Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 | // SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include <linux/module.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/notifier.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/in.h> #include <linux/ethtool.h> #include <linux/topology.h> #include <linux/gfp.h> #include <linux/aer.h> #include <linux/interrupt.h> #include "net_driver.h" #include "efx.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /************************************************************************** * * Type name strings * ************************************************************************** */ /* Loopback mode names (see LOOPBACK_MODE()) */ const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; const char *const ef4_loopback_mode_names[] = { [LOOPBACK_NONE] = "NONE", [LOOPBACK_DATA] = "DATAPATH", [LOOPBACK_GMAC] = "GMAC", [LOOPBACK_XGMII] = "XGMII", [LOOPBACK_XGXS] = "XGXS", [LOOPBACK_XAUI] = "XAUI", [LOOPBACK_GMII] = "GMII", [LOOPBACK_SGMII] = "SGMII", [LOOPBACK_XGBR] = "XGBR", [LOOPBACK_XFI] = "XFI", [LOOPBACK_XAUI_FAR] = "XAUI_FAR", [LOOPBACK_GMII_FAR] = "GMII_FAR", [LOOPBACK_SGMII_FAR] = "SGMII_FAR", [LOOPBACK_XFI_FAR] = "XFI_FAR", [LOOPBACK_GPHY] = "GPHY", [LOOPBACK_PHYXS] = "PHYXS", [LOOPBACK_PCS] = "PCS", [LOOPBACK_PMAPMD] = "PMA/PMD", [LOOPBACK_XPORT] = "XPORT", [LOOPBACK_XGMII_WS] = "XGMII_WS", [LOOPBACK_XAUI_WS] = "XAUI_WS", [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", [LOOPBACK_GMII_WS] = "GMII_WS", [LOOPBACK_XFI_WS] = "XFI_WS", [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", [LOOPBACK_PHYXS_WS] = "PHYXS_WS", }; const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; const char *const ef4_reset_type_names[] = { [RESET_TYPE_INVISIBLE] = "INVISIBLE", [RESET_TYPE_ALL] = "ALL", [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", [RESET_TYPE_WORLD] = "WORLD", [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", [RESET_TYPE_DATAPATH] = "DATAPATH", [RESET_TYPE_DISABLE] = "DISABLE", [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", [RESET_TYPE_INT_ERROR] = "INT_ERROR", [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", [RESET_TYPE_TX_SKIP] = "TX_SKIP", }; /* Reset workqueue. If any NIC has a hardware failure then a reset will be * queued onto this work queue. This is not a per-nic work queue, because * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. */ static struct workqueue_struct *reset_workqueue; /* How often and how many times to poll for a reset while waiting for a * BIST that another function started to complete. */ #define BIST_WAIT_DELAY_MS 100 #define BIST_WAIT_DELAY_COUNT 100 /************************************************************************** * * Configurable values * *************************************************************************/ /* * Use separate channels for TX and RX events * * Set this to 1 to use separate channels for TX and RX. It allows us * to control interrupt affinity separately for TX and RX. * * This is only used in MSI-X interrupt mode */ bool ef4_separate_tx_channels; module_param(ef4_separate_tx_channels, bool, 0444); MODULE_PARM_DESC(ef4_separate_tx_channels, "Use separate channels for TX and RX"); /* This is the time (in jiffies) between invocations of the hardware * monitor. * On Falcon-based NICs, this will: * - Check the on-board hardware monitor; * - Poll the link state and reconfigure the hardware as necessary. * On Siena-based NICs for power systems with EEH support, this will give EEH a * chance to start. */ static unsigned int ef4_monitor_interval = 1 * HZ; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * The default for RX should strike a balance between increasing the * round-trip latency and reducing overhead. */ static unsigned int rx_irq_mod_usec = 60; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * This default is chosen to ensure that a 10G link does not go idle * while a TX queue is stopped after it has become full. A queue is * restarted when it drops below half full. The time this takes (assuming * worst case 3 descriptors per packet and 1024 descriptors) is * 512 / 3 * 1.2 = 205 usec. */ static unsigned int tx_irq_mod_usec = 150; /* This is the first interrupt mode to try out of: * 0 => MSI-X * 1 => MSI * 2 => legacy */ static unsigned int interrupt_mode; /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), * i.e. the number of CPUs among which we may distribute simultaneous * interrupt handling. * * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * The default (0) means to assign an interrupt to each core. */ static unsigned int rss_cpus; module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); static bool phy_flash_cfg; module_param(phy_flash_cfg, bool, 0644); MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); static unsigned irq_adapt_low_thresh = 8000; module_param(irq_adapt_low_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_low_thresh, "Threshold score for reducing IRQ moderation"); static unsigned irq_adapt_high_thresh = 16000; module_param(irq_adapt_high_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_high_thresh, "Threshold score for increasing IRQ moderation"); static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | NETIF_MSG_HW); module_param(debug, uint, 0); MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); /************************************************************************** * * Utility functions and prototypes * *************************************************************************/ static int ef4_soft_enable_interrupts(struct ef4_nic *efx); static void ef4_soft_disable_interrupts(struct ef4_nic *efx); static void ef4_remove_channel(struct ef4_channel *channel); static void ef4_remove_channels(struct ef4_nic *efx); static const struct ef4_channel_type ef4_default_channel_type; static void ef4_remove_port(struct ef4_nic *efx); static void ef4_init_napi_channel(struct ef4_channel *channel); static void ef4_fini_napi(struct ef4_nic *efx); static void ef4_fini_napi_channel(struct ef4_channel *channel); static void ef4_fini_struct(struct ef4_nic *efx); static void ef4_start_all(struct ef4_nic *efx); static void ef4_stop_all(struct ef4_nic *efx); #define EF4_ASSERT_RESET_SERIALISED(efx) \ do { \ if ((efx->state == STATE_READY) || \ (efx->state == STATE_RECOVERY) || \ (efx->state == STATE_DISABLED)) \ ASSERT_RTNL(); \ } while (0) static int ef4_check_disabled(struct ef4_nic *efx) { if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { netif_err(efx, drv, efx->net_dev, "device is disabled due to earlier errors\n"); return -EIO; } return 0; } /************************************************************************** * * Event queue processing * *************************************************************************/ /* Process channel's event queue * * This function is responsible for processing the event queue of a * single channel. The caller must guarantee that this function will * never be concurrently called more than once on the same channel, * though different channels may be being processed concurrently. */ static int ef4_process_channel(struct ef4_channel *channel, int budget) { struct ef4_tx_queue *tx_queue; int spent; if (unlikely(!channel->enabled)) return 0; ef4_for_each_channel_tx_queue(tx_queue, channel) { tx_queue->pkts_compl = 0; tx_queue->bytes_compl = 0; } spent = ef4_nic_process_eventq(channel, budget); if (spent && ef4_channel_has_rx_queue(channel)) { struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel); ef4_rx_flush_packet(channel); ef4_fast_push_rx_descriptors(rx_queue, true); } /* Update BQL */ ef4_for_each_channel_tx_queue(tx_queue, channel) { if (tx_queue->bytes_compl) { netdev_tx_completed_queue(tx_queue->core_txq, tx_queue->pkts_compl, tx_queue->bytes_compl); } } return spent; } /* NAPI poll handler * * NAPI guarantees serialisation of polls of the same device, which * provides the guarantee required by ef4_process_channel(). */ static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) { int step = efx->irq_mod_step_us; if (channel->irq_mod_score < irq_adapt_low_thresh) { if (channel->irq_moderation_us > step) { channel->irq_moderation_us -= step; efx->type->push_irq_moderation(channel); } } else if (channel->irq_mod_score > irq_adapt_high_thresh) { if (channel->irq_moderation_us < efx->irq_rx_moderation_us) { channel->irq_moderation_us += step; efx->type->push_irq_moderation(channel); } } channel->irq_count = 0; channel->irq_mod_score = 0; } static int ef4_poll(struct napi_struct *napi, int budget) { struct ef4_channel *channel = container_of(napi, struct ef4_channel, napi_str); struct ef4_nic *efx = channel->efx; int spent; netif_vdbg(efx, intr, efx->net_dev, "channel %d NAPI poll executing on CPU %d\n", channel->channel, raw_smp_processor_id()); spent = ef4_process_channel(channel, budget); if (spent < budget) { if (ef4_channel_has_rx_queue(channel) && efx->irq_rx_adaptive && unlikely(++channel->irq_count == 1000)) { ef4_update_irq_mod(efx, channel); } ef4_filter_rfs_expire(channel); /* There is no race here; although napi_disable() will * only wait for napi_complete(), this isn't a problem * since ef4_nic_eventq_read_ack() will have no effect if * interrupts have already been disabled. */ napi_complete_done(napi, spent); ef4_nic_eventq_read_ack(channel); } return spent; } /* Create event queue * Event queue memory allocations are done only once. If the channel * is reset, the memory buffer will be reused; this guards against * errors during channel reset and also simplifies interrupt handling. */ static int ef4_probe_eventq(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; unsigned long entries; netif_dbg(efx, probe, efx->net_dev, "chan %d create event queue\n", channel->channel); /* Build an event queue with room for one event per tx and rx buffer, * plus some extra for link state events and MCDI completions. */ entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; return ef4_nic_probe_eventq(channel); } /* Prepare channel's event queue */ static int ef4_init_eventq(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; int rc; EF4_WARN_ON_PARANOID(channel->eventq_init); netif_dbg(efx, drv, efx->net_dev, "chan %d init event queue\n", channel->channel); rc = ef4_nic_init_eventq(channel); if (rc == 0) { efx->type->push_irq_moderation(channel); channel->eventq_read_ptr = 0; channel->eventq_init = true; } return rc; } /* Enable event queue processing and NAPI */ void ef4_start_eventq(struct ef4_channel *channel) { netif_dbg(channel->efx, ifup, channel->efx->net_dev, "chan %d start event queue\n", channel->channel); /* Make sure the NAPI handler sees the enabled flag set */ channel->enabled = true; smp_wmb(); napi_enable(&channel->napi_str); ef4_nic_eventq_read_ack(channel); } /* Disable event queue processing and NAPI */ void ef4_stop_eventq(struct ef4_channel *channel) { if (!channel->enabled) return; napi_disable(&channel->napi_str); channel->enabled = false; } static void ef4_fini_eventq(struct ef4_channel *channel) { if (!channel->eventq_init) return; netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d fini event queue\n", channel->channel); ef4_nic_fini_eventq(channel); channel->eventq_init = false; } static void ef4_remove_eventq(struct ef4_channel *channel) { netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d remove event queue\n", channel->channel); ef4_nic_remove_eventq(channel); } /************************************************************************** * * Channel handling * *************************************************************************/ /* Allocate and initialise a channel structure. */ static struct ef4_channel * ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) { struct ef4_channel *channel; struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; int j; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; channel->efx = efx; channel->channel = i; channel->type = &ef4_default_channel_type; for (j = 0; j < EF4_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; tx_queue->efx = efx; tx_queue->queue = i * EF4_TXQ_TYPES + j; tx_queue->channel = channel; } rx_queue = &channel->rx_queue; rx_queue->efx = efx; timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); return channel; } /* Allocate and initialise a channel structure, copying parameters * (but not resources) from an old channel structure. */ static struct ef4_channel * ef4_copy_channel(const struct ef4_channel *old_channel) { struct ef4_channel *channel; struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; int j; channel = kmalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; *channel = *old_channel; channel->napi_dev = NULL; INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); channel->napi_str.napi_id = 0; channel->napi_str.state = 0; memset(&channel->eventq, 0, sizeof(channel->eventq)); for (j = 0; j < EF4_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; if (tx_queue->channel) tx_queue->channel = channel; tx_queue->buffer = NULL; memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); } rx_queue = &channel->rx_queue; rx_queue->buffer = NULL; memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); return channel; } static int ef4_probe_channel(struct ef4_channel *channel) { struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; int rc; netif_dbg(channel->efx, probe, channel->efx->net_dev, "creating channel %d\n", channel->channel); rc = channel->type->pre_probe(channel); if (rc) goto fail; rc = ef4_probe_eventq(channel); if (rc) goto fail; ef4_for_each_channel_tx_queue(tx_queue, channel) { rc = ef4_probe_tx_queue(tx_queue); if (rc) goto fail; } ef4_for_each_channel_rx_queue(rx_queue, channel) { rc = ef4_probe_rx_queue(rx_queue); if (rc) goto fail; } return 0; fail: ef4_remove_channel(channel); return rc; } static void ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) { struct ef4_nic *efx = channel->efx; const char *type; int number; number = channel->channel; if (efx->tx_channel_offset == 0) { type = ""; } else if (channel->channel < efx->tx_channel_offset) { type = "-rx"; } else { type = "-tx"; number -= efx->tx_channel_offset; } snprintf(buf, len, "%s%s-%d", efx->name, type, number); } static void ef4_set_channel_names(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) channel->type->get_name(channel, efx->msi_context[channel->channel].name, sizeof(efx->msi_context[0].name)); } static int ef4_probe_channels(struct ef4_nic *efx) { struct ef4_channel *channel; int rc; /* Restart special buffer allocation */ efx->next_buffer_table = 0; /* Probe channels in reverse, so that any 'extra' channels * use the start of the buffer table. This allows the traffic * channels to be resized without moving them or wasting the * entries before them. */ ef4_for_each_channel_rev(channel, efx) { rc = ef4_probe_channel(channel); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create channel %d\n", channel->channel); goto fail; } } ef4_set_channel_names(efx); return 0; fail: ef4_remove_channels(efx); return rc; } /* Channels are shutdown and reinitialised whilst the NIC is running * to propagate configuration changes (mtu, checksum offload), or * to clear hardware error conditions */ static void ef4_start_datapath(struct ef4_nic *efx) { netdev_features_t old_features = efx->net_dev->features; bool old_rx_scatter = efx->rx_scatter; struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; struct ef4_channel *channel; size_t rx_buf_len; /* Calculate the rx buffer allocation parameters required to * support the current MTU, including padding for header * alignment and overruns. */ efx->rx_dma_len = (efx->rx_prefix_size + EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + efx->type->rx_buffer_padding); rx_buf_len = (sizeof(struct ef4_rx_page_state) + efx->rx_ip_align + efx->rx_dma_len); if (rx_buf_len <= PAGE_SIZE) { efx->rx_scatter = efx->type->always_rx_scatter; efx->rx_buffer_order = 0; } else if (efx->type->can_rx_scatter) { BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, EF4_RX_BUF_ALIGNMENT) > PAGE_SIZE); efx->rx_scatter = true; efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; efx->rx_buffer_order = 0; } else { efx->rx_scatter = false; efx->rx_buffer_order = get_order(rx_buf_len); } ef4_rx_config_page_split(efx); if (efx->rx_buffer_order) netif_dbg(efx, drv, efx->net_dev, "RX buf len=%u; page order=%u batch=%u\n", efx->rx_dma_len, efx->rx_buffer_order, efx->rx_pages_per_batch); else netif_dbg(efx, drv, efx->net_dev, "RX buf len=%u step=%u bpp=%u; page batch=%u\n", efx->rx_dma_len, efx->rx_page_buf_step, efx->rx_bufs_per_page, efx->rx_pages_per_batch); /* Restore previously fixed features in hw_features and remove * features which are fixed now */ efx->net_dev->hw_features |= efx->net_dev->features; efx->net_dev->hw_features &= ~efx->fixed_features; efx->net_dev->features |= efx->fixed_features; if (efx->net_dev->features != old_features) netdev_features_change(efx->net_dev); /* RX filters may also have scatter-enabled flags */ if (efx->rx_scatter != old_rx_scatter) efx->type->filter_update_rx_scatter(efx); /* We must keep at least one descriptor in a TX ring empty. * We could avoid this when the queue size does not exactly * match the hardware ring size, but it's not that important. * Therefore we stop the queue when one more skb might fill * the ring completely. We wake it when half way back to * empty. */ efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); efx->txq_wake_thresh = efx->txq_stop_thresh / 2; /* Initialise the channels */ ef4_for_each_channel(channel, efx) { ef4_for_each_channel_tx_queue(tx_queue, channel) { ef4_init_tx_queue(tx_queue); atomic_inc(&efx->active_queues); } ef4_for_each_channel_rx_queue(rx_queue, channel) { ef4_init_rx_queue(rx_queue); atomic_inc(&efx->active_queues); ef4_stop_eventq(channel); ef4_fast_push_rx_descriptors(rx_queue, false); ef4_start_eventq(channel); } WARN_ON(channel->rx_pkt_n_frags); } if (netif_device_present(efx->net_dev)) netif_tx_wake_all_queues(efx->net_dev); } static void ef4_stop_datapath(struct ef4_nic *efx) { struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; int rc; EF4_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->port_enabled); /* Stop RX refill */ ef4_for_each_channel(channel, efx) { ef4_for_each_channel_rx_queue(rx_queue, channel) rx_queue->refill_enabled = false; } ef4_for_each_channel(channel, efx) { /* RX packet processing is pipelined, so wait for the * NAPI handler to complete. At least event queue 0 * might be kept active by non-data events, so don't * use napi_synchronize() but actually disable NAPI * temporarily. */ if (ef4_channel_has_rx_queue(channel)) { ef4_stop_eventq(channel); ef4_start_eventq(channel); } } rc = efx->type->fini_dmaq(efx); if (rc && EF4_WORKAROUND_7803(efx)) { /* Schedule a reset to recover from the flush failure. The * descriptor caches reference memory we're about to free, * but falcon_reconfigure_mac_wrapper() won't reconnect * the MACs because of the pending reset. */ netif_err(efx, drv, efx->net_dev, "Resetting to recover from flush failure\n"); ef4_schedule_reset(efx, RESET_TYPE_ALL); } else if (rc) { netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); } else { netif_dbg(efx, drv, efx->net_dev, "successfully flushed all queues\n"); } ef4_for_each_channel(channel, efx) { ef4_for_each_channel_rx_queue(rx_queue, channel) ef4_fini_rx_queue(rx_queue); ef4_for_each_possible_channel_tx_queue(tx_queue, channel) ef4_fini_tx_queue(tx_queue); } } static void ef4_remove_channel(struct ef4_channel *channel) { struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; netif_dbg(channel->efx, drv, channel->efx->net_dev, "destroy chan %d\n", channel->channel); ef4_for_each_channel_rx_queue(rx_queue, channel) ef4_remove_rx_queue(rx_queue); ef4_for_each_possible_channel_tx_queue(tx_queue, channel) ef4_remove_tx_queue(tx_queue); ef4_remove_eventq(channel); channel->type->post_remove(channel); } static void ef4_remove_channels(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) ef4_remove_channel(channel); } int ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) { struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; u32 old_rxq_entries, old_txq_entries; unsigned i, next_buffer_table = 0; int rc, rc2; rc = ef4_check_disabled(efx); if (rc) return rc; /* Not all channels should be reallocated. We must avoid * reallocating their buffer table entries. */ ef4_for_each_channel(channel, efx) { struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; if (channel->type->copy) continue; next_buffer_table = max(next_buffer_table, channel->eventq.index + channel->eventq.entries); ef4_for_each_channel_rx_queue(rx_queue, channel) next_buffer_table = max(next_buffer_table, rx_queue->rxd.index + rx_queue->rxd.entries); ef4_for_each_channel_tx_queue(tx_queue, channel) next_buffer_table = max(next_buffer_table, tx_queue->txd.index + tx_queue->txd.entries); } ef4_device_detach_sync(efx); ef4_stop_all(efx); ef4_soft_disable_interrupts(efx); /* Clone channels (where possible) */ memset(other_channel, 0, sizeof(other_channel)); for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (channel->type->copy) channel = channel->type->copy(channel); if (!channel) { rc = -ENOMEM; goto out; } other_channel[i] = channel; } /* Swap entry counts and channel pointers */ old_rxq_entries = efx->rxq_entries; old_txq_entries = efx->txq_entries; efx->rxq_entries = rxq_entries; efx->txq_entries = txq_entries; for (i = 0; i < efx->n_channels; i++) { swap(efx->channel[i], other_channel[i]); } /* Restart buffer table allocation */ efx->next_buffer_table = next_buffer_table; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (!channel->type->copy) continue; rc = ef4_probe_channel(channel); if (rc) goto rollback; ef4_init_napi_channel(efx->channel[i]); } out: /* Destroy unused channel structures */ for (i = 0; i < efx->n_channels; i++) { channel = other_channel[i]; if (channel && channel->type->copy) { ef4_fini_napi_channel(channel); ef4_remove_channel(channel); kfree(channel); } } rc2 = ef4_soft_enable_interrupts(efx); if (rc2) { rc = rc ? rc : rc2; netif_err(efx, drv, efx->net_dev, "unable to restart interrupts on channel reallocation\n"); ef4_schedule_reset(efx, RESET_TYPE_DISABLE); } else { ef4_start_all(efx); netif_device_attach(efx->net_dev); } return rc; rollback: /* Swap back */ efx->rxq_entries = old_rxq_entries; efx->txq_entries = old_txq_entries; for (i = 0; i < efx->n_channels; i++) { swap(efx->channel[i], other_channel[i]); } goto out; } void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) { mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); } static const struct ef4_channel_type ef4_default_channel_type = { .pre_probe = ef4_channel_dummy_op_int, .post_remove = ef4_channel_dummy_op_void, .get_name = ef4_get_channel_name, .copy = ef4_copy_channel, .keep_eventq = false, }; int ef4_channel_dummy_op_int(struct ef4_channel *channel) { return 0; } void ef4_channel_dummy_op_void(struct ef4_channel *channel) { } /************************************************************************** * * Port handling * **************************************************************************/ /* This ensures that the kernel is kept informed (via * netif_carrier_on/off) of the link status, and also maintains the * link status's stop on the port's TX queue. */ void ef4_link_status_changed(struct ef4_nic *efx) { struct ef4_link_state *link_state = &efx->link_state; /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure * that no events are triggered between unregister_netdev() and the * driver unloading. A more general condition is that NETDEV_CHANGE * can only be generated between NETDEV_UP and NETDEV_DOWN */ if (!netif_running(efx->net_dev)) return; if (link_state->up != netif_carrier_ok(efx->net_dev)) { efx->n_link_state_changes++; if (link_state->up) netif_carrier_on(efx->net_dev); else netif_carrier_off(efx->net_dev); } /* Status message for kernel log */ if (link_state->up) netif_info(efx, link, efx->net_dev, "link up at %uMbps %s-duplex (MTU %d)\n", link_state->speed, link_state->fd ? "full" : "half", efx->net_dev->mtu); else netif_info(efx, link, efx->net_dev, "link down\n"); } void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) { efx->link_advertising = advertising; if (advertising) { if (advertising & ADVERTISED_Pause) efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); else efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); if (advertising & ADVERTISED_Asym_Pause) efx->wanted_fc ^= EF4_FC_TX; } } void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) { efx->wanted_fc = wanted_fc; if (efx->link_advertising) { if (wanted_fc & EF4_FC_RX) efx->link_advertising |= (ADVERTISED_Pause | ADVERTISED_Asym_Pause); else efx->link_advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); if (wanted_fc & EF4_FC_TX) efx->link_advertising ^= ADVERTISED_Asym_Pause; } } static void ef4_fini_port(struct ef4_nic *efx); /* We assume that efx->type->reconfigure_mac will always try to sync RX * filters and therefore needs to read-lock the filter table against freeing */ void ef4_mac_reconfigure(struct ef4_nic *efx) { down_read(&efx->filter_sem); efx->type->reconfigure_mac(efx); up_read(&efx->filter_sem); } /* Push loopback/power/transmit disable settings to the PHY, and reconfigure * the MAC appropriately. All other PHY configuration changes are pushed * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC * through ef4_monitor(). * * Callers must hold the mac_lock */ int __ef4_reconfigure_port(struct ef4_nic *efx) { enum ef4_phy_mode phy_mode; int rc; WARN_ON(!mutex_is_locked(&efx->mac_lock)); /* Disable PHY transmit in mac level loopbacks */ phy_mode = efx->phy_mode; if (LOOPBACK_INTERNAL(efx)) efx->phy_mode |= PHY_MODE_TX_DISABLED; else efx->phy_mode &= ~PHY_MODE_TX_DISABLED; rc = efx->type->reconfigure_port(efx); if (rc) efx->phy_mode = phy_mode; return rc; } /* Reinitialise the MAC to pick up new PHY settings, even if the port is * disabled. */ int ef4_reconfigure_port(struct ef4_nic *efx) { int rc; EF4_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); rc = __ef4_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); return rc; } /* Asynchronous work item for changing MAC promiscuity and multicast * hash. Avoid a drain/rx_ingress enable by reconfiguring the current * MAC directly. */ static void ef4_mac_work(struct work_struct *data) { struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); mutex_lock(&efx->mac_lock); if (efx->port_enabled) ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); } static int ef4_probe_port(struct ef4_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "create port\n"); if (phy_flash_cfg) efx->phy_mode = PHY_MODE_SPECIAL; /* Connect up MAC/PHY operations table */ rc = efx->type->probe_port(efx); if (rc) return rc; /* Initialise MAC address to permanent address */ eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); return 0; } static int ef4_init_port(struct ef4_nic *efx) { int rc; netif_dbg(efx, drv, efx->net_dev, "init port\n"); mutex_lock(&efx->mac_lock); rc = efx->phy_op->init(efx); if (rc) goto fail1; efx->port_initialized = true; /* Reconfigure the MAC before creating dma queues (required for * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ ef4_mac_reconfigure(efx); /* Ensure the PHY advertises the correct flow control settings */ rc = efx->phy_op->reconfigure(efx); if (rc && rc != -EPERM) goto fail2; mutex_unlock(&efx->mac_lock); return 0; fail2: efx->phy_op->fini(efx); fail1: mutex_unlock(&efx->mac_lock); return rc; } static void ef4_start_port(struct ef4_nic *efx) { netif_dbg(efx, ifup, efx->net_dev, "start port\n"); BUG_ON(efx->port_enabled); mutex_lock(&efx->mac_lock); efx->port_enabled = true; /* Ensure MAC ingress/egress is enabled */ ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); } /* Cancel work for MAC reconfiguration, periodic hardware monitoring * and the async self-test, wait for them to finish and prevent them * being scheduled again. This doesn't cover online resets, which * should only be cancelled when removing the device. */ static void ef4_stop_port(struct ef4_nic *efx) { netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); EF4_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); efx->port_enabled = false; mutex_unlock(&efx->mac_lock); /* Serialise against ef4_set_multicast_list() */ netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); cancel_delayed_work_sync(&efx->monitor_work); ef4_selftest_async_cancel(efx); cancel_work_sync(&efx->mac_work); } static void ef4_fini_port(struct ef4_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); if (!efx->port_initialized) return; efx->phy_op->fini(efx); efx->port_initialized = false; efx->link_state.up = false; ef4_link_status_changed(efx); } static void ef4_remove_port(struct ef4_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); efx->type->remove_port(efx); } /************************************************************************** * * NIC handling * **************************************************************************/ static LIST_HEAD(ef4_primary_list); static LIST_HEAD(ef4_unassociated_list); static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) { return left->type == right->type && left->vpd_sn && right->vpd_sn && !strcmp(left->vpd_sn, right->vpd_sn); } static void ef4_associate(struct ef4_nic *efx) { struct ef4_nic *other, *next; if (efx->primary == efx) { /* Adding primary function; look for secondaries */ netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); list_add_tail(&efx->node, &ef4_primary_list); list_for_each_entry_safe(other, next, &ef4_unassociated_list, node) { if (ef4_same_controller(efx, other)) { list_del(&other->node); netif_dbg(other, probe, other->net_dev, "moving to secondary list of %s %s\n", pci_name(efx->pci_dev), efx->net_dev->name); list_add_tail(&other->node, &efx->secondary_list); other->primary = efx; } } } else { /* Adding secondary function; look for primary */ list_for_each_entry(other, &ef4_primary_list, node) { if (ef4_same_controller(efx, other)) { netif_dbg(efx, probe, efx->net_dev, "adding to secondary list of %s %s\n", pci_name(other->pci_dev), other->net_dev->name); list_add_tail(&efx->node, &other->secondary_list); efx->primary = other; return; } } netif_dbg(efx, probe, efx->net_dev, "adding to unassociated list\n"); list_add_tail(&efx->node, &ef4_unassociated_list); } } static void ef4_dissociate(struct ef4_nic *efx) { struct ef4_nic *other, *next; list_del(&efx->node); efx->primary = NULL; list_for_each_entry_safe(other, next, &efx->secondary_list, node) { list_del(&other->node); netif_dbg(other, probe, other->net_dev, "moving to unassociated list\n"); list_add_tail(&other->node, &ef4_unassociated_list); other->primary = NULL; } } /* This configures the PCI device to enable I/O and DMA. */ static int ef4_init_io(struct ef4_nic *efx) { struct pci_dev *pci_dev = efx->pci_dev; dma_addr_t dma_mask = efx->type->max_dma_mask; unsigned int mem_map_size = efx->type->mem_map_size(efx); int rc, bar; netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); bar = efx->type->mem_bar; rc = pci_enable_device(pci_dev); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to enable PCI device\n"); goto fail1; } pci_set_master(pci_dev); /* Set the PCI DMA mask. Try all possibilities from our genuine mask * down to 32 bits, because some architectures will allow 40 bit * masks event though they reject 46 bit masks. */ while (dma_mask > 0x7fffffffUL) { rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); if (rc == 0) break; dma_mask >>= 1; } if (rc) { netif_err(efx, probe, efx->net_dev, "could not find a suitable DMA mask\n"); goto fail2; } netif_dbg(efx, probe, efx->net_dev, "using DMA mask %llx\n", (unsigned long long) dma_mask); efx->membase_phys = pci_resource_start(efx->pci_dev, bar); rc = pci_request_region(pci_dev, bar, "sfc"); if (rc) { netif_err(efx, probe, efx->net_dev, "request for memory BAR failed\n"); rc = -EIO; goto fail3; } efx->membase = ioremap(efx->membase_phys, mem_map_size); if (!efx->membase) { netif_err(efx, probe, efx->net_dev, "could not map memory BAR at %llx+%x\n", (unsigned long long)efx->membase_phys, mem_map_size); rc = -ENOMEM; goto fail4; } netif_dbg(efx, probe, efx->net_dev, "memory BAR at %llx+%x (virtual %p)\n", (unsigned long long)efx->membase_phys, mem_map_size, efx->membase); return 0; fail4: pci_release_region(efx->pci_dev, bar); fail3: efx->membase_phys = 0; fail2: pci_disable_device(efx->pci_dev); fail1: return rc; } static void ef4_fini_io(struct ef4_nic *efx) { int bar; netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); if (efx->membase) { iounmap(efx->membase); efx->membase = NULL; } if (efx->membase_phys) { bar = efx->type->mem_bar; pci_release_region(efx->pci_dev, bar); efx->membase_phys = 0; } /* Don't disable bus-mastering if VFs are assigned */ if (!pci_vfs_assigned(efx->pci_dev)) pci_disable_device(efx->pci_dev); } void ef4_set_default_rx_indir_table(struct ef4_nic *efx) { size_t i; for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) efx->rx_indir_table[i] = ethtool_rxfh_indir_default(i, efx->rss_spread); } static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) { cpumask_var_t thread_mask; unsigned int count; int cpu; if (rss_cpus) { count = rss_cpus; } else { if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { netif_warn(efx, probe, efx->net_dev, "RSS disabled due to allocation failure\n"); return 1; } count = 0; for_each_online_cpu(cpu) { if (!cpumask_test_cpu(cpu, thread_mask)) { ++count; cpumask_or(thread_mask, thread_mask, topology_sibling_cpumask(cpu)); } } free_cpumask_var(thread_mask); } if (count > EF4_MAX_RX_QUEUES) { netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, "Reducing number of rx queues from %u to %u.\n", count, EF4_MAX_RX_QUEUES); count = EF4_MAX_RX_QUEUES; } return count; } /* Probe the number and type of interrupts we are able to obtain, and * the resulting numbers of channels and RX queues. */ static int ef4_probe_interrupts(struct ef4_nic *efx) { unsigned int extra_channels = 0; unsigned int i, j; int rc; for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) if (efx->extra_channel_type[i]) ++extra_channels; if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { struct msix_entry xentries[EF4_MAX_CHANNELS]; unsigned int n_channels; n_channels = ef4_wanted_parallelism(efx); if (ef4_separate_tx_channels) n_channels *= 2; n_channels += extra_channels; n_channels = min(n_channels, efx->max_channels); for (i = 0; i < n_channels; i++) xentries[i].entry = i; rc = pci_enable_msix_range(efx->pci_dev, xentries, 1, n_channels); if (rc < 0) { /* Fall back to single channel MSI */ efx->interrupt_mode = EF4_INT_MODE_MSI; netif_err(efx, drv, efx->net_dev, "could not enable MSI-X\n"); } else if (rc < n_channels) { netif_err(efx, drv, efx->net_dev, "WARNING: Insufficient MSI-X vectors" " available (%d < %u).\n", rc, n_channels); netif_err(efx, drv, efx->net_dev, "WARNING: Performance may be reduced.\n"); n_channels = rc; } if (rc > 0) { efx->n_channels = n_channels; if (n_channels > extra_channels) n_channels -= extra_channels; if (ef4_separate_tx_channels) { efx->n_tx_channels = min(max(n_channels / 2, 1U), efx->max_tx_channels); efx->n_rx_channels = max(n_channels - efx->n_tx_channels, 1U); } else { efx->n_tx_channels = min(n_channels, efx->max_tx_channels); efx->n_rx_channels = n_channels; } for (i = 0; i < efx->n_channels; i++) ef4_get_channel(efx, i)->irq = xentries[i].vector; } } /* Try single interrupt MSI */ if (efx->interrupt_mode == EF4_INT_MODE_MSI) { efx->n_channels = 1; efx->n_rx_channels = 1; efx->n_tx_channels = 1; rc = pci_enable_msi(efx->pci_dev); if (rc == 0) { ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; } else { netif_err(efx, drv, efx->net_dev, "could not enable MSI\n"); efx->interrupt_mode = EF4_INT_MODE_LEGACY; } } /* Assume legacy interrupts */ if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); efx->n_rx_channels = 1; efx->n_tx_channels = 1; efx->legacy_irq = efx->pci_dev->irq; } /* Assign extra channels if possible */ j = efx->n_channels; for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { if (!efx->extra_channel_type[i]) continue; if (efx->interrupt_mode != EF4_INT_MODE_MSIX || efx->n_channels <= extra_channels) { efx->extra_channel_type[i]->handle_no_channel(efx); } else { --j; ef4_get_channel(efx, j)->type = efx->extra_channel_type[i]; } } efx->rss_spread = efx->n_rx_channels; return 0; } static int ef4_soft_enable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel, *end_channel; int rc; BUG_ON(efx->state == STATE_DISABLED); efx->irq_soft_enabled = true; smp_wmb(); ef4_for_each_channel(channel, efx) { if (!channel->type->keep_eventq) { rc = ef4_init_eventq(channel); if (rc) goto fail; } ef4_start_eventq(channel); } return 0; fail: end_channel = channel; ef4_for_each_channel(channel, efx) { if (channel == end_channel) break; ef4_stop_eventq(channel); if (!channel->type->keep_eventq) ef4_fini_eventq(channel); } return rc; } static void ef4_soft_disable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel; if (efx->state == STATE_DISABLED) return; efx->irq_soft_enabled = false; smp_wmb(); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); ef4_for_each_channel(channel, efx) { if (channel->irq) synchronize_irq(channel->irq); ef4_stop_eventq(channel); if (!channel->type->keep_eventq) ef4_fini_eventq(channel); } } static int ef4_enable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel, *end_channel; int rc; BUG_ON(efx->state == STATE_DISABLED); if (efx->eeh_disabled_legacy_irq) { enable_irq(efx->legacy_irq); efx->eeh_disabled_legacy_irq = false; } efx->type->irq_enable_master(efx); ef4_for_each_channel(channel, efx) { if (channel->type->keep_eventq) { rc = ef4_init_eventq(channel); if (rc) goto fail; } } rc = ef4_soft_enable_interrupts(efx); if (rc) goto fail; return 0; fail: end_channel = channel; ef4_for_each_channel(channel, efx) { if (channel == end_channel) break; if (channel->type->keep_eventq) ef4_fini_eventq(channel); } efx->type->irq_disable_non_ev(efx); return rc; } static void ef4_disable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_soft_disable_interrupts(efx); ef4_for_each_channel(channel, efx) { if (channel->type->keep_eventq) ef4_fini_eventq(channel); } efx->type->irq_disable_non_ev(efx); } static void ef4_remove_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel; /* Remove MSI/MSI-X interrupts */ ef4_for_each_channel(channel, efx) channel->irq = 0; pci_disable_msi(efx->pci_dev); pci_disable_msix(efx->pci_dev); /* Remove legacy interrupt */ efx->legacy_irq = 0; } static void ef4_set_channels(struct ef4_nic *efx) { struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; efx->tx_channel_offset = ef4_separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; /* We need to mark which channels really have RX and TX * queues, and adjust the TX queue numbers if we have separate * RX-only and TX-only channels. */ ef4_for_each_channel(channel, efx) { if (channel->channel < efx->n_rx_channels) channel->rx_queue.core_index = channel->channel; else channel->rx_queue.core_index = -1; ef4_for_each_channel_tx_queue(tx_queue, channel) tx_queue->queue -= (efx->tx_channel_offset * EF4_TXQ_TYPES); } } static int ef4_probe_nic(struct ef4_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); /* Carry out hardware-type specific initialisation */ rc = efx->type->probe(efx); if (rc) return rc; do { if (!efx->max_channels || !efx->max_tx_channels) { netif_err(efx, drv, efx->net_dev, "Insufficient resources to allocate" " any channels\n"); rc = -ENOSPC; goto fail1; } /* Determine the number of channels and queues by trying * to hook in MSI-X interrupts. */ rc = ef4_probe_interrupts(efx); if (rc) goto fail1; ef4_set_channels(efx); /* dimension_resources can fail with EAGAIN */ rc = efx->type->dimension_resources(efx); if (rc != 0 && rc != -EAGAIN) goto fail2; if (rc == -EAGAIN) /* try again with new max_channels */ ef4_remove_interrupts(efx); } while (rc == -EAGAIN); if (efx->n_channels > 1) netdev_rss_key_fill(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); ef4_set_default_rx_indir_table(efx); netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); /* Initialise the interrupt moderation settings */ efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, true); return 0; fail2: ef4_remove_interrupts(efx); fail1: efx->type->remove(efx); return rc; } static void ef4_remove_nic(struct ef4_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); ef4_remove_interrupts(efx); efx->type->remove(efx); } static int ef4_probe_filters(struct ef4_nic *efx) { int rc; spin_lock_init(&efx->filter_lock); init_rwsem(&efx->filter_sem); mutex_lock(&efx->mac_lock); down_write(&efx->filter_sem); rc = efx->type->filter_table_probe(efx); if (rc) goto out_unlock; #ifdef CONFIG_RFS_ACCEL if (efx->type->offload_features & NETIF_F_NTUPLE) { struct ef4_channel *channel; int i, success = 1; ef4_for_each_channel(channel, efx) { channel->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, sizeof(*channel->rps_flow_id), GFP_KERNEL); if (!channel->rps_flow_id) success = 0; else for (i = 0; i < efx->type->max_rx_ip_filters; ++i) channel->rps_flow_id[i] = RPS_FLOW_ID_INVALID; } if (!success) { ef4_for_each_channel(channel, efx) kfree(channel->rps_flow_id); efx->type->filter_table_remove(efx); rc = -ENOMEM; goto out_unlock; } efx->rps_expire_index = efx->rps_expire_channel = 0; } #endif out_unlock: up_write(&efx->filter_sem); mutex_unlock(&efx->mac_lock); return rc; } static void ef4_remove_filters(struct ef4_nic *efx) { #ifdef CONFIG_RFS_ACCEL struct ef4_channel *channel; ef4_for_each_channel(channel, efx) kfree(channel->rps_flow_id); #endif down_write(&efx->filter_sem); efx->type->filter_table_remove(efx); up_write(&efx->filter_sem); } static void ef4_restore_filters(struct ef4_nic *efx) { down_read(&efx->filter_sem); efx->type->filter_table_restore(efx); up_read(&efx->filter_sem); } /************************************************************************** * * NIC startup/shutdown * *************************************************************************/ static int ef4_probe_all(struct ef4_nic *efx) { int rc; rc = ef4_probe_nic(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); goto fail1; } rc = ef4_probe_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create port\n"); goto fail2; } BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { rc = -EINVAL; goto fail3; } efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; rc = ef4_probe_filters(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create filter tables\n"); goto fail4; } rc = ef4_probe_channels(efx); if (rc) goto fail5; return 0; fail5: ef4_remove_filters(efx); fail4: fail3: ef4_remove_port(efx); fail2: ef4_remove_nic(efx); fail1: return rc; } /* If the interface is supposed to be running but is not, start * the hardware and software data path, regular activity for the port * (MAC statistics, link polling, etc.) and schedule the port to be * reconfigured. Interrupts must already be enabled. This function * is safe to call multiple times, so long as the NIC is not disabled. * Requires the RTNL lock. */ static void ef4_start_all(struct ef4_nic *efx) { EF4_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->state == STATE_DISABLED); /* Check that it is appropriate to restart the interface. All * of these flags are safe to read under just the rtnl lock */ if (efx->port_enabled || !netif_running(efx->net_dev) || efx->reset_pending) return; ef4_start_port(efx); ef4_start_datapath(efx); /* Start the hardware monitor if there is one */ if (efx->type->monitor != NULL) queue_delayed_work(efx->workqueue, &efx->monitor_work, ef4_monitor_interval); efx->type->start_stats(efx); efx->type->pull_stats(efx); spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx, NULL, NULL); spin_unlock_bh(&efx->stats_lock); } /* Quiesce the hardware and software data path, and regular activity * for the port without bringing the link down. Safe to call multiple * times with the NIC in almost any state, but interrupts should be * enabled. Requires the RTNL lock. */ static void ef4_stop_all(struct ef4_nic *efx) { EF4_ASSERT_RESET_SERIALISED(efx); /* port_enabled can be read safely under the rtnl lock */ if (!efx->port_enabled) return; /* update stats before we go down so we can accurately count * rx_nodesc_drops */ efx->type->pull_stats(efx); spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx, NULL, NULL); spin_unlock_bh(&efx->stats_lock); efx->type->stop_stats(efx); ef4_stop_port(efx); /* Stop the kernel transmit interface. This is only valid if * the device is stopped or detached; otherwise the watchdog * may fire immediately. */ WARN_ON(netif_running(efx->net_dev) && netif_device_present(efx->net_dev)); netif_tx_disable(efx->net_dev); ef4_stop_datapath(efx); } static void ef4_remove_all(struct ef4_nic *efx) { ef4_remove_channels(efx); ef4_remove_filters(efx); ef4_remove_port(efx); ef4_remove_nic(efx); } /************************************************************************** * * Interrupt moderation * **************************************************************************/ unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) { if (usecs == 0) return 0; if (usecs * 1000 < efx->timer_quantum_ns) return 1; /* never round down to 0 */ return usecs * 1000 / efx->timer_quantum_ns; } unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) { /* We must round up when converting ticks to microseconds * because we round down when converting the other way. */ return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); } /* Set interrupt moderation parameters */ int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, unsigned int rx_usecs, bool rx_adaptive, bool rx_may_override_tx) { struct ef4_channel *channel; unsigned int timer_max_us; EF4_ASSERT_RESET_SERIALISED(efx); timer_max_us = efx->timer_max_ns / 1000; if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) return -EINVAL; if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && !rx_may_override_tx) { netif_err(efx, drv, efx->net_dev, "Channels are shared. " "RX and TX IRQ moderation must be equal\n"); return -EINVAL; } efx->irq_rx_adaptive = rx_adaptive; efx->irq_rx_moderation_us = rx_usecs; ef4_for_each_channel(channel, efx) { if (ef4_channel_has_rx_queue(channel)) channel->irq_moderation_us = rx_usecs; else if (ef4_channel_has_tx_queues(channel)) channel->irq_moderation_us = tx_usecs; } return 0; } void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, unsigned int *rx_usecs, bool *rx_adaptive) { *rx_adaptive = efx->irq_rx_adaptive; *rx_usecs = efx->irq_rx_moderation_us; /* If channels are shared between RX and TX, so is IRQ * moderation. Otherwise, IRQ moderation is the same for all * TX channels and is not adaptive. */ if (efx->tx_channel_offset == 0) { *tx_usecs = *rx_usecs; } else { struct ef4_channel *tx_channel; tx_channel = efx->channel[efx->tx_channel_offset]; *tx_usecs = tx_channel->irq_moderation_us; } } /************************************************************************** * * Hardware monitor * **************************************************************************/ /* Run periodically off the general workqueue */ static void ef4_monitor(struct work_struct *data) { struct ef4_nic *efx = container_of(data, struct ef4_nic, monitor_work.work); netif_vdbg(efx, timer, efx->net_dev, "hardware monitor executing on CPU %d\n", raw_smp_processor_id()); BUG_ON(efx->type->monitor == NULL); /* If the mac_lock is already held then it is likely a port * reconfiguration is already in place, which will likely do * most of the work of monitor() anyway. */ if (mutex_trylock(&efx->mac_lock)) { if (efx->port_enabled) efx->type->monitor(efx); mutex_unlock(&efx->mac_lock); } queue_delayed_work(efx->workqueue, &efx->monitor_work, ef4_monitor_interval); } /************************************************************************** * * ioctls * *************************************************************************/ /* Net device ioctl * Context: process, rtnl_lock() held. */ static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { struct ef4_nic *efx = netdev_priv(net_dev); struct mii_ioctl_data *data = if_mii(ifr); /* Convert phy_id from older PRTAD/DEVAD format */ if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && (data->phy_id & 0xfc00) == 0x0400) data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; return mdio_mii_ioctl(&efx->mdio, data, cmd); } /************************************************************************** * * NAPI interface * **************************************************************************/ static void ef4_init_napi_channel(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; channel->napi_dev = efx->net_dev; netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll); } static void ef4_init_napi(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) ef4_init_napi_channel(channel); } static void ef4_fini_napi_channel(struct ef4_channel *channel) { if (channel->napi_dev) netif_napi_del(&channel->napi_str); channel->napi_dev = NULL; } static void ef4_fini_napi(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) ef4_fini_napi_channel(channel); } /************************************************************************** * * Kernel net device interface * *************************************************************************/ /* Context: process, rtnl_lock() held. */ int ef4_net_open(struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); int rc; netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", raw_smp_processor_id()); rc = ef4_check_disabled(efx); if (rc) return rc; if (efx->phy_mode & PHY_MODE_SPECIAL) return -EBUSY; /* Notify the kernel of the link state polled during driver load, * before the monitor starts running */ ef4_link_status_changed(efx); ef4_start_all(efx); ef4_selftest_async_start(efx); return 0; } /* Context: process, rtnl_lock() held. * Note that the kernel will ignore our return code; this method * should really be a void. */ int ef4_net_stop(struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", raw_smp_processor_id()); /* Stop the device and flush all the channels */ ef4_stop_all(efx); return 0; } /* Context: process, dev_base_lock or RTNL held, non-blocking. */ static void ef4_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) { struct ef4_nic *efx = netdev_priv(net_dev); spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx, NULL, stats); spin_unlock_bh(&efx->stats_lock); } /* Context: netif_tx_lock held, BHs disabled. */ static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue) { struct ef4_nic *efx = netdev_priv(net_dev); netif_err(efx, tx_err, efx->net_dev, "TX stuck with port_enabled=%d: resetting channels\n", efx->port_enabled); ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); } /* Context: process, rtnl_lock() held. */ static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) { struct ef4_nic *efx = netdev_priv(net_dev); int rc; rc = ef4_check_disabled(efx); if (rc) return rc; netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); ef4_device_detach_sync(efx); ef4_stop_all(efx); mutex_lock(&efx->mac_lock); net_dev->mtu = new_mtu; ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); ef4_start_all(efx); netif_device_attach(efx->net_dev); return 0; } static int ef4_set_mac_address(struct net_device *net_dev, void *data) { struct ef4_nic *efx = netdev_priv(net_dev); struct sockaddr *addr = data; u8 *new_addr = addr->sa_data; u8 old_addr[6]; int rc; if (!is_valid_ether_addr(new_addr)) { netif_err(efx, drv, efx->net_dev, "invalid ethernet MAC address requested: %pM\n", new_addr); return -EADDRNOTAVAIL; } /* save old address */ ether_addr_copy(old_addr, net_dev->dev_addr); eth_hw_addr_set(net_dev, new_addr); if (efx->type->set_mac_address) { rc = efx->type->set_mac_address(efx); if (rc) { eth_hw_addr_set(net_dev, old_addr); return rc; } } /* Reconfigure the MAC */ mutex_lock(&efx->mac_lock); ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); return 0; } /* Context: netif_addr_lock held, BHs disabled. */ static void ef4_set_rx_mode(struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); if (efx->port_enabled) queue_work(efx->workqueue, &efx->mac_work); /* Otherwise ef4_start_port() will do this */ } static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) { struct ef4_nic *efx = netdev_priv(net_dev); int rc; /* If disabling RX n-tuple filtering, clear existing filters */ if (net_dev->features & ~data & NETIF_F_NTUPLE) { rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); if (rc) return rc; } /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { /* ef4_set_rx_mode() will schedule MAC work to update filters * when a new features are finally set in net_dev. */ ef4_set_rx_mode(net_dev); } return 0; } static const struct net_device_ops ef4_netdev_ops = { .ndo_open = ef4_net_open, .ndo_stop = ef4_net_stop, .ndo_get_stats64 = ef4_net_stats, .ndo_tx_timeout = ef4_watchdog, .ndo_start_xmit = ef4_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = ef4_ioctl, .ndo_change_mtu = ef4_change_mtu, .ndo_set_mac_address = ef4_set_mac_address, .ndo_set_rx_mode = ef4_set_rx_mode, .ndo_set_features = ef4_set_features, .ndo_setup_tc = ef4_setup_tc, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = ef4_filter_rfs, #endif }; static void ef4_update_name(struct ef4_nic *efx) { strcpy(efx->name, efx->net_dev->name); ef4_mtd_rename(efx); ef4_set_channel_names(efx); } static int ef4_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); if ((net_dev->netdev_ops == &ef4_netdev_ops) && event == NETDEV_CHANGENAME) ef4_update_name(netdev_priv(net_dev)); return NOTIFY_DONE; } static struct notifier_block ef4_netdev_notifier = { .notifier_call = ef4_netdev_event, }; static ssize_t phy_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ef4_nic *efx = dev_get_drvdata(dev); return sprintf(buf, "%d\n", efx->phy_type); } static DEVICE_ATTR_RO(phy_type); static int ef4_register_netdev(struct ef4_nic *efx) { struct net_device *net_dev = efx->net_dev; struct ef4_channel *channel; int rc; net_dev->watchdog_timeo = 5 * HZ; net_dev->irq = efx->pci_dev->irq; net_dev->netdev_ops = &ef4_netdev_ops; net_dev->ethtool_ops = &ef4_ethtool_ops; netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS); net_dev->min_mtu = EF4_MIN_MTU; net_dev->max_mtu = EF4_MAX_MTU; rtnl_lock(); /* Enable resets to be scheduled and check whether any were * already requested. If so, the NIC is probably hosed so we * abort. */ efx->state = STATE_READY; smp_mb(); /* ensure we change state before checking reset_pending */ if (efx->reset_pending) { netif_err(efx, probe, efx->net_dev, "aborting probe due to scheduled reset\n"); rc = -EIO; goto fail_locked; } rc = dev_alloc_name(net_dev, net_dev->name); if (rc < 0) goto fail_locked; ef4_update_name(efx); /* Always start with carrier off; PHY events will detect the link */ netif_carrier_off(net_dev); rc = register_netdevice(net_dev); if (rc) goto fail_locked; ef4_for_each_channel(channel, efx) { struct ef4_tx_queue *tx_queue; ef4_for_each_channel_tx_queue(tx_queue, channel) ef4_init_tx_queue_core_txq(tx_queue); } ef4_associate(efx); rtnl_unlock(); rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to init net dev attributes\n"); goto fail_registered; } return 0; fail_registered: rtnl_lock(); ef4_dissociate(efx); unregister_netdevice(net_dev); fail_locked: efx->state = STATE_UNINIT; rtnl_unlock(); netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); return rc; } static void ef4_unregister_netdev(struct ef4_nic *efx) { if (!efx->net_dev) return; BUG_ON(netdev_priv(efx->net_dev) != efx); if (ef4_dev_registered(efx)) { strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); unregister_netdev(efx->net_dev); } } /************************************************************************** * * Device reset and suspend * **************************************************************************/ /* Tears down the entire software state and most of the hardware state * before reset. */ void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) { EF4_ASSERT_RESET_SERIALISED(efx); ef4_stop_all(efx); ef4_disable_interrupts(efx); mutex_lock(&efx->mac_lock); if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && method != RESET_TYPE_DATAPATH) efx->phy_op->fini(efx); efx->type->fini(efx); } /* This function will always ensure that the locks acquired in * ef4_reset_down() are released. A failure return code indicates * that we were unable to reinitialise the hardware, and the * driver should be disabled. If ok is false, then the rx and tx * engines are not restarted, pending a RESET_DISABLE. */ int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) { int rc; EF4_ASSERT_RESET_SERIALISED(efx); /* Ensure that SRAM is initialised even if we're disabling the device */ rc = efx->type->init(efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); goto fail; } if (!ok) goto fail; if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && method != RESET_TYPE_DATAPATH) { rc = efx->phy_op->init(efx); if (rc) goto fail; rc = efx->phy_op->reconfigure(efx); if (rc && rc != -EPERM) netif_err(efx, drv, efx->net_dev, "could not restore PHY settings\n"); } rc = ef4_enable_interrupts(efx); if (rc) goto fail; down_read(&efx->filter_sem); ef4_restore_filters(efx); up_read(&efx->filter_sem); mutex_unlock(&efx->mac_lock); ef4_start_all(efx); return 0; fail: efx->port_initialized = false; mutex_unlock(&efx->mac_lock); return rc; } /* Reset the NIC using the specified method. Note that the reset may * fail, in which case the card will be left in an unusable state. * * Caller must hold the rtnl_lock. */ int ef4_reset(struct ef4_nic *efx, enum reset_type method) { int rc, rc2; bool disabled; netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", RESET_TYPE(method)); ef4_device_detach_sync(efx); ef4_reset_down(efx, method); rc = efx->type->reset(efx, method); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); goto out; } /* Clear flags for the scopes we covered. We assume the NIC and * driver are now quiescent so that there is no race here. */ if (method < RESET_TYPE_MAX_METHOD) efx->reset_pending &= -(1 << (method + 1)); else /* it doesn't fit into the well-ordered scope hierarchy */ __clear_bit(method, &efx->reset_pending); /* Reinitialise bus-mastering, which may have been turned off before * the reset was scheduled. This is still appropriate, even in the * RESET_TYPE_DISABLE since this driver generally assumes the hardware * can respond to requests. */ pci_set_master(efx->pci_dev); out: /* Leave device stopped if necessary */ disabled = rc || method == RESET_TYPE_DISABLE || method == RESET_TYPE_RECOVER_OR_DISABLE; rc2 = ef4_reset_up(efx, method, !disabled); if (rc2) { disabled = true; if (!rc) rc = rc2; } if (disabled) { dev_close(efx->net_dev); netif_err(efx, drv, efx->net_dev, "has been disabled\n"); efx->state = STATE_DISABLED; } else { netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); netif_device_attach(efx->net_dev); } return rc; } /* Try recovery mechanisms. * For now only EEH is supported. * Returns 0 if the recovery mechanisms are unsuccessful. * Returns a non-zero value otherwise. */ int ef4_try_recovery(struct ef4_nic *efx) { #ifdef CONFIG_EEH /* A PCI error can occur and not be seen by EEH because nothing * happens on the PCI bus. In this case the driver may fail and * schedule a 'recover or reset', leading to this recovery handler. * Manually call the eeh failure check function. */ struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); if (eeh_dev_check_failure(eehdev)) { /* The EEH mechanisms will handle the error and reset the * device if necessary. */ return 1; } #endif return 0; } /* The worker thread exists so that code that cannot sleep can * schedule a reset for later. */ static void ef4_reset_work(struct work_struct *data) { struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); unsigned long pending; enum reset_type method; pending = READ_ONCE(efx->reset_pending); method = fls(pending) - 1; if ((method == RESET_TYPE_RECOVER_OR_DISABLE || method == RESET_TYPE_RECOVER_OR_ALL) && ef4_try_recovery(efx)) return; if (!pending) return; rtnl_lock(); /* We checked the state in ef4_schedule_reset() but it may * have changed by now. Now that we have the RTNL lock, * it cannot change again. */ if (efx->state == STATE_READY) (void)ef4_reset(efx, method); rtnl_unlock(); } void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) { enum reset_type method; if (efx->state == STATE_RECOVERY) { netif_dbg(efx, drv, efx->net_dev, "recovering: skip scheduling %s reset\n", RESET_TYPE(type)); return; } switch (type) { case RESET_TYPE_INVISIBLE: case RESET_TYPE_ALL: case RESET_TYPE_RECOVER_OR_ALL: case RESET_TYPE_WORLD: case RESET_TYPE_DISABLE: case RESET_TYPE_RECOVER_OR_DISABLE: case RESET_TYPE_DATAPATH: method = type; netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", RESET_TYPE(method)); break; default: method = efx->type->map_reset_reason(type); netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset for %s\n", RESET_TYPE(method), RESET_TYPE(type)); break; } set_bit(method, &efx->reset_pending); smp_mb(); /* ensure we change reset_pending before checking state */ /* If we're not READY then just leave the flags set as the cue * to abort probing or reschedule the reset later. */ if (READ_ONCE(efx->state) != STATE_READY) return; queue_work(reset_workqueue, &efx->reset_work); } /************************************************************************** * * List of NICs we support * **************************************************************************/ /* PCI device ID table */ static const struct pci_device_id ef4_pci_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), .driver_data = (unsigned long) &falcon_a1_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000B), .driver_data = (unsigned long) &falcon_b0_nic_type}, {0} /* end of list */ }; /************************************************************************** * * Dummy PHY/MAC operations * * Can be used for some unimplemented operations * Needed so all function pointers are valid and do not have to be tested * before use * **************************************************************************/ int ef4_port_dummy_op_int(struct ef4_nic *efx) { return 0; } void ef4_port_dummy_op_void(struct ef4_nic *efx) {} static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) { return false; } static const struct ef4_phy_operations ef4_dummy_phy_operations = { .init = ef4_port_dummy_op_int, .reconfigure = ef4_port_dummy_op_int, .poll = ef4_port_dummy_op_poll, .fini = ef4_port_dummy_op_void, }; /************************************************************************** * * Data housekeeping * **************************************************************************/ /* This zeroes out and then fills in the invariants in a struct * ef4_nic (including all sub-structures). */ static int ef4_init_struct(struct ef4_nic *efx, struct pci_dev *pci_dev, struct net_device *net_dev) { int i; /* Initialise common structures */ INIT_LIST_HEAD(&efx->node); INIT_LIST_HEAD(&efx->secondary_list); spin_lock_init(&efx->biu_lock); #ifdef CONFIG_SFC_FALCON_MTD INIT_LIST_HEAD(&efx->mtd_list); #endif INIT_WORK(&efx->reset_work, ef4_reset_work); INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); efx->pci_dev = pci_dev; efx->msg_enable = debug; efx->state = STATE_UNINIT; strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); efx->net_dev = net_dev; efx->rx_prefix_size = efx->type->rx_prefix_size; efx->rx_ip_align = NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; efx->rx_packet_hash_offset = efx->type->rx_hash_offset - efx->type->rx_prefix_size; efx->rx_packet_ts_offset = efx->type->rx_ts_offset - efx->type->rx_prefix_size; spin_lock_init(&efx->stats_lock); mutex_init(&efx->mac_lock); efx->phy_op = &ef4_dummy_phy_operations; efx->mdio.dev = net_dev; INIT_WORK(&efx->mac_work, ef4_mac_work); init_waitqueue_head(&efx->flush_wq); for (i = 0; i < EF4_MAX_CHANNELS; i++) { efx->channel[i] = ef4_alloc_channel(efx, i, NULL); if (!efx->channel[i]) goto fail; efx->msi_context[i].efx = efx; efx->msi_context[i].index = i; } /* Higher numbered interrupt modes are less capable! */ efx->interrupt_mode = max(efx->type->max_interrupt_mode, interrupt_mode); /* Would be good to use the net_dev name, but we're too early */ snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", pci_name(pci_dev)); efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); if (!efx->workqueue) goto fail; return 0; fail: ef4_fini_struct(efx); return -ENOMEM; } static void ef4_fini_struct(struct ef4_nic *efx) { int i; for (i = 0; i < EF4_MAX_CHANNELS; i++) kfree(efx->channel[i]); kfree(efx->vpd_sn); if (efx->workqueue) { destroy_workqueue(efx->workqueue); efx->workqueue = NULL; } } void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) { u64 n_rx_nodesc_trunc = 0; struct ef4_channel *channel; ef4_for_each_channel(channel, efx) n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); } /************************************************************************** * * PCI interface * **************************************************************************/ /* Main body of final NIC shutdown code * This is called only at module unload (or hotplug removal). */ static void ef4_pci_remove_main(struct ef4_nic *efx) { /* Flush reset_work. It can no longer be scheduled since we * are not READY. */ BUG_ON(efx->state == STATE_READY); cancel_work_sync(&efx->reset_work); ef4_disable_interrupts(efx); ef4_nic_fini_interrupt(efx); ef4_fini_port(efx); efx->type->fini(efx); ef4_fini_napi(efx); ef4_remove_all(efx); } /* Final NIC shutdown * This is called only at module unload (or hotplug removal). A PF can call * this on its VFs to ensure they are unbound first. */ static void ef4_pci_remove(struct pci_dev *pci_dev) { struct ef4_nic *efx; efx = pci_get_drvdata(pci_dev); if (!efx) return; /* Mark the NIC as fini, then stop the interface */ rtnl_lock(); ef4_dissociate(efx); dev_close(efx->net_dev); ef4_disable_interrupts(efx); efx->state = STATE_UNINIT; rtnl_unlock(); ef4_unregister_netdev(efx); ef4_mtd_remove(efx); ef4_pci_remove_main(efx); ef4_fini_io(efx); netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); ef4_fini_struct(efx); free_netdev(efx->net_dev); pci_disable_pcie_error_reporting(pci_dev); }; /* NIC VPD information * Called during probe to display the part number of the installed NIC. */ static void ef4_probe_vpd_strings(struct ef4_nic *efx) { struct pci_dev *dev = efx->pci_dev; unsigned int vpd_size, kw_len; u8 *vpd_data; int start; vpd_data = pci_vpd_alloc(dev, &vpd_size); if (IS_ERR(vpd_data)) { pci_warn(dev, "Unable to read VPD\n"); return; } start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); if (start < 0) pci_warn(dev, "Part number not found or incomplete\n"); else pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); if (start < 0) pci_warn(dev, "Serial number not found or incomplete\n"); else efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); kfree(vpd_data); } /* Main body of NIC initialisation * This is called at module load (or hotplug insertion, theoretically). */ static int ef4_pci_probe_main(struct ef4_nic *efx) { int rc; /* Do start-of-day initialisation */ rc = ef4_probe_all(efx); if (rc) goto fail1; ef4_init_napi(efx); rc = efx->type->init(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise NIC\n"); goto fail3; } rc = ef4_init_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise port\n"); goto fail4; } rc = ef4_nic_init_interrupt(efx); if (rc) goto fail5; rc = ef4_enable_interrupts(efx); if (rc) goto fail6; return 0; fail6: ef4_nic_fini_interrupt(efx); fail5: ef4_fini_port(efx); fail4: efx->type->fini(efx); fail3: ef4_fini_napi(efx); ef4_remove_all(efx); fail1: return rc; } /* NIC initialisation * * This is called at module load (or hotplug insertion, * theoretically). It sets up PCI mappings, resets the NIC, * sets up and registers the network devices with the kernel and hooks * the interrupt service routine. It does not prepare the device for * transmission; this is left to the first time one of the network * interfaces is brought up (i.e. ef4_net_open). */ static int ef4_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *entry) { struct net_device *net_dev; struct ef4_nic *efx; int rc; /* Allocate and initialise a struct net_device and struct ef4_nic */ net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, EF4_MAX_RX_QUEUES); if (!net_dev) return -ENOMEM; efx = netdev_priv(net_dev); efx->type = (const struct ef4_nic_type *) entry->driver_data; efx->fixed_features |= NETIF_F_HIGHDMA; pci_set_drvdata(pci_dev, efx); SET_NETDEV_DEV(net_dev, &pci_dev->dev); rc = ef4_init_struct(efx, pci_dev, net_dev); if (rc) goto fail1; netif_info(efx, probe, efx->net_dev, "Solarflare NIC detected\n"); ef4_probe_vpd_strings(efx); /* Set up basic I/O (BAR mappings etc) */ rc = ef4_init_io(efx); if (rc) goto fail2; rc = ef4_pci_probe_main(efx); if (rc) goto fail3; net_dev->features |= (efx->type->offload_features | NETIF_F_SG | NETIF_F_RXCSUM); /* Mask for features that also apply to VLAN devices */ net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_RXCSUM); net_dev->hw_features = net_dev->features & ~efx->fixed_features; /* Disable VLAN filtering by default. It may be enforced if * the feature is fixed (i.e. VLAN filters are required to * receive VLAN tagged packets due to vPort restrictions). */ net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; net_dev->features |= efx->fixed_features; rc = ef4_register_netdev(efx); if (rc) goto fail4; netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); /* Try to create MTDs, but allow this to fail */ rtnl_lock(); rc = ef4_mtd_probe(efx); rtnl_unlock(); if (rc && rc != -EPERM) netif_warn(efx, probe, efx->net_dev, "failed to create MTDs (%d)\n", rc); rc = pci_enable_pcie_error_reporting(pci_dev); if (rc && rc != -EINVAL) netif_notice(efx, probe, efx->net_dev, "PCIE error reporting unavailable (%d).\n", rc); return 0; fail4: ef4_pci_remove_main(efx); fail3: ef4_fini_io(efx); fail2: ef4_fini_struct(efx); fail1: WARN_ON(rc > 0); netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); free_netdev(net_dev); return rc; } static int ef4_pm_freeze(struct device *dev) { struct ef4_nic *efx = dev_get_drvdata(dev); rtnl_lock(); if (efx->state != STATE_DISABLED) { efx->state = STATE_UNINIT; ef4_device_detach_sync(efx); ef4_stop_all(efx); ef4_disable_interrupts(efx); } rtnl_unlock(); return 0; } static int ef4_pm_thaw(struct device *dev) { int rc; struct ef4_nic *efx = dev_get_drvdata(dev); rtnl_lock(); if (efx->state != STATE_DISABLED) { rc = ef4_enable_interrupts(efx); if (rc) goto fail; mutex_lock(&efx->mac_lock); efx->phy_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); ef4_start_all(efx); netif_device_attach(efx->net_dev); efx->state = STATE_READY; efx->type->resume_wol(efx); } rtnl_unlock(); /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ queue_work(reset_workqueue, &efx->reset_work); return 0; fail: rtnl_unlock(); return rc; } static int ef4_pm_poweroff(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct ef4_nic *efx = pci_get_drvdata(pci_dev); efx->type->fini(efx); efx->reset_pending = 0; pci_save_state(pci_dev); return pci_set_power_state(pci_dev, PCI_D3hot); } /* Used for both resume and restore */ static int ef4_pm_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct ef4_nic *efx = pci_get_drvdata(pci_dev); int rc; rc = pci_set_power_state(pci_dev, PCI_D0); if (rc) return rc; pci_restore_state(pci_dev); rc = pci_enable_device(pci_dev); if (rc) return rc; pci_set_master(efx->pci_dev); rc = efx->type->reset(efx, RESET_TYPE_ALL); if (rc) return rc; rc = efx->type->init(efx); if (rc) return rc; rc = ef4_pm_thaw(dev); return rc; } static int ef4_pm_suspend(struct device *dev) { int rc; ef4_pm_freeze(dev); rc = ef4_pm_poweroff(dev); if (rc) ef4_pm_resume(dev); return rc; } static const struct dev_pm_ops ef4_pm_ops = { .suspend = ef4_pm_suspend, .resume = ef4_pm_resume, .freeze = ef4_pm_freeze, .thaw = ef4_pm_thaw, .poweroff = ef4_pm_poweroff, .restore = ef4_pm_resume, }; /* A PCI error affecting this device was detected. * At this point MMIO and DMA may be disabled. * Stop the software path and request a slot reset. */ static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; struct ef4_nic *efx = pci_get_drvdata(pdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; rtnl_lock(); if (efx->state != STATE_DISABLED) { efx->state = STATE_RECOVERY; efx->reset_pending = 0; ef4_device_detach_sync(efx); ef4_stop_all(efx); ef4_disable_interrupts(efx); status = PCI_ERS_RESULT_NEED_RESET; } else { /* If the interface is disabled we don't want to do anything * with it. */ status = PCI_ERS_RESULT_RECOVERED; } rtnl_unlock(); pci_disable_device(pdev); return status; } /* Fake a successful reset, which will be performed later in ef4_io_resume. */ static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) { struct ef4_nic *efx = pci_get_drvdata(pdev); pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; if (pci_enable_device(pdev)) { netif_err(efx, hw, efx->net_dev, "Cannot re-enable PCI device after reset.\n"); status = PCI_ERS_RESULT_DISCONNECT; } return status; } /* Perform the actual reset and resume I/O operations. */ static void ef4_io_resume(struct pci_dev *pdev) { struct ef4_nic *efx = pci_get_drvdata(pdev); int rc; rtnl_lock(); if (efx->state == STATE_DISABLED) goto out; rc = ef4_reset(efx, RESET_TYPE_ALL); if (rc) { netif_err(efx, hw, efx->net_dev, "ef4_reset failed after PCI error (%d)\n", rc); } else { efx->state = STATE_READY; netif_dbg(efx, hw, efx->net_dev, "Done resetting and resuming IO after PCI error.\n"); } out: rtnl_unlock(); } /* For simplicity and reliability, we always require a slot reset and try to * reset the hardware when a pci error affecting the device is detected. * We leave both the link_reset and mmio_enabled callback unimplemented: * with our request for slot reset the mmio_enabled callback will never be * called, and the link_reset callback is not used by AER or EEH mechanisms. */ static const struct pci_error_handlers ef4_err_handlers = { .error_detected = ef4_io_error_detected, .slot_reset = ef4_io_slot_reset, .resume = ef4_io_resume, }; static struct pci_driver ef4_pci_driver = { .name = KBUILD_MODNAME, .id_table = ef4_pci_table, .probe = ef4_pci_probe, .remove = ef4_pci_remove, .driver.pm = &ef4_pm_ops, .err_handler = &ef4_err_handlers, }; /************************************************************************** * * Kernel module interface * *************************************************************************/ module_param(interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); static int __init ef4_init_module(void) { int rc; printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); rc = register_netdevice_notifier(&ef4_netdev_notifier); if (rc) goto err_notifier; reset_workqueue = create_singlethread_workqueue("sfc_reset"); if (!reset_workqueue) { rc = -ENOMEM; goto err_reset; } rc = pci_register_driver(&ef4_pci_driver); if (rc < 0) goto err_pci; return 0; err_pci: destroy_workqueue(reset_workqueue); err_reset: unregister_netdevice_notifier(&ef4_netdev_notifier); err_notifier: return rc; } static void __exit ef4_exit_module(void) { printk(KERN_INFO "Solarflare Falcon driver unloading\n"); pci_unregister_driver(&ef4_pci_driver); destroy_workqueue(reset_workqueue); unregister_netdevice_notifier(&ef4_netdev_notifier); } module_init(ef4_init_module); module_exit(ef4_exit_module); MODULE_AUTHOR("Solarflare Communications and " "Michael Brown <mbrown@fensystems.co.uk>"); MODULE_DESCRIPTION("Solarflare Falcon network driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, ef4_pci_table); MODULE_VERSION(EF4_DRIVER_VERSION); |