Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 | // SPDX-License-Identifier: GPL-2.0-only /* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) */ /* * This file implements TNC (Tree Node Cache) which caches indexing nodes of * the UBIFS B-tree. * * At the moment the locking rules of the TNC tree are quite simple and * straightforward. We just have a mutex and lock it when we traverse the * tree. If a znode is not in memory, we read it from flash while still having * the mutex locked. */ #include <linux/crc32.h> #include <linux/slab.h> #include "ubifs.h" static int try_read_node(const struct ubifs_info *c, void *buf, int type, struct ubifs_zbranch *zbr); static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_zbranch *zbr, void *node); /* * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. * @NAME_LESS: name corresponding to the first argument is less than second * @NAME_MATCHES: names match * @NAME_GREATER: name corresponding to the second argument is greater than * first * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media * * These constants were introduce to improve readability. */ enum { NAME_LESS = 0, NAME_MATCHES = 1, NAME_GREATER = 2, NOT_ON_MEDIA = 3, }; static void do_insert_old_idx(struct ubifs_info *c, struct ubifs_old_idx *old_idx) { struct ubifs_old_idx *o; struct rb_node **p, *parent = NULL; p = &c->old_idx.rb_node; while (*p) { parent = *p; o = rb_entry(parent, struct ubifs_old_idx, rb); if (old_idx->lnum < o->lnum) p = &(*p)->rb_left; else if (old_idx->lnum > o->lnum) p = &(*p)->rb_right; else if (old_idx->offs < o->offs) p = &(*p)->rb_left; else if (old_idx->offs > o->offs) p = &(*p)->rb_right; else { ubifs_err(c, "old idx added twice!"); kfree(old_idx); } } rb_link_node(&old_idx->rb, parent, p); rb_insert_color(&old_idx->rb, &c->old_idx); } /** * insert_old_idx - record an index node obsoleted since the last commit start. * @c: UBIFS file-system description object * @lnum: LEB number of obsoleted index node * @offs: offset of obsoleted index node * * Returns %0 on success, and a negative error code on failure. * * For recovery, there must always be a complete intact version of the index on * flash at all times. That is called the "old index". It is the index as at the * time of the last successful commit. Many of the index nodes in the old index * may be dirty, but they must not be erased until the next successful commit * (at which point that index becomes the old index). * * That means that the garbage collection and the in-the-gaps method of * committing must be able to determine if an index node is in the old index. * Most of the old index nodes can be found by looking up the TNC using the * 'lookup_znode()' function. However, some of the old index nodes may have * been deleted from the current index or may have been changed so much that * they cannot be easily found. In those cases, an entry is added to an RB-tree. * That is what this function does. The RB-tree is ordered by LEB number and * offset because they uniquely identify the old index node. */ static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) { struct ubifs_old_idx *old_idx; old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); if (unlikely(!old_idx)) return -ENOMEM; old_idx->lnum = lnum; old_idx->offs = offs; do_insert_old_idx(c, old_idx); return 0; } /** * insert_old_idx_znode - record a znode obsoleted since last commit start. * @c: UBIFS file-system description object * @znode: znode of obsoleted index node * * Returns %0 on success, and a negative error code on failure. */ int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) { if (znode->parent) { struct ubifs_zbranch *zbr; zbr = &znode->parent->zbranch[znode->iip]; if (zbr->len) return insert_old_idx(c, zbr->lnum, zbr->offs); } else if (c->zroot.len) return insert_old_idx(c, c->zroot.lnum, c->zroot.offs); return 0; } /** * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. * @c: UBIFS file-system description object * @znode: znode of obsoleted index node * * Returns %0 on success, and a negative error code on failure. */ static int ins_clr_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) { int err; if (znode->parent) { struct ubifs_zbranch *zbr; zbr = &znode->parent->zbranch[znode->iip]; if (zbr->len) { err = insert_old_idx(c, zbr->lnum, zbr->offs); if (err) return err; zbr->lnum = 0; zbr->offs = 0; zbr->len = 0; } } else if (c->zroot.len) { err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); if (err) return err; c->zroot.lnum = 0; c->zroot.offs = 0; c->zroot.len = 0; } return 0; } /** * destroy_old_idx - destroy the old_idx RB-tree. * @c: UBIFS file-system description object * * During start commit, the old_idx RB-tree is used to avoid overwriting index * nodes that were in the index last commit but have since been deleted. This * is necessary for recovery i.e. the old index must be kept intact until the * new index is successfully written. The old-idx RB-tree is used for the * in-the-gaps method of writing index nodes and is destroyed every commit. */ void destroy_old_idx(struct ubifs_info *c) { struct ubifs_old_idx *old_idx, *n; rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) kfree(old_idx); c->old_idx = RB_ROOT; } /** * copy_znode - copy a dirty znode. * @c: UBIFS file-system description object * @znode: znode to copy * * A dirty znode being committed may not be changed, so it is copied. */ static struct ubifs_znode *copy_znode(struct ubifs_info *c, struct ubifs_znode *znode) { struct ubifs_znode *zn; zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); if (unlikely(!zn)) return ERR_PTR(-ENOMEM); zn->cnext = NULL; __set_bit(DIRTY_ZNODE, &zn->flags); __clear_bit(COW_ZNODE, &zn->flags); return zn; } /** * add_idx_dirt - add dirt due to a dirty znode. * @c: UBIFS file-system description object * @lnum: LEB number of index node * @dirt: size of index node * * This function updates lprops dirty space and the new size of the index. */ static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) { c->calc_idx_sz -= ALIGN(dirt, 8); return ubifs_add_dirt(c, lnum, dirt); } /** * replace_znode - replace old znode with new znode. * @c: UBIFS file-system description object * @new_zn: new znode * @old_zn: old znode * @zbr: the branch of parent znode * * Replace old znode with new znode in TNC. */ static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn, struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr) { ubifs_assert(c, !ubifs_zn_obsolete(old_zn)); __set_bit(OBSOLETE_ZNODE, &old_zn->flags); if (old_zn->level != 0) { int i; const int n = new_zn->child_cnt; /* The children now have new parent */ for (i = 0; i < n; i++) { struct ubifs_zbranch *child = &new_zn->zbranch[i]; if (child->znode) child->znode->parent = new_zn; } } zbr->znode = new_zn; zbr->lnum = 0; zbr->offs = 0; zbr->len = 0; atomic_long_inc(&c->dirty_zn_cnt); } /** * dirty_cow_znode - ensure a znode is not being committed. * @c: UBIFS file-system description object * @zbr: branch of znode to check * * Returns dirtied znode on success or negative error code on failure. */ static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) { struct ubifs_znode *znode = zbr->znode; struct ubifs_znode *zn; int err; if (!ubifs_zn_cow(znode)) { /* znode is not being committed */ if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { atomic_long_inc(&c->dirty_zn_cnt); atomic_long_dec(&c->clean_zn_cnt); atomic_long_dec(&ubifs_clean_zn_cnt); err = add_idx_dirt(c, zbr->lnum, zbr->len); if (unlikely(err)) return ERR_PTR(err); } return znode; } zn = copy_znode(c, znode); if (IS_ERR(zn)) return zn; if (zbr->len) { struct ubifs_old_idx *old_idx; old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); if (unlikely(!old_idx)) { err = -ENOMEM; goto out; } old_idx->lnum = zbr->lnum; old_idx->offs = zbr->offs; err = add_idx_dirt(c, zbr->lnum, zbr->len); if (err) { kfree(old_idx); goto out; } do_insert_old_idx(c, old_idx); } replace_znode(c, zn, znode, zbr); return zn; out: kfree(zn); return ERR_PTR(err); } /** * lnc_add - add a leaf node to the leaf node cache. * @c: UBIFS file-system description object * @zbr: zbranch of leaf node * @node: leaf node * * Leaf nodes are non-index nodes directory entry nodes or data nodes. The * purpose of the leaf node cache is to save re-reading the same leaf node over * and over again. Most things are cached by VFS, however the file system must * cache directory entries for readdir and for resolving hash collisions. The * present implementation of the leaf node cache is extremely simple, and * allows for error returns that are not used but that may be needed if a more * complex implementation is created. * * Note, this function does not add the @node object to LNC directly, but * allocates a copy of the object and adds the copy to LNC. The reason for this * is that @node has been allocated outside of the TNC subsystem and will be * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC * may be changed at any time, e.g. freed by the shrinker. */ static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, const void *node) { int err; void *lnc_node; const struct ubifs_dent_node *dent = node; ubifs_assert(c, !zbr->leaf); ubifs_assert(c, zbr->len != 0); ubifs_assert(c, is_hash_key(c, &zbr->key)); err = ubifs_validate_entry(c, dent); if (err) { dump_stack(); ubifs_dump_node(c, dent, zbr->len); return err; } lnc_node = kmemdup(node, zbr->len, GFP_NOFS); if (!lnc_node) /* We don't have to have the cache, so no error */ return 0; zbr->leaf = lnc_node; return 0; } /** * lnc_add_directly - add a leaf node to the leaf-node-cache. * @c: UBIFS file-system description object * @zbr: zbranch of leaf node * @node: leaf node * * This function is similar to 'lnc_add()', but it does not create a copy of * @node but inserts @node to TNC directly. */ static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, void *node) { int err; ubifs_assert(c, !zbr->leaf); ubifs_assert(c, zbr->len != 0); err = ubifs_validate_entry(c, node); if (err) { dump_stack(); ubifs_dump_node(c, node, zbr->len); return err; } zbr->leaf = node; return 0; } /** * lnc_free - remove a leaf node from the leaf node cache. * @zbr: zbranch of leaf node */ static void lnc_free(struct ubifs_zbranch *zbr) { if (!zbr->leaf) return; kfree(zbr->leaf); zbr->leaf = NULL; } /** * tnc_read_hashed_node - read a "hashed" leaf node. * @c: UBIFS file-system description object * @zbr: key and position of the node * @node: node is returned here * * This function reads a "hashed" node defined by @zbr from the leaf node cache * (in it is there) or from the hash media, in which case the node is also * added to LNC. Returns zero in case of success or a negative error * code in case of failure. */ static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, void *node) { int err; ubifs_assert(c, is_hash_key(c, &zbr->key)); if (zbr->leaf) { /* Read from the leaf node cache */ ubifs_assert(c, zbr->len != 0); memcpy(node, zbr->leaf, zbr->len); return 0; } if (c->replaying) { err = fallible_read_node(c, &zbr->key, zbr, node); /* * When the node was not found, return -ENOENT, 0 otherwise. * Negative return codes stay as-is. */ if (err == 0) err = -ENOENT; else if (err == 1) err = 0; } else { err = ubifs_tnc_read_node(c, zbr, node); } if (err) return err; /* Add the node to the leaf node cache */ err = lnc_add(c, zbr, node); return err; } /** * try_read_node - read a node if it is a node. * @c: UBIFS file-system description object * @buf: buffer to read to * @type: node type * @zbr: the zbranch describing the node to read * * This function tries to read a node of known type and length, checks it and * stores it in @buf. This function returns %1 if a node is present and %0 if * a node is not present. A negative error code is returned for I/O errors. * This function performs that same function as ubifs_read_node except that * it does not require that there is actually a node present and instead * the return code indicates if a node was read. * * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc * is true (it is controlled by corresponding mount option). However, if * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is * because during mounting or re-mounting from R/O mode to R/W mode we may read * journal nodes (when replying the journal or doing the recovery) and the * journal nodes may potentially be corrupted, so checking is required. */ static int try_read_node(const struct ubifs_info *c, void *buf, int type, struct ubifs_zbranch *zbr) { int len = zbr->len; int lnum = zbr->lnum; int offs = zbr->offs; int err, node_len; struct ubifs_ch *ch = buf; uint32_t crc, node_crc; dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); err = ubifs_leb_read(c, lnum, buf, offs, len, 1); if (err) { ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", type, lnum, offs, err); return err; } if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) return 0; if (ch->node_type != type) return 0; node_len = le32_to_cpu(ch->len); if (node_len != len) return 0; if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting || c->remounting_rw) { crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); node_crc = le32_to_cpu(ch->crc); if (crc != node_crc) return 0; } err = ubifs_node_check_hash(c, buf, zbr->hash); if (err) { ubifs_bad_hash(c, buf, zbr->hash, lnum, offs); return 0; } return 1; } /** * fallible_read_node - try to read a leaf node. * @c: UBIFS file-system description object * @key: key of node to read * @zbr: position of node * @node: node returned * * This function tries to read a node and returns %1 if the node is read, %0 * if the node is not present, and a negative error code in the case of error. */ static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_zbranch *zbr, void *node) { int ret; dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); ret = try_read_node(c, node, key_type(c, key), zbr); if (ret == 1) { union ubifs_key node_key; struct ubifs_dent_node *dent = node; /* All nodes have key in the same place */ key_read(c, &dent->key, &node_key); if (keys_cmp(c, key, &node_key) != 0) ret = 0; } if (ret == 0 && c->replaying) dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", zbr->lnum, zbr->offs, zbr->len); return ret; } /** * matches_name - determine if a direntry or xattr entry matches a given name. * @c: UBIFS file-system description object * @zbr: zbranch of dent * @nm: name to match * * This function checks if xentry/direntry referred by zbranch @zbr matches name * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case * of failure, a negative error code is returned. */ static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, const struct fscrypt_name *nm) { struct ubifs_dent_node *dent; int nlen, err; /* If possible, match against the dent in the leaf node cache */ if (!zbr->leaf) { dent = kmalloc(zbr->len, GFP_NOFS); if (!dent) return -ENOMEM; err = ubifs_tnc_read_node(c, zbr, dent); if (err) goto out_free; /* Add the node to the leaf node cache */ err = lnc_add_directly(c, zbr, dent); if (err) goto out_free; } else dent = zbr->leaf; nlen = le16_to_cpu(dent->nlen); err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); if (err == 0) { if (nlen == fname_len(nm)) return NAME_MATCHES; else if (nlen < fname_len(nm)) return NAME_LESS; else return NAME_GREATER; } else if (err < 0) return NAME_LESS; else return NAME_GREATER; out_free: kfree(dent); return err; } /** * get_znode - get a TNC znode that may not be loaded yet. * @c: UBIFS file-system description object * @znode: parent znode * @n: znode branch slot number * * This function returns the znode or a negative error code. */ static struct ubifs_znode *get_znode(struct ubifs_info *c, struct ubifs_znode *znode, int n) { struct ubifs_zbranch *zbr; zbr = &znode->zbranch[n]; if (zbr->znode) znode = zbr->znode; else znode = ubifs_load_znode(c, zbr, znode, n); return znode; } /** * tnc_next - find next TNC entry. * @c: UBIFS file-system description object * @zn: znode is passed and returned here * @n: znode branch slot number is passed and returned here * * This function returns %0 if the next TNC entry is found, %-ENOENT if there is * no next entry, or a negative error code otherwise. */ static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) { struct ubifs_znode *znode = *zn; int nn = *n; nn += 1; if (nn < znode->child_cnt) { *n = nn; return 0; } while (1) { struct ubifs_znode *zp; zp = znode->parent; if (!zp) return -ENOENT; nn = znode->iip + 1; znode = zp; if (nn < znode->child_cnt) { znode = get_znode(c, znode, nn); if (IS_ERR(znode)) return PTR_ERR(znode); while (znode->level != 0) { znode = get_znode(c, znode, 0); if (IS_ERR(znode)) return PTR_ERR(znode); } nn = 0; break; } } *zn = znode; *n = nn; return 0; } /** * tnc_prev - find previous TNC entry. * @c: UBIFS file-system description object * @zn: znode is returned here * @n: znode branch slot number is passed and returned here * * This function returns %0 if the previous TNC entry is found, %-ENOENT if * there is no next entry, or a negative error code otherwise. */ static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) { struct ubifs_znode *znode = *zn; int nn = *n; if (nn > 0) { *n = nn - 1; return 0; } while (1) { struct ubifs_znode *zp; zp = znode->parent; if (!zp) return -ENOENT; nn = znode->iip - 1; znode = zp; if (nn >= 0) { znode = get_znode(c, znode, nn); if (IS_ERR(znode)) return PTR_ERR(znode); while (znode->level != 0) { nn = znode->child_cnt - 1; znode = get_znode(c, znode, nn); if (IS_ERR(znode)) return PTR_ERR(znode); } nn = znode->child_cnt - 1; break; } } *zn = znode; *n = nn; return 0; } /** * resolve_collision - resolve a collision. * @c: UBIFS file-system description object * @key: key of a directory or extended attribute entry * @zn: znode is returned here * @n: zbranch number is passed and returned here * @nm: name of the entry * * This function is called for "hashed" keys to make sure that the found key * really corresponds to the looked up node (directory or extended attribute * entry). It returns %1 and sets @zn and @n if the collision is resolved. * %0 is returned if @nm is not found and @zn and @n are set to the previous * entry, i.e. to the entry after which @nm could follow if it were in TNC. * This means that @n may be set to %-1 if the leftmost key in @zn is the * previous one. A negative error code is returned on failures. */ static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n, const struct fscrypt_name *nm) { int err; err = matches_name(c, &(*zn)->zbranch[*n], nm); if (unlikely(err < 0)) return err; if (err == NAME_MATCHES) return 1; if (err == NAME_GREATER) { /* Look left */ while (1) { err = tnc_prev(c, zn, n); if (err == -ENOENT) { ubifs_assert(c, *n == 0); *n = -1; return 0; } if (err < 0) return err; if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { /* * We have found the branch after which we would * like to insert, but inserting in this znode * may still be wrong. Consider the following 3 * znodes, in the case where we are resolving a * collision with Key2. * * znode zp * ---------------------- * level 1 | Key0 | Key1 | * ----------------------- * | | * znode za | | znode zb * ------------ ------------ * level 0 | Key0 | | Key2 | * ------------ ------------ * * The lookup finds Key2 in znode zb. Lets say * there is no match and the name is greater so * we look left. When we find Key0, we end up * here. If we return now, we will insert into * znode za at slot n = 1. But that is invalid * according to the parent's keys. Key2 must * be inserted into znode zb. * * Note, this problem is not relevant for the * case when we go right, because * 'tnc_insert()' would correct the parent key. */ if (*n == (*zn)->child_cnt - 1) { err = tnc_next(c, zn, n); if (err) { /* Should be impossible */ ubifs_assert(c, 0); if (err == -ENOENT) err = -EINVAL; return err; } ubifs_assert(c, *n == 0); *n = -1; } return 0; } err = matches_name(c, &(*zn)->zbranch[*n], nm); if (err < 0) return err; if (err == NAME_LESS) return 0; if (err == NAME_MATCHES) return 1; ubifs_assert(c, err == NAME_GREATER); } } else { int nn = *n; struct ubifs_znode *znode = *zn; /* Look right */ while (1) { err = tnc_next(c, &znode, &nn); if (err == -ENOENT) return 0; if (err < 0) return err; if (keys_cmp(c, &znode->zbranch[nn].key, key)) return 0; err = matches_name(c, &znode->zbranch[nn], nm); if (err < 0) return err; if (err == NAME_GREATER) return 0; *zn = znode; *n = nn; if (err == NAME_MATCHES) return 1; ubifs_assert(c, err == NAME_LESS); } } } /** * fallible_matches_name - determine if a dent matches a given name. * @c: UBIFS file-system description object * @zbr: zbranch of dent * @nm: name to match * * This is a "fallible" version of 'matches_name()' function which does not * panic if the direntry/xentry referred by @zbr does not exist on the media. * * This function checks if xentry/direntry referred by zbranch @zbr matches name * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA * if xentry/direntry referred by @zbr does not exist on the media. A negative * error code is returned in case of failure. */ static int fallible_matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, const struct fscrypt_name *nm) { struct ubifs_dent_node *dent; int nlen, err; /* If possible, match against the dent in the leaf node cache */ if (!zbr->leaf) { dent = kmalloc(zbr->len, GFP_NOFS); if (!dent) return -ENOMEM; err = fallible_read_node(c, &zbr->key, zbr, dent); if (err < 0) goto out_free; if (err == 0) { /* The node was not present */ err = NOT_ON_MEDIA; goto out_free; } ubifs_assert(c, err == 1); err = lnc_add_directly(c, zbr, dent); if (err) goto out_free; } else dent = zbr->leaf; nlen = le16_to_cpu(dent->nlen); err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); if (err == 0) { if (nlen == fname_len(nm)) return NAME_MATCHES; else if (nlen < fname_len(nm)) return NAME_LESS; else return NAME_GREATER; } else if (err < 0) return NAME_LESS; else return NAME_GREATER; out_free: kfree(dent); return err; } /** * fallible_resolve_collision - resolve a collision even if nodes are missing. * @c: UBIFS file-system description object * @key: key * @zn: znode is returned here * @n: branch number is passed and returned here * @nm: name of directory entry * @adding: indicates caller is adding a key to the TNC * * This is a "fallible" version of the 'resolve_collision()' function which * does not panic if one of the nodes referred to by TNC does not exist on the * media. This may happen when replaying the journal if a deleted node was * Garbage-collected and the commit was not done. A branch that refers to a node * that is not present is called a dangling branch. The following are the return * codes for this function: * o if @nm was found, %1 is returned and @zn and @n are set to the found * branch; * o if we are @adding and @nm was not found, %0 is returned; * o if we are not @adding and @nm was not found, but a dangling branch was * found, then %1 is returned and @zn and @n are set to the dangling branch; * o a negative error code is returned in case of failure. */ static int fallible_resolve_collision(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n, const struct fscrypt_name *nm, int adding) { struct ubifs_znode *o_znode = NULL, *znode = *zn; int o_n, err, cmp, unsure = 0, nn = *n; cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); if (unlikely(cmp < 0)) return cmp; if (cmp == NAME_MATCHES) return 1; if (cmp == NOT_ON_MEDIA) { o_znode = znode; o_n = nn; /* * We are unlucky and hit a dangling branch straight away. * Now we do not really know where to go to find the needed * branch - to the left or to the right. Well, let's try left. */ unsure = 1; } else if (!adding) unsure = 1; /* Remove a dangling branch wherever it is */ if (cmp == NAME_GREATER || unsure) { /* Look left */ while (1) { err = tnc_prev(c, zn, n); if (err == -ENOENT) { ubifs_assert(c, *n == 0); *n = -1; break; } if (err < 0) return err; if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { /* See comments in 'resolve_collision()' */ if (*n == (*zn)->child_cnt - 1) { err = tnc_next(c, zn, n); if (err) { /* Should be impossible */ ubifs_assert(c, 0); if (err == -ENOENT) err = -EINVAL; return err; } ubifs_assert(c, *n == 0); *n = -1; } break; } err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); if (err < 0) return err; if (err == NAME_MATCHES) return 1; if (err == NOT_ON_MEDIA) { o_znode = *zn; o_n = *n; continue; } if (!adding) continue; if (err == NAME_LESS) break; else unsure = 0; } } if (cmp == NAME_LESS || unsure) { /* Look right */ *zn = znode; *n = nn; while (1) { err = tnc_next(c, &znode, &nn); if (err == -ENOENT) break; if (err < 0) return err; if (keys_cmp(c, &znode->zbranch[nn].key, key)) break; err = fallible_matches_name(c, &znode->zbranch[nn], nm); if (err < 0) return err; if (err == NAME_GREATER) break; *zn = znode; *n = nn; if (err == NAME_MATCHES) return 1; if (err == NOT_ON_MEDIA) { o_znode = znode; o_n = nn; } } } /* Never match a dangling branch when adding */ if (adding || !o_znode) return 0; dbg_mntk(key, "dangling match LEB %d:%d len %d key ", o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, o_znode->zbranch[o_n].len); *zn = o_znode; *n = o_n; return 1; } /** * matches_position - determine if a zbranch matches a given position. * @zbr: zbranch of dent * @lnum: LEB number of dent to match * @offs: offset of dent to match * * This function returns %1 if @lnum:@offs matches, and %0 otherwise. */ static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) { if (zbr->lnum == lnum && zbr->offs == offs) return 1; else return 0; } /** * resolve_collision_directly - resolve a collision directly. * @c: UBIFS file-system description object * @key: key of directory entry * @zn: znode is passed and returned here * @n: zbranch number is passed and returned here * @lnum: LEB number of dent node to match * @offs: offset of dent node to match * * This function is used for "hashed" keys to make sure the found directory or * extended attribute entry node is what was looked for. It is used when the * flash address of the right node is known (@lnum:@offs) which makes it much * easier to resolve collisions (no need to read entries and match full * names). This function returns %1 and sets @zn and @n if the collision is * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the * previous directory entry. Otherwise a negative error code is returned. */ static int resolve_collision_directly(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n, int lnum, int offs) { struct ubifs_znode *znode; int nn, err; znode = *zn; nn = *n; if (matches_position(&znode->zbranch[nn], lnum, offs)) return 1; /* Look left */ while (1) { err = tnc_prev(c, &znode, &nn); if (err == -ENOENT) break; if (err < 0) return err; if (keys_cmp(c, &znode->zbranch[nn].key, key)) break; if (matches_position(&znode->zbranch[nn], lnum, offs)) { *zn = znode; *n = nn; return 1; } } /* Look right */ znode = *zn; nn = *n; while (1) { err = tnc_next(c, &znode, &nn); if (err == -ENOENT) return 0; if (err < 0) return err; if (keys_cmp(c, &znode->zbranch[nn].key, key)) return 0; *zn = znode; *n = nn; if (matches_position(&znode->zbranch[nn], lnum, offs)) return 1; } } /** * dirty_cow_bottom_up - dirty a znode and its ancestors. * @c: UBIFS file-system description object * @znode: znode to dirty * * If we do not have a unique key that resides in a znode, then we cannot * dirty that znode from the top down (i.e. by using lookup_level0_dirty) * This function records the path back to the last dirty ancestor, and then * dirties the znodes on that path. */ static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, struct ubifs_znode *znode) { struct ubifs_znode *zp; int *path = c->bottom_up_buf, p = 0; ubifs_assert(c, c->zroot.znode); ubifs_assert(c, znode); if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { kfree(c->bottom_up_buf); c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, sizeof(int), GFP_NOFS); if (!c->bottom_up_buf) return ERR_PTR(-ENOMEM); path = c->bottom_up_buf; } if (c->zroot.znode->level) { /* Go up until parent is dirty */ while (1) { int n; zp = znode->parent; if (!zp) break; n = znode->iip; ubifs_assert(c, p < c->zroot.znode->level); path[p++] = n; if (!zp->cnext && ubifs_zn_dirty(znode)) break; znode = zp; } } /* Come back down, dirtying as we go */ while (1) { struct ubifs_zbranch *zbr; zp = znode->parent; if (zp) { ubifs_assert(c, path[p - 1] >= 0); ubifs_assert(c, path[p - 1] < zp->child_cnt); zbr = &zp->zbranch[path[--p]]; znode = dirty_cow_znode(c, zbr); } else { ubifs_assert(c, znode == c->zroot.znode); znode = dirty_cow_znode(c, &c->zroot); } if (IS_ERR(znode) || !p) break; ubifs_assert(c, path[p - 1] >= 0); ubifs_assert(c, path[p - 1] < znode->child_cnt); znode = znode->zbranch[path[p - 1]].znode; } return znode; } /** * ubifs_lookup_level0 - search for zero-level znode. * @c: UBIFS file-system description object * @key: key to lookup * @zn: znode is returned here * @n: znode branch slot number is returned here * * This function looks up the TNC tree and search for zero-level znode which * refers key @key. The found zero-level znode is returned in @zn. There are 3 * cases: * o exact match, i.e. the found zero-level znode contains key @key, then %1 * is returned and slot number of the matched branch is stored in @n; * o not exact match, which means that zero-level znode does not contain * @key, then %0 is returned and slot number of the closest branch or %-1 * is stored in @n; In this case calling tnc_next() is mandatory. * o @key is so small that it is even less than the lowest key of the * leftmost zero-level node, then %0 is returned and %0 is stored in @n. * * Note, when the TNC tree is traversed, some znodes may be absent, then this * function reads corresponding indexing nodes and inserts them to TNC. In * case of failure, a negative error code is returned. */ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n) { int err, exact; struct ubifs_znode *znode; time64_t time = ktime_get_seconds(); dbg_tnck(key, "search key "); ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); znode = c->zroot.znode; if (unlikely(!znode)) { znode = ubifs_load_znode(c, &c->zroot, NULL, 0); if (IS_ERR(znode)) return PTR_ERR(znode); } znode->time = time; while (1) { struct ubifs_zbranch *zbr; exact = ubifs_search_zbranch(c, znode, key, n); if (znode->level == 0) break; if (*n < 0) *n = 0; zbr = &znode->zbranch[*n]; if (zbr->znode) { znode->time = time; znode = zbr->znode; continue; } /* znode is not in TNC cache, load it from the media */ znode = ubifs_load_znode(c, zbr, znode, *n); if (IS_ERR(znode)) return PTR_ERR(znode); } *zn = znode; if (exact || !is_hash_key(c, key) || *n != -1) { dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); return exact; } /* * Here is a tricky place. We have not found the key and this is a * "hashed" key, which may collide. The rest of the code deals with * situations like this: * * | 3 | 5 | * / \ * | 3 | 5 | | 6 | 7 | (x) * * Or more a complex example: * * | 1 | 5 | * / \ * | 1 | 3 | | 5 | 8 | * \ / * | 5 | 5 | | 6 | 7 | (x) * * In the examples, if we are looking for key "5", we may reach nodes * marked with "(x)". In this case what we have do is to look at the * left and see if there is "5" key there. If there is, we have to * return it. * * Note, this whole situation is possible because we allow to have * elements which are equivalent to the next key in the parent in the * children of current znode. For example, this happens if we split a * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something * like this: * | 3 | 5 | * / \ * | 3 | 5 | | 5 | 6 | 7 | * ^ * And this becomes what is at the first "picture" after key "5" marked * with "^" is removed. What could be done is we could prohibit * splitting in the middle of the colliding sequence. Also, when * removing the leftmost key, we would have to correct the key of the * parent node, which would introduce additional complications. Namely, * if we changed the leftmost key of the parent znode, the garbage * collector would be unable to find it (GC is doing this when GC'ing * indexing LEBs). Although we already have an additional RB-tree where * we save such changed znodes (see 'ins_clr_old_idx_znode()') until * after the commit. But anyway, this does not look easy to implement * so we did not try this. */ err = tnc_prev(c, &znode, n); if (err == -ENOENT) { dbg_tnc("found 0, lvl %d, n -1", znode->level); *n = -1; return 0; } if (unlikely(err < 0)) return err; if (keys_cmp(c, key, &znode->zbranch[*n].key)) { dbg_tnc("found 0, lvl %d, n -1", znode->level); *n = -1; return 0; } dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); *zn = znode; return 1; } /** * lookup_level0_dirty - search for zero-level znode dirtying. * @c: UBIFS file-system description object * @key: key to lookup * @zn: znode is returned here * @n: znode branch slot number is returned here * * This function looks up the TNC tree and search for zero-level znode which * refers key @key. The found zero-level znode is returned in @zn. There are 3 * cases: * o exact match, i.e. the found zero-level znode contains key @key, then %1 * is returned and slot number of the matched branch is stored in @n; * o not exact match, which means that zero-level znode does not contain @key * then %0 is returned and slot number of the closed branch is stored in * @n; * o @key is so small that it is even less than the lowest key of the * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. * * Additionally all znodes in the path from the root to the located zero-level * znode are marked as dirty. * * Note, when the TNC tree is traversed, some znodes may be absent, then this * function reads corresponding indexing nodes and inserts them to TNC. In * case of failure, a negative error code is returned. */ static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n) { int err, exact; struct ubifs_znode *znode; time64_t time = ktime_get_seconds(); dbg_tnck(key, "search and dirty key "); znode = c->zroot.znode; if (unlikely(!znode)) { znode = ubifs_load_znode(c, &c->zroot, NULL, 0); if (IS_ERR(znode)) return PTR_ERR(znode); } znode = dirty_cow_znode(c, &c->zroot); if (IS_ERR(znode)) return PTR_ERR(znode); znode->time = time; while (1) { struct ubifs_zbranch *zbr; exact = ubifs_search_zbranch(c, znode, key, n); if (znode->level == 0) break; if (*n < 0) *n = 0; zbr = &znode->zbranch[*n]; if (zbr->znode) { znode->time = time; znode = dirty_cow_znode(c, zbr); if (IS_ERR(znode)) return PTR_ERR(znode); continue; } /* znode is not in TNC cache, load it from the media */ znode = ubifs_load_znode(c, zbr, znode, *n); if (IS_ERR(znode)) return PTR_ERR(znode); znode = dirty_cow_znode(c, zbr); if (IS_ERR(znode)) return PTR_ERR(znode); } *zn = znode; if (exact || !is_hash_key(c, key) || *n != -1) { dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); return exact; } /* * See huge comment at 'lookup_level0_dirty()' what is the rest of the * code. */ err = tnc_prev(c, &znode, n); if (err == -ENOENT) { *n = -1; dbg_tnc("found 0, lvl %d, n -1", znode->level); return 0; } if (unlikely(err < 0)) return err; if (keys_cmp(c, key, &znode->zbranch[*n].key)) { *n = -1; dbg_tnc("found 0, lvl %d, n -1", znode->level); return 0; } if (znode->cnext || !ubifs_zn_dirty(znode)) { znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) return PTR_ERR(znode); } dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); *zn = znode; return 1; } /** * maybe_leb_gced - determine if a LEB may have been garbage collected. * @c: UBIFS file-system description object * @lnum: LEB number * @gc_seq1: garbage collection sequence number * * This function determines if @lnum may have been garbage collected since * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise * %0 is returned. */ static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) { int gc_seq2, gced_lnum; gced_lnum = c->gced_lnum; smp_rmb(); gc_seq2 = c->gc_seq; /* Same seq means no GC */ if (gc_seq1 == gc_seq2) return 0; /* Different by more than 1 means we don't know */ if (gc_seq1 + 1 != gc_seq2) return 1; /* * We have seen the sequence number has increased by 1. Now we need to * be sure we read the right LEB number, so read it again. */ smp_rmb(); if (gced_lnum != c->gced_lnum) return 1; /* Finally we can check lnum */ if (gced_lnum == lnum) return 1; return 0; } /** * ubifs_tnc_locate - look up a file-system node and return it and its location. * @c: UBIFS file-system description object * @key: node key to lookup * @node: the node is returned here * @lnum: LEB number is returned here * @offs: offset is returned here * * This function looks up and reads node with key @key. The caller has to make * sure the @node buffer is large enough to fit the node. Returns zero in case * of success, %-ENOENT if the node was not found, and a negative error code in * case of failure. The node location can be returned in @lnum and @offs. */ int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, void *node, int *lnum, int *offs) { int found, n, err, safely = 0, gc_seq1; struct ubifs_znode *znode; struct ubifs_zbranch zbr, *zt; again: mutex_lock(&c->tnc_mutex); found = ubifs_lookup_level0(c, key, &znode, &n); if (!found) { err = -ENOENT; goto out; } else if (found < 0) { err = found; goto out; } zt = &znode->zbranch[n]; if (lnum) { *lnum = zt->lnum; *offs = zt->offs; } if (is_hash_key(c, key)) { /* * In this case the leaf node cache gets used, so we pass the * address of the zbranch and keep the mutex locked */ err = tnc_read_hashed_node(c, zt, node); goto out; } if (safely) { err = ubifs_tnc_read_node(c, zt, node); goto out; } /* Drop the TNC mutex prematurely and race with garbage collection */ zbr = znode->zbranch[n]; gc_seq1 = c->gc_seq; mutex_unlock(&c->tnc_mutex); if (ubifs_get_wbuf(c, zbr.lnum)) { /* We do not GC journal heads */ err = ubifs_tnc_read_node(c, &zbr, node); return err; } err = fallible_read_node(c, key, &zbr, node); if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { /* * The node may have been GC'ed out from under us so try again * while keeping the TNC mutex locked. */ safely = 1; goto again; } return 0; out: mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. * @c: UBIFS file-system description object * @bu: bulk-read parameters and results * * Lookup consecutive data node keys for the same inode that reside * consecutively in the same LEB. This function returns zero in case of success * and a negative error code in case of failure. * * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares * maximum possible amount of nodes for bulk-read. */ int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) { int n, err = 0, lnum = -1, offs; int len; unsigned int block = key_block(c, &bu->key); struct ubifs_znode *znode; bu->cnt = 0; bu->blk_cnt = 0; bu->eof = 0; mutex_lock(&c->tnc_mutex); /* Find first key */ err = ubifs_lookup_level0(c, &bu->key, &znode, &n); if (err < 0) goto out; if (err) { /* Key found */ len = znode->zbranch[n].len; /* The buffer must be big enough for at least 1 node */ if (len > bu->buf_len) { err = -EINVAL; goto out; } /* Add this key */ bu->zbranch[bu->cnt++] = znode->zbranch[n]; bu->blk_cnt += 1; lnum = znode->zbranch[n].lnum; offs = ALIGN(znode->zbranch[n].offs + len, 8); } while (1) { struct ubifs_zbranch *zbr; union ubifs_key *key; unsigned int next_block; /* Find next key */ err = tnc_next(c, &znode, &n); if (err) goto out; zbr = &znode->zbranch[n]; key = &zbr->key; /* See if there is another data key for this file */ if (key_inum(c, key) != key_inum(c, &bu->key) || key_type(c, key) != UBIFS_DATA_KEY) { err = -ENOENT; goto out; } if (lnum < 0) { /* First key found */ lnum = zbr->lnum; offs = ALIGN(zbr->offs + zbr->len, 8); len = zbr->len; if (len > bu->buf_len) { err = -EINVAL; goto out; } } else { /* * The data nodes must be in consecutive positions in * the same LEB. */ if (zbr->lnum != lnum || zbr->offs != offs) goto out; offs += ALIGN(zbr->len, 8); len = ALIGN(len, 8) + zbr->len; /* Must not exceed buffer length */ if (len > bu->buf_len) goto out; } /* Allow for holes */ next_block = key_block(c, key); bu->blk_cnt += (next_block - block - 1); if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) goto out; block = next_block; /* Add this key */ bu->zbranch[bu->cnt++] = *zbr; bu->blk_cnt += 1; /* See if we have room for more */ if (bu->cnt >= UBIFS_MAX_BULK_READ) goto out; if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) goto out; } out: if (err == -ENOENT) { bu->eof = 1; err = 0; } bu->gc_seq = c->gc_seq; mutex_unlock(&c->tnc_mutex); if (err) return err; /* * An enormous hole could cause bulk-read to encompass too many * page cache pages, so limit the number here. */ if (bu->blk_cnt > UBIFS_MAX_BULK_READ) bu->blk_cnt = UBIFS_MAX_BULK_READ; /* * Ensure that bulk-read covers a whole number of page cache * pages. */ if (UBIFS_BLOCKS_PER_PAGE == 1 || !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) return 0; if (bu->eof) { /* At the end of file we can round up */ bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; return 0; } /* Exclude data nodes that do not make up a whole page cache page */ block = key_block(c, &bu->key) + bu->blk_cnt; block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); while (bu->cnt) { if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) break; bu->cnt -= 1; } return 0; } /** * read_wbuf - bulk-read from a LEB with a wbuf. * @wbuf: wbuf that may overlap the read * @buf: buffer into which to read * @len: read length * @lnum: LEB number from which to read * @offs: offset from which to read * * This functions returns %0 on success or a negative error code on failure. */ static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, int offs) { const struct ubifs_info *c = wbuf->c; int rlen, overlap; dbg_io("LEB %d:%d, length %d", lnum, offs, len); ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); ubifs_assert(c, !(offs & 7) && offs < c->leb_size); ubifs_assert(c, offs + len <= c->leb_size); spin_lock(&wbuf->lock); overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); if (!overlap) { /* We may safely unlock the write-buffer and read the data */ spin_unlock(&wbuf->lock); return ubifs_leb_read(c, lnum, buf, offs, len, 0); } /* Don't read under wbuf */ rlen = wbuf->offs - offs; if (rlen < 0) rlen = 0; /* Copy the rest from the write-buffer */ memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); spin_unlock(&wbuf->lock); if (rlen > 0) /* Read everything that goes before write-buffer */ return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); return 0; } /** * validate_data_node - validate data nodes for bulk-read. * @c: UBIFS file-system description object * @buf: buffer containing data node to validate * @zbr: zbranch of data node to validate * * This functions returns %0 on success or a negative error code on failure. */ static int validate_data_node(struct ubifs_info *c, void *buf, struct ubifs_zbranch *zbr) { union ubifs_key key1; struct ubifs_ch *ch = buf; int err, len; if (ch->node_type != UBIFS_DATA_NODE) { ubifs_err(c, "bad node type (%d but expected %d)", ch->node_type, UBIFS_DATA_NODE); goto out_err; } err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0); if (err) { ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); goto out; } err = ubifs_node_check_hash(c, buf, zbr->hash); if (err) { ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs); return err; } len = le32_to_cpu(ch->len); if (len != zbr->len) { ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); goto out_err; } /* Make sure the key of the read node is correct */ key_read(c, buf + UBIFS_KEY_OFFSET, &key1); if (!keys_eq(c, &zbr->key, &key1)) { ubifs_err(c, "bad key in node at LEB %d:%d", zbr->lnum, zbr->offs); dbg_tnck(&zbr->key, "looked for key "); dbg_tnck(&key1, "found node's key "); goto out_err; } return 0; out_err: err = -EINVAL; out: ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); ubifs_dump_node(c, buf, zbr->len); dump_stack(); return err; } /** * ubifs_tnc_bulk_read - read a number of data nodes in one go. * @c: UBIFS file-system description object * @bu: bulk-read parameters and results * * This functions reads and validates the data nodes that were identified by the * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, * -EAGAIN to indicate a race with GC, or another negative error code on * failure. */ int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) { int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; struct ubifs_wbuf *wbuf; void *buf; len = bu->zbranch[bu->cnt - 1].offs; len += bu->zbranch[bu->cnt - 1].len - offs; if (len > bu->buf_len) { ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); return -EINVAL; } /* Do the read */ wbuf = ubifs_get_wbuf(c, lnum); if (wbuf) err = read_wbuf(wbuf, bu->buf, len, lnum, offs); else err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); /* Check for a race with GC */ if (maybe_leb_gced(c, lnum, bu->gc_seq)) return -EAGAIN; if (err && err != -EBADMSG) { ubifs_err(c, "failed to read from LEB %d:%d, error %d", lnum, offs, err); dump_stack(); dbg_tnck(&bu->key, "key "); return err; } /* Validate the nodes read */ buf = bu->buf; for (i = 0; i < bu->cnt; i++) { err = validate_data_node(c, buf, &bu->zbranch[i]); if (err) return err; buf = buf + ALIGN(bu->zbranch[i].len, 8); } return 0; } /** * do_lookup_nm- look up a "hashed" node. * @c: UBIFS file-system description object * @key: node key to lookup * @node: the node is returned here * @nm: node name * * This function looks up and reads a node which contains name hash in the key. * Since the hash may have collisions, there may be many nodes with the same * key, so we have to sequentially look to all of them until the needed one is * found. This function returns zero in case of success, %-ENOENT if the node * was not found, and a negative error code in case of failure. */ static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, void *node, const struct fscrypt_name *nm) { int found, n, err; struct ubifs_znode *znode; dbg_tnck(key, "key "); mutex_lock(&c->tnc_mutex); found = ubifs_lookup_level0(c, key, &znode, &n); if (!found) { err = -ENOENT; goto out_unlock; } else if (found < 0) { err = found; goto out_unlock; } ubifs_assert(c, n >= 0); err = resolve_collision(c, key, &znode, &n, nm); dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); if (unlikely(err < 0)) goto out_unlock; if (err == 0) { err = -ENOENT; goto out_unlock; } err = tnc_read_hashed_node(c, &znode->zbranch[n], node); out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_lookup_nm - look up a "hashed" node. * @c: UBIFS file-system description object * @key: node key to lookup * @node: the node is returned here * @nm: node name * * This function looks up and reads a node which contains name hash in the key. * Since the hash may have collisions, there may be many nodes with the same * key, so we have to sequentially look to all of them until the needed one is * found. This function returns zero in case of success, %-ENOENT if the node * was not found, and a negative error code in case of failure. */ int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, void *node, const struct fscrypt_name *nm) { int err, len; const struct ubifs_dent_node *dent = node; /* * We assume that in most of the cases there are no name collisions and * 'ubifs_tnc_lookup()' returns us the right direntry. */ err = ubifs_tnc_lookup(c, key, node); if (err) return err; len = le16_to_cpu(dent->nlen); if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) return 0; /* * Unluckily, there are hash collisions and we have to iterate over * them look at each direntry with colliding name hash sequentially. */ return do_lookup_nm(c, key, node, nm); } static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_dent_node *dent, uint32_t cookie, struct ubifs_znode **zn, int *n, int exact) { int err; struct ubifs_znode *znode = *zn; struct ubifs_zbranch *zbr; union ubifs_key *dkey; if (!exact) { err = tnc_next(c, &znode, n); if (err) return err; } for (;;) { zbr = &znode->zbranch[*n]; dkey = &zbr->key; if (key_inum(c, dkey) != key_inum(c, key) || key_type(c, dkey) != key_type(c, key)) { return -ENOENT; } err = tnc_read_hashed_node(c, zbr, dent); if (err) return err; if (key_hash(c, key) == key_hash(c, dkey) && le32_to_cpu(dent->cookie) == cookie) { *zn = znode; return 0; } err = tnc_next(c, &znode, n); if (err) return err; } } static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_dent_node *dent, uint32_t cookie) { int n, err; struct ubifs_znode *znode; union ubifs_key start_key; ubifs_assert(c, is_hash_key(c, key)); lowest_dent_key(c, &start_key, key_inum(c, key)); mutex_lock(&c->tnc_mutex); err = ubifs_lookup_level0(c, &start_key, &znode, &n); if (unlikely(err < 0)) goto out_unlock; err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_lookup_dh - look up a "double hashed" node. * @c: UBIFS file-system description object * @key: node key to lookup * @node: the node is returned here * @cookie: node cookie for collision resolution * * This function looks up and reads a node which contains name hash in the key. * Since the hash may have collisions, there may be many nodes with the same * key, so we have to sequentially look to all of them until the needed one * with the same cookie value is found. * This function returns zero in case of success, %-ENOENT if the node * was not found, and a negative error code in case of failure. */ int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, void *node, uint32_t cookie) { int err; const struct ubifs_dent_node *dent = node; if (!c->double_hash) return -EOPNOTSUPP; /* * We assume that in most of the cases there are no name collisions and * 'ubifs_tnc_lookup()' returns us the right direntry. */ err = ubifs_tnc_lookup(c, key, node); if (err) return err; if (le32_to_cpu(dent->cookie) == cookie) return 0; /* * Unluckily, there are hash collisions and we have to iterate over * them look at each direntry with colliding name hash sequentially. */ return do_lookup_dh(c, key, node, cookie); } /** * correct_parent_keys - correct parent znodes' keys. * @c: UBIFS file-system description object * @znode: znode to correct parent znodes for * * This is a helper function for 'tnc_insert()'. When the key of the leftmost * zbranch changes, keys of parent znodes have to be corrected. This helper * function is called in such situations and corrects the keys if needed. */ static void correct_parent_keys(const struct ubifs_info *c, struct ubifs_znode *znode) { union ubifs_key *key, *key1; ubifs_assert(c, znode->parent); ubifs_assert(c, znode->iip == 0); key = &znode->zbranch[0].key; key1 = &znode->parent->zbranch[0].key; while (keys_cmp(c, key, key1) < 0) { key_copy(c, key, key1); znode = znode->parent; znode->alt = 1; if (!znode->parent || znode->iip) break; key1 = &znode->parent->zbranch[0].key; } } /** * insert_zbranch - insert a zbranch into a znode. * @c: UBIFS file-system description object * @znode: znode into which to insert * @zbr: zbranch to insert * @n: slot number to insert to * * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in * znode's array of zbranches and keeps zbranches consolidated, so when a new * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th * slot, zbranches starting from @n have to be moved right. */ static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode, const struct ubifs_zbranch *zbr, int n) { int i; ubifs_assert(c, ubifs_zn_dirty(znode)); if (znode->level) { for (i = znode->child_cnt; i > n; i--) { znode->zbranch[i] = znode->zbranch[i - 1]; if (znode->zbranch[i].znode) znode->zbranch[i].znode->iip = i; } if (zbr->znode) zbr->znode->iip = n; } else for (i = znode->child_cnt; i > n; i--) znode->zbranch[i] = znode->zbranch[i - 1]; znode->zbranch[n] = *zbr; znode->child_cnt += 1; /* * After inserting at slot zero, the lower bound of the key range of * this znode may have changed. If this znode is subsequently split * then the upper bound of the key range may change, and furthermore * it could change to be lower than the original lower bound. If that * happens, then it will no longer be possible to find this znode in the * TNC using the key from the index node on flash. That is bad because * if it is not found, we will assume it is obsolete and may overwrite * it. Then if there is an unclean unmount, we will start using the * old index which will be broken. * * So we first mark znodes that have insertions at slot zero, and then * if they are split we add their lnum/offs to the old_idx tree. */ if (n == 0) znode->alt = 1; } /** * tnc_insert - insert a node into TNC. * @c: UBIFS file-system description object * @znode: znode to insert into * @zbr: branch to insert * @n: slot number to insert new zbranch to * * This function inserts a new node described by @zbr into znode @znode. If * znode does not have a free slot for new zbranch, it is split. Parent znodes * are splat as well if needed. Returns zero in case of success or a negative * error code in case of failure. */ static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, struct ubifs_zbranch *zbr, int n) { struct ubifs_znode *zn, *zi, *zp; int i, keep, move, appending = 0; union ubifs_key *key = &zbr->key, *key1; ubifs_assert(c, n >= 0 && n <= c->fanout); /* Implement naive insert for now */ again: zp = znode->parent; if (znode->child_cnt < c->fanout) { ubifs_assert(c, n != c->fanout); dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); insert_zbranch(c, znode, zbr, n); /* Ensure parent's key is correct */ if (n == 0 && zp && znode->iip == 0) correct_parent_keys(c, znode); return 0; } /* * Unfortunately, @znode does not have more empty slots and we have to * split it. */ dbg_tnck(key, "splitting level %d, key ", znode->level); if (znode->alt) /* * We can no longer be sure of finding this znode by key, so we * record it in the old_idx tree. */ ins_clr_old_idx_znode(c, znode); zn = kzalloc(c->max_znode_sz, GFP_NOFS); if (!zn) return -ENOMEM; zn->parent = zp; zn->level = znode->level; /* Decide where to split */ if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { /* Try not to split consecutive data keys */ if (n == c->fanout) { key1 = &znode->zbranch[n - 1].key; if (key_inum(c, key1) == key_inum(c, key) && key_type(c, key1) == UBIFS_DATA_KEY) appending = 1; } else goto check_split; } else if (appending && n != c->fanout) { /* Try not to split consecutive data keys */ appending = 0; check_split: if (n >= (c->fanout + 1) / 2) { key1 = &znode->zbranch[0].key; if (key_inum(c, key1) == key_inum(c, key) && key_type(c, key1) == UBIFS_DATA_KEY) { key1 = &znode->zbranch[n].key; if (key_inum(c, key1) != key_inum(c, key) || key_type(c, key1) != UBIFS_DATA_KEY) { keep = n; move = c->fanout - keep; zi = znode; goto do_split; } } } } if (appending) { keep = c->fanout; move = 0; } else { keep = (c->fanout + 1) / 2; move = c->fanout - keep; } /* * Although we don't at present, we could look at the neighbors and see * if we can move some zbranches there. */ if (n < keep) { /* Insert into existing znode */ zi = znode; move += 1; keep -= 1; } else { /* Insert into new znode */ zi = zn; n -= keep; /* Re-parent */ if (zn->level != 0) zbr->znode->parent = zn; } do_split: __set_bit(DIRTY_ZNODE, &zn->flags); atomic_long_inc(&c->dirty_zn_cnt); zn->child_cnt = move; znode->child_cnt = keep; dbg_tnc("moving %d, keeping %d", move, keep); /* Move zbranch */ for (i = 0; i < move; i++) { zn->zbranch[i] = znode->zbranch[keep + i]; /* Re-parent */ if (zn->level != 0) if (zn->zbranch[i].znode) { zn->zbranch[i].znode->parent = zn; zn->zbranch[i].znode->iip = i; } } /* Insert new key and branch */ dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); insert_zbranch(c, zi, zbr, n); /* Insert new znode (produced by spitting) into the parent */ if (zp) { if (n == 0 && zi == znode && znode->iip == 0) correct_parent_keys(c, znode); /* Locate insertion point */ n = znode->iip + 1; /* Tail recursion */ zbr->key = zn->zbranch[0].key; zbr->znode = zn; zbr->lnum = 0; zbr->offs = 0; zbr->len = 0; znode = zp; goto again; } /* We have to split root znode */ dbg_tnc("creating new zroot at level %d", znode->level + 1); zi = kzalloc(c->max_znode_sz, GFP_NOFS); if (!zi) return -ENOMEM; zi->child_cnt = 2; zi->level = znode->level + 1; __set_bit(DIRTY_ZNODE, &zi->flags); atomic_long_inc(&c->dirty_zn_cnt); zi->zbranch[0].key = znode->zbranch[0].key; zi->zbranch[0].znode = znode; zi->zbranch[0].lnum = c->zroot.lnum; zi->zbranch[0].offs = c->zroot.offs; zi->zbranch[0].len = c->zroot.len; zi->zbranch[1].key = zn->zbranch[0].key; zi->zbranch[1].znode = zn; c->zroot.lnum = 0; c->zroot.offs = 0; c->zroot.len = 0; c->zroot.znode = zi; zn->parent = zi; zn->iip = 1; znode->parent = zi; znode->iip = 0; return 0; } /** * ubifs_tnc_add - add a node to TNC. * @c: UBIFS file-system description object * @key: key to add * @lnum: LEB number of node * @offs: node offset * @len: node length * @hash: The hash over the node * * This function adds a node with key @key to TNC. The node may be new or it may * obsolete some existing one. Returns %0 on success or negative error code on * failure. */ int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, int offs, int len, const u8 *hash) { int found, n, err = 0; struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); found = lookup_level0_dirty(c, key, &znode, &n); if (!found) { struct ubifs_zbranch zbr; zbr.znode = NULL; zbr.lnum = lnum; zbr.offs = offs; zbr.len = len; ubifs_copy_hash(c, hash, zbr.hash); key_copy(c, key, &zbr.key); err = tnc_insert(c, znode, &zbr, n + 1); } else if (found == 1) { struct ubifs_zbranch *zbr = &znode->zbranch[n]; lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); zbr->lnum = lnum; zbr->offs = offs; zbr->len = len; ubifs_copy_hash(c, hash, zbr->hash); } else err = found; if (!err) err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. * @c: UBIFS file-system description object * @key: key to add * @old_lnum: LEB number of old node * @old_offs: old node offset * @lnum: LEB number of node * @offs: node offset * @len: node length * * This function replaces a node with key @key in the TNC only if the old node * is found. This function is called by garbage collection when node are moved. * Returns %0 on success or negative error code on failure. */ int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, int old_lnum, int old_offs, int lnum, int offs, int len) { int found, n, err = 0; struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, old_offs, lnum, offs, len); found = lookup_level0_dirty(c, key, &znode, &n); if (found < 0) { err = found; goto out_unlock; } if (found == 1) { struct ubifs_zbranch *zbr = &znode->zbranch[n]; found = 0; if (zbr->lnum == old_lnum && zbr->offs == old_offs) { lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); if (err) goto out_unlock; zbr->lnum = lnum; zbr->offs = offs; zbr->len = len; found = 1; } else if (is_hash_key(c, key)) { found = resolve_collision_directly(c, key, &znode, &n, old_lnum, old_offs); dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", found, znode, n, old_lnum, old_offs); if (found < 0) { err = found; goto out_unlock; } if (found) { /* Ensure the znode is dirtied */ if (znode->cnext || !ubifs_zn_dirty(znode)) { znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_unlock; } } zbr = &znode->zbranch[n]; lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); if (err) goto out_unlock; zbr->lnum = lnum; zbr->offs = offs; zbr->len = len; } } } if (!found) err = ubifs_add_dirt(c, lnum, len); if (!err) err = dbg_check_tnc(c, 0); out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_add_nm - add a "hashed" node to TNC. * @c: UBIFS file-system description object * @key: key to add * @lnum: LEB number of node * @offs: node offset * @len: node length * @hash: The hash over the node * @nm: node name * * This is the same as 'ubifs_tnc_add()' but it should be used with keys which * may have collisions, like directory entry keys. */ int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, int lnum, int offs, int len, const u8 *hash, const struct fscrypt_name *nm) { int found, n, err = 0; struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); found = lookup_level0_dirty(c, key, &znode, &n); if (found < 0) { err = found; goto out_unlock; } if (found == 1) { if (c->replaying) found = fallible_resolve_collision(c, key, &znode, &n, nm, 1); else found = resolve_collision(c, key, &znode, &n, nm); dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); if (found < 0) { err = found; goto out_unlock; } /* Ensure the znode is dirtied */ if (znode->cnext || !ubifs_zn_dirty(znode)) { znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_unlock; } } if (found == 1) { struct ubifs_zbranch *zbr = &znode->zbranch[n]; lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); zbr->lnum = lnum; zbr->offs = offs; zbr->len = len; ubifs_copy_hash(c, hash, zbr->hash); goto out_unlock; } } if (!found) { struct ubifs_zbranch zbr; zbr.znode = NULL; zbr.lnum = lnum; zbr.offs = offs; zbr.len = len; ubifs_copy_hash(c, hash, zbr.hash); key_copy(c, key, &zbr.key); err = tnc_insert(c, znode, &zbr, n + 1); if (err) goto out_unlock; if (c->replaying) { /* * We did not find it in the index so there may be a * dangling branch still in the index. So we remove it * by passing 'ubifs_tnc_remove_nm()' the same key but * an unmatchable name. */ struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); if (err) return err; return ubifs_tnc_remove_nm(c, key, &noname); } } out_unlock: if (!err) err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); return err; } /** * tnc_delete - delete a znode form TNC. * @c: UBIFS file-system description object * @znode: znode to delete from * @n: zbranch slot number to delete * * This function deletes a leaf node from @n-th slot of @znode. Returns zero in * case of success and a negative error code in case of failure. */ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) { struct ubifs_zbranch *zbr; struct ubifs_znode *zp; int i, err; /* Delete without merge for now */ ubifs_assert(c, znode->level == 0); ubifs_assert(c, n >= 0 && n < c->fanout); dbg_tnck(&znode->zbranch[n].key, "deleting key "); zbr = &znode->zbranch[n]; lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); if (err) { ubifs_dump_znode(c, znode); return err; } /* We do not "gap" zbranch slots */ for (i = n; i < znode->child_cnt - 1; i++) znode->zbranch[i] = znode->zbranch[i + 1]; znode->child_cnt -= 1; if (znode->child_cnt > 0) return 0; /* * This was the last zbranch, we have to delete this znode from the * parent. */ do { ubifs_assert(c, !ubifs_zn_obsolete(znode)); ubifs_assert(c, ubifs_zn_dirty(znode)); zp = znode->parent; n = znode->iip; atomic_long_dec(&c->dirty_zn_cnt); err = insert_old_idx_znode(c, znode); if (err) return err; if (znode->cnext) { __set_bit(OBSOLETE_ZNODE, &znode->flags); atomic_long_inc(&c->clean_zn_cnt); atomic_long_inc(&ubifs_clean_zn_cnt); } else kfree(znode); znode = zp; } while (znode->child_cnt == 1); /* while removing last child */ /* Remove from znode, entry n - 1 */ znode->child_cnt -= 1; ubifs_assert(c, znode->level != 0); for (i = n; i < znode->child_cnt; i++) { znode->zbranch[i] = znode->zbranch[i + 1]; if (znode->zbranch[i].znode) znode->zbranch[i].znode->iip = i; } /* * If this is the root and it has only 1 child then * collapse the tree. */ if (!znode->parent) { while (znode->child_cnt == 1 && znode->level != 0) { zp = znode; zbr = &znode->zbranch[0]; znode = get_znode(c, znode, 0); if (IS_ERR(znode)) return PTR_ERR(znode); znode = dirty_cow_znode(c, zbr); if (IS_ERR(znode)) return PTR_ERR(znode); znode->parent = NULL; znode->iip = 0; if (c->zroot.len) { err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); if (err) return err; } c->zroot.lnum = zbr->lnum; c->zroot.offs = zbr->offs; c->zroot.len = zbr->len; c->zroot.znode = znode; ubifs_assert(c, !ubifs_zn_obsolete(zp)); ubifs_assert(c, ubifs_zn_dirty(zp)); atomic_long_dec(&c->dirty_zn_cnt); if (zp->cnext) { __set_bit(OBSOLETE_ZNODE, &zp->flags); atomic_long_inc(&c->clean_zn_cnt); atomic_long_inc(&ubifs_clean_zn_cnt); } else kfree(zp); } } return 0; } /** * ubifs_tnc_remove - remove an index entry of a node. * @c: UBIFS file-system description object * @key: key of node * * Returns %0 on success or negative error code on failure. */ int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) { int found, n, err = 0; struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); dbg_tnck(key, "key "); found = lookup_level0_dirty(c, key, &znode, &n); if (found < 0) { err = found; goto out_unlock; } if (found == 1) err = tnc_delete(c, znode, n); if (!err) err = dbg_check_tnc(c, 0); out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. * @c: UBIFS file-system description object * @key: key of node * @nm: directory entry name * * Returns %0 on success or negative error code on failure. */ int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, const struct fscrypt_name *nm) { int n, err; struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); dbg_tnck(key, "key "); err = lookup_level0_dirty(c, key, &znode, &n); if (err < 0) goto out_unlock; if (err) { if (c->replaying) err = fallible_resolve_collision(c, key, &znode, &n, nm, 0); else err = resolve_collision(c, key, &znode, &n, nm); dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); if (err < 0) goto out_unlock; if (err) { /* Ensure the znode is dirtied */ if (znode->cnext || !ubifs_zn_dirty(znode)) { znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_unlock; } } err = tnc_delete(c, znode, n); } } out_unlock: if (!err) err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. * @c: UBIFS file-system description object * @key: key of node * @cookie: node cookie for collision resolution * * Returns %0 on success or negative error code on failure. */ int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, uint32_t cookie) { int n, err; struct ubifs_znode *znode; struct ubifs_dent_node *dent; struct ubifs_zbranch *zbr; if (!c->double_hash) return -EOPNOTSUPP; mutex_lock(&c->tnc_mutex); err = lookup_level0_dirty(c, key, &znode, &n); if (err <= 0) goto out_unlock; zbr = &znode->zbranch[n]; dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); if (!dent) { err = -ENOMEM; goto out_unlock; } err = tnc_read_hashed_node(c, zbr, dent); if (err) goto out_free; /* If the cookie does not match, we're facing a hash collision. */ if (le32_to_cpu(dent->cookie) != cookie) { union ubifs_key start_key; lowest_dent_key(c, &start_key, key_inum(c, key)); err = ubifs_lookup_level0(c, &start_key, &znode, &n); if (unlikely(err < 0)) goto out_free; err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); if (err) goto out_free; } if (znode->cnext || !ubifs_zn_dirty(znode)) { znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_free; } } err = tnc_delete(c, znode, n); out_free: kfree(dent); out_unlock: if (!err) err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); return err; } /** * key_in_range - determine if a key falls within a range of keys. * @c: UBIFS file-system description object * @key: key to check * @from_key: lowest key in range * @to_key: highest key in range * * This function returns %1 if the key is in range and %0 otherwise. */ static int key_in_range(struct ubifs_info *c, union ubifs_key *key, union ubifs_key *from_key, union ubifs_key *to_key) { if (keys_cmp(c, key, from_key) < 0) return 0; if (keys_cmp(c, key, to_key) > 0) return 0; return 1; } /** * ubifs_tnc_remove_range - remove index entries in range. * @c: UBIFS file-system description object * @from_key: lowest key to remove * @to_key: highest key to remove * * This function removes index entries starting at @from_key and ending at * @to_key. This function returns zero in case of success and a negative error * code in case of failure. */ int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, union ubifs_key *to_key) { int i, n, k, err = 0; struct ubifs_znode *znode; union ubifs_key *key; mutex_lock(&c->tnc_mutex); while (1) { /* Find first level 0 znode that contains keys to remove */ err = ubifs_lookup_level0(c, from_key, &znode, &n); if (err < 0) goto out_unlock; if (err) key = from_key; else { err = tnc_next(c, &znode, &n); if (err == -ENOENT) { err = 0; goto out_unlock; } if (err < 0) goto out_unlock; key = &znode->zbranch[n].key; if (!key_in_range(c, key, from_key, to_key)) { err = 0; goto out_unlock; } } /* Ensure the znode is dirtied */ if (znode->cnext || !ubifs_zn_dirty(znode)) { znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_unlock; } } /* Remove all keys in range except the first */ for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { key = &znode->zbranch[i].key; if (!key_in_range(c, key, from_key, to_key)) break; lnc_free(&znode->zbranch[i]); err = ubifs_add_dirt(c, znode->zbranch[i].lnum, znode->zbranch[i].len); if (err) { ubifs_dump_znode(c, znode); goto out_unlock; } dbg_tnck(key, "removing key "); } if (k) { for (i = n + 1 + k; i < znode->child_cnt; i++) znode->zbranch[i - k] = znode->zbranch[i]; znode->child_cnt -= k; } /* Now delete the first */ err = tnc_delete(c, znode, n); if (err) goto out_unlock; } out_unlock: if (!err) err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_tnc_remove_ino - remove an inode from TNC. * @c: UBIFS file-system description object * @inum: inode number to remove * * This function remove inode @inum and all the extended attributes associated * with the anode from TNC and returns zero in case of success or a negative * error code in case of failure. */ int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) { union ubifs_key key1, key2; struct ubifs_dent_node *xent, *pxent = NULL; struct fscrypt_name nm = {0}; dbg_tnc("ino %lu", (unsigned long)inum); /* * Walk all extended attribute entries and remove them together with * corresponding extended attribute inodes. */ lowest_xent_key(c, &key1, inum); while (1) { ino_t xattr_inum; int err; xent = ubifs_tnc_next_ent(c, &key1, &nm); if (IS_ERR(xent)) { err = PTR_ERR(xent); if (err == -ENOENT) break; kfree(pxent); return err; } xattr_inum = le64_to_cpu(xent->inum); dbg_tnc("xent '%s', ino %lu", xent->name, (unsigned long)xattr_inum); ubifs_evict_xattr_inode(c, xattr_inum); fname_name(&nm) = xent->name; fname_len(&nm) = le16_to_cpu(xent->nlen); err = ubifs_tnc_remove_nm(c, &key1, &nm); if (err) { kfree(pxent); kfree(xent); return err; } lowest_ino_key(c, &key1, xattr_inum); highest_ino_key(c, &key2, xattr_inum); err = ubifs_tnc_remove_range(c, &key1, &key2); if (err) { kfree(pxent); kfree(xent); return err; } kfree(pxent); pxent = xent; key_read(c, &xent->key, &key1); } kfree(pxent); lowest_ino_key(c, &key1, inum); highest_ino_key(c, &key2, inum); return ubifs_tnc_remove_range(c, &key1, &key2); } /** * ubifs_tnc_next_ent - walk directory or extended attribute entries. * @c: UBIFS file-system description object * @key: key of last entry * @nm: name of last entry found or %NULL * * This function finds and reads the next directory or extended attribute entry * after the given key (@key) if there is one. @nm is used to resolve * collisions. * * If the name of the current entry is not known and only the key is known, * @nm->name has to be %NULL. In this case the semantics of this function is a * little bit different and it returns the entry corresponding to this key, not * the next one. If the key was not found, the closest "right" entry is * returned. * * If the fist entry has to be found, @key has to contain the lowest possible * key value for this inode and @name has to be %NULL. * * This function returns the found directory or extended attribute entry node * in case of success, %-ENOENT is returned if no entry was found, and a * negative error code is returned in case of failure. */ struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, union ubifs_key *key, const struct fscrypt_name *nm) { int n, err, type = key_type(c, key); struct ubifs_znode *znode; struct ubifs_dent_node *dent; struct ubifs_zbranch *zbr; union ubifs_key *dkey; dbg_tnck(key, "key "); ubifs_assert(c, is_hash_key(c, key)); mutex_lock(&c->tnc_mutex); err = ubifs_lookup_level0(c, key, &znode, &n); if (unlikely(err < 0)) goto out_unlock; if (fname_len(nm) > 0) { if (err) { /* Handle collisions */ if (c->replaying) err = fallible_resolve_collision(c, key, &znode, &n, nm, 0); else err = resolve_collision(c, key, &znode, &n, nm); dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); if (unlikely(err < 0)) goto out_unlock; } /* Now find next entry */ err = tnc_next(c, &znode, &n); if (unlikely(err)) goto out_unlock; } else { /* * The full name of the entry was not given, in which case the * behavior of this function is a little different and it * returns current entry, not the next one. */ if (!err) { /* * However, the given key does not exist in the TNC * tree and @znode/@n variables contain the closest * "preceding" element. Switch to the next one. */ err = tnc_next(c, &znode, &n); if (err) goto out_unlock; } } zbr = &znode->zbranch[n]; dent = kmalloc(zbr->len, GFP_NOFS); if (unlikely(!dent)) { err = -ENOMEM; goto out_unlock; } /* * The above 'tnc_next()' call could lead us to the next inode, check * this. */ dkey = &zbr->key; if (key_inum(c, dkey) != key_inum(c, key) || key_type(c, dkey) != type) { err = -ENOENT; goto out_free; } err = tnc_read_hashed_node(c, zbr, dent); if (unlikely(err)) goto out_free; mutex_unlock(&c->tnc_mutex); return dent; out_free: kfree(dent); out_unlock: mutex_unlock(&c->tnc_mutex); return ERR_PTR(err); } /** * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. * @c: UBIFS file-system description object * * Destroy left-over obsolete znodes from a failed commit. */ static void tnc_destroy_cnext(struct ubifs_info *c) { struct ubifs_znode *cnext; if (!c->cnext) return; ubifs_assert(c, c->cmt_state == COMMIT_BROKEN); cnext = c->cnext; do { struct ubifs_znode *znode = cnext; cnext = cnext->cnext; if (ubifs_zn_obsolete(znode)) kfree(znode); else if (!ubifs_zn_cow(znode)) { /* * Don't forget to update clean znode count after * committing failed, because ubifs will check this * count while closing tnc. Non-obsolete znode could * be re-dirtied during committing process, so dirty * flag is untrustable. The flag 'COW_ZNODE' is set * for each dirty znode before committing, and it is * cleared as long as the znode become clean, so we * can statistic clean znode count according to this * flag. */ atomic_long_inc(&c->clean_zn_cnt); atomic_long_inc(&ubifs_clean_zn_cnt); } } while (cnext && cnext != c->cnext); } /** * ubifs_tnc_close - close TNC subsystem and free all related resources. * @c: UBIFS file-system description object */ void ubifs_tnc_close(struct ubifs_info *c) { tnc_destroy_cnext(c); if (c->zroot.znode) { long n, freed; n = atomic_long_read(&c->clean_zn_cnt); freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); ubifs_assert(c, freed == n); atomic_long_sub(n, &ubifs_clean_zn_cnt); } kfree(c->gap_lebs); kfree(c->ilebs); destroy_old_idx(c); } /** * left_znode - get the znode to the left. * @c: UBIFS file-system description object * @znode: znode * * This function returns a pointer to the znode to the left of @znode or NULL if * there is not one. A negative error code is returned on failure. */ static struct ubifs_znode *left_znode(struct ubifs_info *c, struct ubifs_znode *znode) { int level = znode->level; while (1) { int n = znode->iip - 1; /* Go up until we can go left */ znode = znode->parent; if (!znode) return NULL; if (n >= 0) { /* Now go down the rightmost branch to 'level' */ znode = get_znode(c, znode, n); if (IS_ERR(znode)) return znode; while (znode->level != level) { n = znode->child_cnt - 1; znode = get_znode(c, znode, n); if (IS_ERR(znode)) return znode; } break; } } return znode; } /** * right_znode - get the znode to the right. * @c: UBIFS file-system description object * @znode: znode * * This function returns a pointer to the znode to the right of @znode or NULL * if there is not one. A negative error code is returned on failure. */ static struct ubifs_znode *right_znode(struct ubifs_info *c, struct ubifs_znode *znode) { int level = znode->level; while (1) { int n = znode->iip + 1; /* Go up until we can go right */ znode = znode->parent; if (!znode) return NULL; if (n < znode->child_cnt) { /* Now go down the leftmost branch to 'level' */ znode = get_znode(c, znode, n); if (IS_ERR(znode)) return znode; while (znode->level != level) { znode = get_znode(c, znode, 0); if (IS_ERR(znode)) return znode; } break; } } return znode; } /** * lookup_znode - find a particular indexing node from TNC. * @c: UBIFS file-system description object * @key: index node key to lookup * @level: index node level * @lnum: index node LEB number * @offs: index node offset * * This function searches an indexing node by its first key @key and its * address @lnum:@offs. It looks up the indexing tree by pulling all indexing * nodes it traverses to TNC. This function is called for indexing nodes which * were found on the media by scanning, for example when garbage-collecting or * when doing in-the-gaps commit. This means that the indexing node which is * looked for does not have to have exactly the same leftmost key @key, because * the leftmost key may have been changed, in which case TNC will contain a * dirty znode which still refers the same @lnum:@offs. This function is clever * enough to recognize such indexing nodes. * * Note, if a znode was deleted or changed too much, then this function will * not find it. For situations like this UBIFS has the old index RB-tree * (indexed by @lnum:@offs). * * This function returns a pointer to the znode found or %NULL if it is not * found. A negative error code is returned on failure. */ static struct ubifs_znode *lookup_znode(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs) { struct ubifs_znode *znode, *zn; int n, nn; ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); /* * The arguments have probably been read off flash, so don't assume * they are valid. */ if (level < 0) return ERR_PTR(-EINVAL); /* Get the root znode */ znode = c->zroot.znode; if (!znode) { znode = ubifs_load_znode(c, &c->zroot, NULL, 0); if (IS_ERR(znode)) return znode; } /* Check if it is the one we are looking for */ if (c->zroot.lnum == lnum && c->zroot.offs == offs) return znode; /* Descend to the parent level i.e. (level + 1) */ if (level >= znode->level) return NULL; while (1) { ubifs_search_zbranch(c, znode, key, &n); if (n < 0) { /* * We reached a znode where the leftmost key is greater * than the key we are searching for. This is the same * situation as the one described in a huge comment at * the end of the 'ubifs_lookup_level0()' function. And * for exactly the same reasons we have to try to look * left before giving up. */ znode = left_znode(c, znode); if (!znode) return NULL; if (IS_ERR(znode)) return znode; ubifs_search_zbranch(c, znode, key, &n); ubifs_assert(c, n >= 0); } if (znode->level == level + 1) break; znode = get_znode(c, znode, n); if (IS_ERR(znode)) return znode; } /* Check if the child is the one we are looking for */ if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) return get_znode(c, znode, n); /* If the key is unique, there is nowhere else to look */ if (!is_hash_key(c, key)) return NULL; /* * The key is not unique and so may be also in the znodes to either * side. */ zn = znode; nn = n; /* Look left */ while (1) { /* Move one branch to the left */ if (n) n -= 1; else { znode = left_znode(c, znode); if (!znode) break; if (IS_ERR(znode)) return znode; n = znode->child_cnt - 1; } /* Check it */ if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) return get_znode(c, znode, n); /* Stop if the key is less than the one we are looking for */ if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) break; } /* Back to the middle */ znode = zn; n = nn; /* Look right */ while (1) { /* Move one branch to the right */ if (++n >= znode->child_cnt) { znode = right_znode(c, znode); if (!znode) break; if (IS_ERR(znode)) return znode; n = 0; } /* Check it */ if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) return get_znode(c, znode, n); /* Stop if the key is greater than the one we are looking for */ if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) break; } return NULL; } /** * is_idx_node_in_tnc - determine if an index node is in the TNC. * @c: UBIFS file-system description object * @key: key of index node * @level: index node level * @lnum: LEB number of index node * @offs: offset of index node * * This function returns %0 if the index node is not referred to in the TNC, %1 * if the index node is referred to in the TNC and the corresponding znode is * dirty, %2 if an index node is referred to in the TNC and the corresponding * znode is clean, and a negative error code in case of failure. * * Note, the @key argument has to be the key of the first child. Also note, * this function relies on the fact that 0:0 is never a valid LEB number and * offset for a main-area node. */ int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs) { struct ubifs_znode *znode; znode = lookup_znode(c, key, level, lnum, offs); if (!znode) return 0; if (IS_ERR(znode)) return PTR_ERR(znode); return ubifs_zn_dirty(znode) ? 1 : 2; } /** * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. * @c: UBIFS file-system description object * @key: node key * @lnum: node LEB number * @offs: node offset * * This function returns %1 if the node is referred to in the TNC, %0 if it is * not, and a negative error code in case of failure. * * Note, this function relies on the fact that 0:0 is never a valid LEB number * and offset for a main-area node. */ static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int lnum, int offs) { struct ubifs_zbranch *zbr; struct ubifs_znode *znode, *zn; int n, found, err, nn; const int unique = !is_hash_key(c, key); found = ubifs_lookup_level0(c, key, &znode, &n); if (found < 0) return found; /* Error code */ if (!found) return 0; zbr = &znode->zbranch[n]; if (lnum == zbr->lnum && offs == zbr->offs) return 1; /* Found it */ if (unique) return 0; /* * Because the key is not unique, we have to look left * and right as well */ zn = znode; nn = n; /* Look left */ while (1) { err = tnc_prev(c, &znode, &n); if (err == -ENOENT) break; if (err) return err; if (keys_cmp(c, key, &znode->zbranch[n].key)) break; zbr = &znode->zbranch[n]; if (lnum == zbr->lnum && offs == zbr->offs) return 1; /* Found it */ } /* Look right */ znode = zn; n = nn; while (1) { err = tnc_next(c, &znode, &n); if (err) { if (err == -ENOENT) return 0; return err; } if (keys_cmp(c, key, &znode->zbranch[n].key)) break; zbr = &znode->zbranch[n]; if (lnum == zbr->lnum && offs == zbr->offs) return 1; /* Found it */ } return 0; } /** * ubifs_tnc_has_node - determine whether a node is in the TNC. * @c: UBIFS file-system description object * @key: node key * @level: index node level (if it is an index node) * @lnum: node LEB number * @offs: node offset * @is_idx: non-zero if the node is an index node * * This function returns %1 if the node is in the TNC, %0 if it is not, and a * negative error code in case of failure. For index nodes, @key has to be the * key of the first child. An index node is considered to be in the TNC only if * the corresponding znode is clean or has not been loaded. */ int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs, int is_idx) { int err; mutex_lock(&c->tnc_mutex); if (is_idx) { err = is_idx_node_in_tnc(c, key, level, lnum, offs); if (err < 0) goto out_unlock; if (err == 1) /* The index node was found but it was dirty */ err = 0; else if (err == 2) /* The index node was found and it was clean */ err = 1; else BUG_ON(err != 0); } else err = is_leaf_node_in_tnc(c, key, lnum, offs); out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * ubifs_dirty_idx_node - dirty an index node. * @c: UBIFS file-system description object * @key: index node key * @level: index node level * @lnum: index node LEB number * @offs: index node offset * * This function loads and dirties an index node so that it can be garbage * collected. The @key argument has to be the key of the first child. This * function relies on the fact that 0:0 is never a valid LEB number and offset * for a main-area node. Returns %0 on success and a negative error code on * failure. */ int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs) { struct ubifs_znode *znode; int err = 0; mutex_lock(&c->tnc_mutex); znode = lookup_znode(c, key, level, lnum, offs); if (!znode) goto out_unlock; if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_unlock; } znode = dirty_cow_bottom_up(c, znode); if (IS_ERR(znode)) { err = PTR_ERR(znode); goto out_unlock; } out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * dbg_check_inode_size - check if inode size is correct. * @c: UBIFS file-system description object * @inode: inode to check * @size: inode size * * This function makes sure that the inode size (@size) is correct and it does * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL * if it has a data page beyond @size, and other negative error code in case of * other errors. */ int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, loff_t size) { int err, n; union ubifs_key from_key, to_key, *key; struct ubifs_znode *znode; unsigned int block; if (!S_ISREG(inode->i_mode)) return 0; if (!dbg_is_chk_gen(c)) return 0; block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; data_key_init(c, &from_key, inode->i_ino, block); highest_data_key(c, &to_key, inode->i_ino); mutex_lock(&c->tnc_mutex); err = ubifs_lookup_level0(c, &from_key, &znode, &n); if (err < 0) goto out_unlock; if (err) { key = &from_key; goto out_dump; } err = tnc_next(c, &znode, &n); if (err == -ENOENT) { err = 0; goto out_unlock; } if (err < 0) goto out_unlock; ubifs_assert(c, err == 0); key = &znode->zbranch[n].key; if (!key_in_range(c, key, &from_key, &to_key)) goto out_unlock; out_dump: block = key_block(c, key); ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", (unsigned long)inode->i_ino, size, ((loff_t)block) << UBIFS_BLOCK_SHIFT); mutex_unlock(&c->tnc_mutex); ubifs_dump_inode(c, inode); dump_stack(); return -EINVAL; out_unlock: mutex_unlock(&c->tnc_mutex); return err; } |