (encoded->compression) { case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: compression = BTRFS_COMPRESS_ZLIB; break; case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: compression = BTRFS_COMPRESS_ZSTD; break; case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: /* The sector size must match for LZO. */ if (encoded->compression - BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != fs_info->sectorsize_bits) return -EINVAL; compression = BTRFS_COMPRESS_LZO; break; default: return -EINVAL; } if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) return -EINVAL; orig_count = iov_iter_count(from); /* The extent size must be sane. */ if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) return -EINVAL; /* * The compressed data must be smaller than the decompressed data. * * It's of course possible for data to compress to larger or the same * size, but the buffered I/O path falls back to no compression for such * data, and we don't want to break any assumptions by creating these * extents. * * Note that this is less strict than the current check we have that the * compressed data must be at least one sector smaller than the * decompressed data. We only want to enforce the weaker requirement * from old kernels that it is at least one byte smaller. */ if (orig_count >= encoded->unencoded_len) return -EINVAL; /* The extent must start on a sector boundary. */ start = iocb->ki_pos; if (!IS_ALIGNED(start, fs_info->sectorsize)) return -EINVAL; /* * The extent must end on a sector boundary. However, we allow a write * which ends at or extends i_size to have an unaligned length; we round * up the extent size and set i_size to the unaligned end. */ if (start + encoded->len < inode->vfs_inode.i_size && !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) return -EINVAL; /* Finally, the offset in the unencoded data must be sector-aligned. */ if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) return -EINVAL; num_bytes = ALIGN(encoded->len, fs_info->sectorsize); ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); end = start + num_bytes - 1; /* * If the extent cannot be inline, the compressed data on disk must be * sector-aligned. For convenience, we extend it with zeroes if it * isn't. */ disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); if (!pages) return -ENOMEM; for (i = 0; i < nr_pages; i++) { size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); char *kaddr; pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); if (!pages[i]) { ret = -ENOMEM; goto out_pages; } kaddr = kmap_local_page(pages[i]); if (copy_from_iter(kaddr, bytes, from) != bytes) { kunmap_local(kaddr); ret = -EFAULT; goto out_pages; } if (bytes < PAGE_SIZE) memset(kaddr + bytes, 0, PAGE_SIZE - bytes); kunmap_local(kaddr); } for (;;) { struct btrfs_ordered_extent *ordered; ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); if (ret) goto out_pages; ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, start >> PAGE_SHIFT, end >> PAGE_SHIFT); if (ret) goto out_pages; lock_extent(io_tree, start, end, &cached_state); ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); if (!ordered && !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) break; if (ordered) btrfs_put_ordered_extent(ordered); unlock_extent(io_tree, start, end, &cached_state); cond_resched(); } /* * We don't use the higher-level delalloc space functions because our * num_bytes and disk_num_bytes are different. */ ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); if (ret) goto out_unlock; ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); if (ret) goto out_free_data_space; ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, false); if (ret) goto out_qgroup_free_data; /* Try an inline extent first. */ if (start == 0 && encoded->unencoded_len == encoded->len && encoded->unencoded_offset == 0) { ret = cow_file_range_inline(inode, encoded->len, orig_count, compression, pages, true); if (ret <= 0) { if (ret == 0) ret = orig_count; goto out_delalloc_release; } } ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, disk_num_bytes, 0, 0, &ins, 1, 1); if (ret) goto out_delalloc_release; extent_reserved = true; em = create_io_em(inode, start, num_bytes, start - encoded->unencoded_offset, ins.objectid, ins.offset, ins.offset, ram_bytes, compression, BTRFS_ORDERED_COMPRESSED); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out_free_reserved; } free_extent_map(em); ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, ins.objectid, ins.offset, encoded->unencoded_offset, (1 << BTRFS_ORDERED_ENCODED) | (1 << BTRFS_ORDERED_COMPRESSED), compression); if (ret) { btrfs_drop_extent_map_range(inode, start, end, false); goto out_free_reserved; } btrfs_dec_block_group_reservations(fs_info, ins.objectid); if (start + encoded->len > inode->vfs_inode.i_size) i_size_write(&inode->vfs_inode, start + encoded->len); unlock_extent(io_tree, start, end, &cached_state); btrfs_delalloc_release_extents(inode, num_bytes); if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, ins.offset, pages, nr_pages, 0, NULL, false)) { btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); ret = -EIO; goto out_pages; } ret = orig_count; goto out; out_free_reserved: btrfs_dec_block_group_reservations(fs_info, ins.objectid); btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); out_delalloc_release: btrfs_delalloc_release_extents(inode, num_bytes); btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); out_qgroup_free_data: if (ret < 0) btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); out_free_data_space: /* * If btrfs_reserve_extent() succeeded, then we already decremented * bytes_may_use. */ if (!extent_reserved) btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); out_unlock: unlock_extent(io_tree, start, end, &cached_state); out_pages: for (i = 0; i < nr_pages; i++) { if (pages[i]) __free_page(pages[i]); } kvfree(pages); out: if (ret >= 0) iocb->ki_pos += encoded->len; return ret; } #ifdef CONFIG_SWAP /* * Add an entry indicating a block group or device which is pinned by a * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a * negative errno on failure. */ static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, bool is_block_group) { struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; struct btrfs_swapfile_pin *sp, *entry; struct rb_node **p; struct rb_node *parent = NULL; sp = kmalloc(sizeof(*sp), GFP_NOFS); if (!sp) return -ENOMEM; sp->ptr = ptr; sp->inode = inode; sp->is_block_group = is_block_group; sp->bg_extent_count = 1; spin_lock(&fs_info->swapfile_pins_lock); p = &fs_info->swapfile_pins.rb_node; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_swapfile_pin, node); if (sp->ptr < entry->ptr || (sp->ptr == entry->ptr && sp->inode < entry->inode)) { p = &(*p)->rb_left; } else if (sp->ptr > entry->ptr || (sp->ptr == entry->ptr && sp->inode > entry->inode)) { p = &(*p)->rb_right; } else { if (is_block_group) entry->bg_extent_count++; spin_unlock(&fs_info->swapfile_pins_lock); kfree(sp); return 1; } } rb_link_node(&sp->node, parent, p); rb_insert_color(&sp->node, &fs_info->swapfile_pins); spin_unlock(&fs_info->swapfile_pins_lock); return 0; } /* Free all of the entries pinned by this swapfile. */ static void btrfs_free_swapfile_pins(struct inode *inode) { struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; struct btrfs_swapfile_pin *sp; struct rb_node *node, *next; spin_lock(&fs_info->swapfile_pins_lock); node = rb_first(&fs_info->swapfile_pins); while (node) { next = rb_next(node); sp = rb_entry(node, struct btrfs_swapfile_pin, node); if (sp->inode == inode) { rb_erase(&sp->node, &fs_info->swapfile_pins); if (sp->is_block_group) { btrfs_dec_block_group_swap_extents(sp->ptr, sp->bg_extent_count); btrfs_put_block_group(sp->ptr); } kfree(sp); } node = next; } spin_unlock(&fs_info->swapfile_pins_lock); } struct btrfs_swap_info { u64 start; u64 block_start; u64 block_len; u64 lowest_ppage; u64 highest_ppage; unsigned long nr_pages; int nr_extents; }; static int btrfs_add_swap_extent(struct swap_info_struct *sis, struct btrfs_swap_info *bsi) { unsigned long nr_pages; unsigned long max_pages; u64 first_ppage, first_ppage_reported, next_ppage; int ret; /* * Our swapfile may have had its size extended after the swap header was * written. In that case activating the swapfile should not go beyond * the max size set in the swap header. */ if (bsi->nr_pages >= sis->max) return 0; max_pages = sis->max - bsi->nr_pages; first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, PAGE_SIZE) >> PAGE_SHIFT; if (first_ppage >= next_ppage) return 0; nr_pages = next_ppage - first_ppage; nr_pages = min(nr_pages, max_pages); first_ppage_reported = first_ppage; if (bsi->start == 0) first_ppage_reported++; if (bsi->lowest_ppage > first_ppage_reported) bsi->lowest_ppage = first_ppage_reported; if (bsi->highest_ppage < (next_ppage - 1)) bsi->highest_ppage = next_ppage - 1; ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); if (ret < 0) return ret; bsi->nr_extents += ret; bsi->nr_pages += nr_pages; return 0; } static void btrfs_swap_deactivate(struct file *file) { struct inode *inode = file_inode(file); btrfs_free_swapfile_pins(inode); atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); } static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span) { struct inode *inode = file_inode(file); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct extent_state *cached_state = NULL; struct extent_map *em = NULL; struct btrfs_device *device = NULL; struct btrfs_swap_info bsi = { .lowest_ppage = (sector_t)-1ULL, }; int ret = 0; u64 isize; u64 start; /* * If the swap file was just created, make sure delalloc is done. If the * file changes again after this, the user is doing something stupid and * we don't really care. */ ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); if (ret) return ret; /* * The inode is locked, so these flags won't change after we check them. */ if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { btrfs_warn(fs_info, "swapfile must not be compressed"); return -EINVAL; } if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { btrfs_warn(fs_info, "swapfile must not be copy-on-write"); return -EINVAL; } if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { btrfs_warn(fs_info, "swapfile must not be checksummed"); return -EINVAL; } /* * Balance or device remove/replace/resize can move stuff around from * under us. The exclop protection makes sure they aren't running/won't * run concurrently while we are mapping the swap extents, and * fs_info->swapfile_pins prevents them from running while the swap * file is active and moving the extents. Note that this also prevents * a concurrent device add which isn't actually necessary, but it's not * really worth the trouble to allow it. */ if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { btrfs_warn(fs_info, "cannot activate swapfile while exclusive operation is running"); return -EBUSY; } /* * Prevent snapshot creation while we are activating the swap file. * We do not want to race with snapshot creation. If snapshot creation * already started before we bumped nr_swapfiles from 0 to 1 and * completes before the first write into the swap file after it is * activated, than that write would fallback to COW. */ if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { btrfs_exclop_finish(fs_info); btrfs_warn(fs_info, "cannot activate swapfile because snapshot creation is in progress"); return -EINVAL; } /* * Snapshots can create extents which require COW even if NODATACOW is * set. We use this counter to prevent snapshots. We must increment it * before walking the extents because we don't want a concurrent * snapshot to run after we've already checked the extents. * * It is possible that subvolume is marked for deletion but still not * removed yet. To prevent this race, we check the root status before * activating the swapfile. */ spin_lock(&root->root_item_lock); if (btrfs_root_dead(root)) { spin_unlock(&root->root_item_lock); btrfs_exclop_finish(fs_info); btrfs_warn(fs_info, "cannot activate swapfile because subvolume %llu is being deleted", root->root_key.objectid); return -EPERM; } atomic_inc(&root->nr_swapfiles); spin_unlock(&root->root_item_lock); isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); lock_extent(io_tree, 0, isize - 1, &cached_state); start = 0; while (start < isize) { u64 logical_block_start, physical_block_start; struct btrfs_block_group *bg; u64 len = isize - start; em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out; } if (em->block_start == EXTENT_MAP_HOLE) { btrfs_warn(fs_info, "swapfile must not have holes"); ret = -EINVAL; goto out; } if (em->block_start == EXTENT_MAP_INLINE) { /* * It's unlikely we'll ever actually find ourselves * here, as a file small enough to fit inline won't be * big enough to store more than the swap header, but in * case something changes in the future, let's catch it * here rather than later. */ btrfs_warn(fs_info, "swapfile must not be inline"); ret = -EINVAL; goto out; } if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { btrfs_warn(fs_info, "swapfile must not be compressed"); ret = -EINVAL; goto out; } logical_block_start = em->block_start + (start - em->start); len = min(len, em->len - (start - em->start)); free_extent_map(em); em = NULL; ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); if (ret < 0) { goto out; } else if (ret) { ret = 0; } else { btrfs_warn(fs_info, "swapfile must not be copy-on-write"); ret = -EINVAL; goto out; } em = btrfs_get_chunk_map(fs_info, logical_block_start, len); if (IS_ERR(em)) { ret = PTR_ERR(em); goto out; } if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { btrfs_warn(fs_info, "swapfile must have single data profile"); ret = -EINVAL; goto out; } if (device == NULL) { device = em->map_lookup->stripes[0].dev; ret = btrfs_add_swapfile_pin(inode, device, false); if (ret == 1) ret = 0; else if (ret) goto out; } else if (device != em->map_lookup->stripes[0].dev) { btrfs_warn(fs_info, "swapfile must be on one device"); ret = -EINVAL; goto out; } physical_block_start = (em->map_lookup->stripes[0].physical + (logical_block_start - em->start)); len = min(len, em->len - (logical_block_start - em->start)); free_extent_map(em); em = NULL; bg = btrfs_lookup_block_group(fs_info, logical_block_start); if (!bg) { btrfs_warn(fs_info, "could not find block group containing swapfile"); ret = -EINVAL; goto out; } if (!btrfs_inc_block_group_swap_extents(bg)) { btrfs_warn(fs_info, "block group for swapfile at %llu is read-only%s", bg->start, atomic_read(&fs_info->scrubs_running) ? " (scrub running)" : ""); btrfs_put_block_group(bg); ret = -EINVAL; goto out; } ret = btrfs_add_swapfile_pin(inode, bg, true); if (ret) { btrfs_put_block_group(bg); if (ret == 1) ret = 0; else goto out; } if (bsi.block_len && bsi.block_start + bsi.block_len == physical_block_start) { bsi.block_len += len; } else { if (bsi.block_len) { ret = btrfs_add_swap_extent(sis, &bsi); if (ret) goto out; } bsi.start = start; bsi.block_start = physical_block_start; bsi.block_len = len; } start += len; } if (bsi.block_len) ret = btrfs_add_swap_extent(sis, &bsi); out: if (!IS_ERR_OR_NULL(em)) free_extent_map(em); unlock_extent(io_tree, 0, isize - 1, &cached_state); if (ret) btrfs_swap_deactivate(file); btrfs_drew_write_unlock(&root->snapshot_lock); btrfs_exclop_finish(fs_info); if (ret) return ret; if (device) sis->bdev = device->bdev; *span = bsi.highest_ppage - bsi.lowest_ppage + 1; sis->max = bsi.nr_pages; sis->pages = bsi.nr_pages - 1; sis->highest_bit = bsi.nr_pages - 1; return bsi.nr_extents; } #else static void btrfs_swap_deactivate(struct file *file) { } static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span) { return -EOPNOTSUPP; } #endif /* * Update the number of bytes used in the VFS' inode. When we replace extents in * a range (clone, dedupe, fallocate's zero range), we must update the number of * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls * always get a correct value. */ void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, const u64 del_bytes) { if (add_bytes == del_bytes) return; spin_lock(&inode->lock); if (del_bytes > 0) inode_sub_bytes(&inode->vfs_inode, del_bytes); if (add_bytes > 0) inode_add_bytes(&inode->vfs_inode, add_bytes); spin_unlock(&inode->lock); } /** * Verify that there are no ordered extents for a given file range. * * @inode: The target inode. * @start: Start offset of the file range, should be sector size aligned. * @end: End offset (inclusive) of the file range, its value +1 should be * sector size aligned. * * This should typically be used for cases where we locked an inode's VFS lock in * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, * we have flushed all delalloc in the range, we have waited for all ordered * extents in the range to complete and finally we have locked the file range in * the inode's io_tree. */ void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) { struct btrfs_root *root = inode->root; struct btrfs_ordered_extent *ordered; if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) return; ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); if (ordered) { btrfs_err(root->fs_info, "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", start, end, btrfs_ino(inode), root->root_key.objectid, ordered->file_offset, ordered->file_offset + ordered->num_bytes - 1); btrfs_put_ordered_extent(ordered); } ASSERT(ordered == NULL); } static const struct inode_operations btrfs_dir_inode_operations = { .getattr = btrfs_getattr, .lookup = btrfs_lookup, .create = btrfs_create, .unlink = btrfs_unlink, .link = btrfs_link, .mkdir = btrfs_mkdir, .rmdir = btrfs_rmdir, .rename = btrfs_rename2, .symlink = btrfs_symlink, .setattr = btrfs_setattr, .mknod = btrfs_mknod, .listxattr = btrfs_listxattr, .permission = btrfs_permission, .get_acl = btrfs_get_acl, .set_acl = btrfs_set_acl, .update_time = btrfs_update_time, .tmpfile = btrfs_tmpfile, .fileattr_get = btrfs_fileattr_get, .fileattr_set = btrfs_fileattr_set, }; static const struct file_operations btrfs_dir_file_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = btrfs_real_readdir, .open = btrfs_opendir, .unlocked_ioctl = btrfs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = btrfs_compat_ioctl, #endif .release = btrfs_release_file, .fsync = btrfs_sync_file, }; /* * btrfs doesn't support the bmap operation because swapfiles * use bmap to make a mapping of extents in the file. They assume * these extents won't change over the life of the file and they * use the bmap result to do IO directly to the drive. * * the btrfs bmap call would return logical addresses that aren't * suitable for IO and they also will change frequently as COW * operations happen. So, swapfile + btrfs == corruption. * * For now we're avoiding this by dropping bmap. */ static const struct address_space_operations btrfs_aops = { .read_folio = btrfs_read_folio, .writepages = btrfs_writepages, .readahead = btrfs_readahead, .direct_IO = noop_direct_IO, .invalidate_folio = btrfs_invalidate_folio, .release_folio = btrfs_release_folio, .migrate_folio = btrfs_migrate_folio, .dirty_folio = filemap_dirty_folio, .error_remove_page = generic_error_remove_page, .swap_activate = btrfs_swap_activate, .swap_deactivate = btrfs_swap_deactivate, }; static const struct inode_operations btrfs_file_inode_operations = { .getattr = btrfs_getattr, .setattr = btrfs_setattr, .listxattr = btrfs_listxattr, .permission = btrfs_permission, .fiemap = btrfs_fiemap, .get_acl = btrfs_get_acl, .set_acl = btrfs_set_acl, .update_time = btrfs_update_time, .fileattr_get = btrfs_fileattr_get, .fileattr_set = btrfs_fileattr_set, }; static const struct inode_operations btrfs_special_inode_operations = { .getattr = btrfs_getattr, .setattr = btrfs_setattr, .permission = btrfs_permission, .listxattr = btrfs_listxattr, .get_acl = btrfs_get_acl, .set_acl = btrfs_set_acl, .update_time = btrfs_update_time, }; static const struct inode_operations btrfs_symlink_inode_operations = { .get_link = page_get_link, .getattr = btrfs_getattr, .setattr = btrfs_setattr, .permission = btrfs_permission, .listxattr = btrfs_listxattr, .update_time = btrfs_update_time, }; const struct dentry_operations btrfs_dentry_operations = { .d_delete = btrfs_dentry_delete, }; |