Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | // SPDX-License-Identifier: GPL-2.0 /* * Data verification functions, i.e. hooks for ->readahead() * * Copyright 2019 Google LLC */ #include "fsverity_private.h" #include <crypto/hash.h> #include <linux/bio.h> #include <linux/ratelimit.h> static struct workqueue_struct *fsverity_read_workqueue; /** * hash_at_level() - compute the location of the block's hash at the given level * * @params: (in) the Merkle tree parameters * @dindex: (in) the index of the data block being verified * @level: (in) the level of hash we want (0 is leaf level) * @hindex: (out) the index of the hash block containing the wanted hash * @hoffset: (out) the byte offset to the wanted hash within the hash block */ static void hash_at_level(const struct merkle_tree_params *params, pgoff_t dindex, unsigned int level, pgoff_t *hindex, unsigned int *hoffset) { pgoff_t position; /* Offset of the hash within the level's region, in hashes */ position = dindex >> (level * params->log_arity); /* Index of the hash block in the tree overall */ *hindex = params->level_start[level] + (position >> params->log_arity); /* Offset of the wanted hash (in bytes) within the hash block */ *hoffset = (position & ((1 << params->log_arity) - 1)) << (params->log_blocksize - params->log_arity); } static inline int cmp_hashes(const struct fsverity_info *vi, const u8 *want_hash, const u8 *real_hash, pgoff_t index, int level) { const unsigned int hsize = vi->tree_params.digest_size; if (memcmp(want_hash, real_hash, hsize) == 0) return 0; fsverity_err(vi->inode, "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN", index, level, vi->tree_params.hash_alg->name, hsize, want_hash, vi->tree_params.hash_alg->name, hsize, real_hash); return -EBADMSG; } /* * Verify a single data page against the file's Merkle tree. * * In principle, we need to verify the entire path to the root node. However, * for efficiency the filesystem may cache the hash pages. Therefore we need * only ascend the tree until an already-verified page is seen, as indicated by * the PageChecked bit being set; then verify the path to that page. * * This code currently only supports the case where the verity block size is * equal to PAGE_SIZE. Doing otherwise would be possible but tricky, since we * wouldn't be able to use the PageChecked bit. * * Note that multiple processes may race to verify a hash page and mark it * Checked, but it doesn't matter; the result will be the same either way. * * Return: true if the page is valid, else false. */ static bool verify_page(struct inode *inode, const struct fsverity_info *vi, struct ahash_request *req, struct page *data_page, unsigned long level0_ra_pages) { const struct merkle_tree_params *params = &vi->tree_params; const unsigned int hsize = params->digest_size; const pgoff_t index = data_page->index; int level; u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE]; const u8 *want_hash; u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE]; struct page *hpages[FS_VERITY_MAX_LEVELS]; unsigned int hoffsets[FS_VERITY_MAX_LEVELS]; int err; if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page))) return false; pr_debug_ratelimited("Verifying data page %lu...\n", index); /* * Starting at the leaf level, ascend the tree saving hash pages along * the way until we find a verified hash page, indicated by PageChecked; * or until we reach the root. */ for (level = 0; level < params->num_levels; level++) { pgoff_t hindex; unsigned int hoffset; struct page *hpage; hash_at_level(params, index, level, &hindex, &hoffset); pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n", level, hindex, hoffset); hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex, level == 0 ? level0_ra_pages : 0); if (IS_ERR(hpage)) { err = PTR_ERR(hpage); fsverity_err(inode, "Error %d reading Merkle tree page %lu", err, hindex); goto out; } if (PageChecked(hpage)) { memcpy_from_page(_want_hash, hpage, hoffset, hsize); want_hash = _want_hash; put_page(hpage); pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n", params->hash_alg->name, hsize, want_hash); goto descend; } pr_debug_ratelimited("Hash page not yet checked\n"); hpages[level] = hpage; hoffsets[level] = hoffset; } want_hash = vi->root_hash; pr_debug("Want root hash: %s:%*phN\n", params->hash_alg->name, hsize, want_hash); descend: /* Descend the tree verifying hash pages */ for (; level > 0; level--) { struct page *hpage = hpages[level - 1]; unsigned int hoffset = hoffsets[level - 1]; err = fsverity_hash_page(params, inode, req, hpage, real_hash); if (err) goto out; err = cmp_hashes(vi, want_hash, real_hash, index, level - 1); if (err) goto out; SetPageChecked(hpage); memcpy_from_page(_want_hash, hpage, hoffset, hsize); want_hash = _want_hash; put_page(hpage); pr_debug("Verified hash page at level %d, now want %s:%*phN\n", level - 1, params->hash_alg->name, hsize, want_hash); } /* Finally, verify the data page */ err = fsverity_hash_page(params, inode, req, data_page, real_hash); if (err) goto out; err = cmp_hashes(vi, want_hash, real_hash, index, -1); out: for (; level > 0; level--) put_page(hpages[level - 1]); return err == 0; } /** * fsverity_verify_page() - verify a data page * @page: the page to verity * * Verify a page that has just been read from a verity file. The page must be a * pagecache page that is still locked and not yet uptodate. * * Return: true if the page is valid, else false. */ bool fsverity_verify_page(struct page *page) { struct inode *inode = page->mapping->host; const struct fsverity_info *vi = inode->i_verity_info; struct ahash_request *req; bool valid; /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS); valid = verify_page(inode, vi, req, page, 0); fsverity_free_hash_request(vi->tree_params.hash_alg, req); return valid; } EXPORT_SYMBOL_GPL(fsverity_verify_page); #ifdef CONFIG_BLOCK /** * fsverity_verify_bio() - verify a 'read' bio that has just completed * @bio: the bio to verify * * Verify a set of pages that have just been read from a verity file. The pages * must be pagecache pages that are still locked and not yet uptodate. Pages * that fail verification are set to the Error state. Verification is skipped * for pages already in the Error state, e.g. due to fscrypt decryption failure. * * This is a helper function for use by the ->readahead() method of filesystems * that issue bios to read data directly into the page cache. Filesystems that * populate the page cache without issuing bios (e.g. non block-based * filesystems) must instead call fsverity_verify_page() directly on each page. * All filesystems must also call fsverity_verify_page() on holes. */ void fsverity_verify_bio(struct bio *bio) { struct inode *inode = bio_first_page_all(bio)->mapping->host; const struct fsverity_info *vi = inode->i_verity_info; const struct merkle_tree_params *params = &vi->tree_params; struct ahash_request *req; struct bio_vec *bv; struct bvec_iter_all iter_all; unsigned long max_ra_pages = 0; /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS); if (bio->bi_opf & REQ_RAHEAD) { /* * If this bio is for data readahead, then we also do readahead * of the first (largest) level of the Merkle tree. Namely, * when a Merkle tree page is read, we also try to piggy-back on * some additional pages -- up to 1/4 the number of data pages. * * This improves sequential read performance, as it greatly * reduces the number of I/O requests made to the Merkle tree. */ bio_for_each_segment_all(bv, bio, iter_all) max_ra_pages++; max_ra_pages /= 4; } bio_for_each_segment_all(bv, bio, iter_all) { struct page *page = bv->bv_page; unsigned long level0_index = page->index >> params->log_arity; unsigned long level0_ra_pages = min(max_ra_pages, params->level0_blocks - level0_index); if (!PageError(page) && !verify_page(inode, vi, req, page, level0_ra_pages)) SetPageError(page); } fsverity_free_hash_request(params->hash_alg, req); } EXPORT_SYMBOL_GPL(fsverity_verify_bio); #endif /* CONFIG_BLOCK */ /** * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue * @work: the work to enqueue * * Enqueue verification work for asynchronous processing. */ void fsverity_enqueue_verify_work(struct work_struct *work) { queue_work(fsverity_read_workqueue, work); } EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work); int __init fsverity_init_workqueue(void) { /* * Use a high-priority workqueue to prioritize verification work, which * blocks reads from completing, over regular application tasks. * * For performance reasons, don't use an unbound workqueue. Using an * unbound workqueue for crypto operations causes excessive scheduler * latency on ARM64. */ fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue", WQ_HIGHPRI, num_online_cpus()); if (!fsverity_read_workqueue) return -ENOMEM; return 0; } void __init fsverity_exit_workqueue(void) { destroy_workqueue(fsverity_read_workqueue); fsverity_read_workqueue = NULL; } |