Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | // SPDX-License-Identifier: GPL-2.0-only /* * drivers/cpufreq/cpufreq_governor.c * * CPUFREQ governors common code * * Copyright (C) 2001 Russell King * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> * (C) 2009 Alexander Clouter <alex@digriz.org.uk> * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/export.h> #include <linux/kernel_stat.h> #include <linux/slab.h> #include "cpufreq_governor.h" #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC) static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); static DEFINE_MUTEX(gov_dbs_data_mutex); /* Common sysfs tunables */ /* * sampling_rate_store - update sampling rate effective immediately if needed. * * If new rate is smaller than the old, simply updating * dbs.sampling_rate might not be appropriate. For example, if the * original sampling_rate was 1 second and the requested new sampling rate is 10 * ms because the user needs immediate reaction from ondemand governor, but not * sure if higher frequency will be required or not, then, the governor may * change the sampling rate too late; up to 1 second later. Thus, if we are * reducing the sampling rate, we need to make the new value effective * immediately. * * This must be called with dbs_data->mutex held, otherwise traversing * policy_dbs_list isn't safe. */ ssize_t sampling_rate_store(struct gov_attr_set *attr_set, const char *buf, size_t count) { struct dbs_data *dbs_data = to_dbs_data(attr_set); struct policy_dbs_info *policy_dbs; unsigned int sampling_interval; int ret; ret = sscanf(buf, "%u", &sampling_interval); if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL) return -EINVAL; dbs_data->sampling_rate = sampling_interval; /* * We are operating under dbs_data->mutex and so the list and its * entries can't be freed concurrently. */ list_for_each_entry(policy_dbs, &attr_set->policy_list, list) { mutex_lock(&policy_dbs->update_mutex); /* * On 32-bit architectures this may race with the * sample_delay_ns read in dbs_update_util_handler(), but that * really doesn't matter. If the read returns a value that's * too big, the sample will be skipped, but the next invocation * of dbs_update_util_handler() (when the update has been * completed) will take a sample. * * If this runs in parallel with dbs_work_handler(), we may end * up overwriting the sample_delay_ns value that it has just * written, but it will be corrected next time a sample is * taken, so it shouldn't be significant. */ gov_update_sample_delay(policy_dbs, 0); mutex_unlock(&policy_dbs->update_mutex); } return count; } EXPORT_SYMBOL_GPL(sampling_rate_store); /** * gov_update_cpu_data - Update CPU load data. * @dbs_data: Top-level governor data pointer. * * Update CPU load data for all CPUs in the domain governed by @dbs_data * (that may be a single policy or a bunch of them if governor tunables are * system-wide). * * Call under the @dbs_data mutex. */ void gov_update_cpu_data(struct dbs_data *dbs_data) { struct policy_dbs_info *policy_dbs; list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) { unsigned int j; for_each_cpu(j, policy_dbs->policy->cpus) { struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, dbs_data->io_is_busy); if (dbs_data->ignore_nice_load) j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j); } } } EXPORT_SYMBOL_GPL(gov_update_cpu_data); unsigned int dbs_update(struct cpufreq_policy *policy) { struct policy_dbs_info *policy_dbs = policy->governor_data; struct dbs_data *dbs_data = policy_dbs->dbs_data; unsigned int ignore_nice = dbs_data->ignore_nice_load; unsigned int max_load = 0, idle_periods = UINT_MAX; unsigned int sampling_rate, io_busy, j; /* * Sometimes governors may use an additional multiplier to increase * sample delays temporarily. Apply that multiplier to sampling_rate * so as to keep the wake-up-from-idle detection logic a bit * conservative. */ sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; /* * For the purpose of ondemand, waiting for disk IO is an indication * that you're performance critical, and not that the system is actually * idle, so do not add the iowait time to the CPU idle time then. */ io_busy = dbs_data->io_is_busy; /* Get Absolute Load */ for_each_cpu(j, policy->cpus) { struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); u64 update_time, cur_idle_time; unsigned int idle_time, time_elapsed; unsigned int load; cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy); time_elapsed = update_time - j_cdbs->prev_update_time; j_cdbs->prev_update_time = update_time; idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; j_cdbs->prev_cpu_idle = cur_idle_time; if (ignore_nice) { u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j); idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC); j_cdbs->prev_cpu_nice = cur_nice; } if (unlikely(!time_elapsed)) { /* * That can only happen when this function is called * twice in a row with a very short interval between the * calls, so the previous load value can be used then. */ load = j_cdbs->prev_load; } else if (unlikely((int)idle_time > 2 * sampling_rate && j_cdbs->prev_load)) { /* * If the CPU had gone completely idle and a task has * just woken up on this CPU now, it would be unfair to * calculate 'load' the usual way for this elapsed * time-window, because it would show near-zero load, * irrespective of how CPU intensive that task actually * was. This is undesirable for latency-sensitive bursty * workloads. * * To avoid this, reuse the 'load' from the previous * time-window and give this task a chance to start with * a reasonably high CPU frequency. However, that * shouldn't be over-done, lest we get stuck at a high * load (high frequency) for too long, even when the * current system load has actually dropped down, so * clear prev_load to guarantee that the load will be * computed again next time. * * Detecting this situation is easy: an unusually large * 'idle_time' (as compared to the sampling rate) * indicates this scenario. */ load = j_cdbs->prev_load; j_cdbs->prev_load = 0; } else { if (time_elapsed >= idle_time) { load = 100 * (time_elapsed - idle_time) / time_elapsed; } else { /* * That can happen if idle_time is returned by * get_cpu_idle_time_jiffy(). In that case * idle_time is roughly equal to the difference * between time_elapsed and "busy time" obtained * from CPU statistics. Then, the "busy time" * can end up being greater than time_elapsed * (for example, if jiffies_64 and the CPU * statistics are updated by different CPUs), * so idle_time may in fact be negative. That * means, though, that the CPU was busy all * the time (on the rough average) during the * last sampling interval and 100 can be * returned as the load. */ load = (int)idle_time < 0 ? 100 : 0; } j_cdbs->prev_load = load; } if (unlikely((int)idle_time > 2 * sampling_rate)) { unsigned int periods = idle_time / sampling_rate; if (periods < idle_periods) idle_periods = periods; } if (load > max_load) max_load = load; } policy_dbs->idle_periods = idle_periods; return max_load; } EXPORT_SYMBOL_GPL(dbs_update); static void dbs_work_handler(struct work_struct *work) { struct policy_dbs_info *policy_dbs; struct cpufreq_policy *policy; struct dbs_governor *gov; policy_dbs = container_of(work, struct policy_dbs_info, work); policy = policy_dbs->policy; gov = dbs_governor_of(policy); /* * Make sure cpufreq_governor_limits() isn't evaluating load or the * ondemand governor isn't updating the sampling rate in parallel. */ mutex_lock(&policy_dbs->update_mutex); gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy)); mutex_unlock(&policy_dbs->update_mutex); /* Allow the utilization update handler to queue up more work. */ atomic_set(&policy_dbs->work_count, 0); /* * If the update below is reordered with respect to the sample delay * modification, the utilization update handler may end up using a stale * sample delay value. */ smp_wmb(); policy_dbs->work_in_progress = false; } static void dbs_irq_work(struct irq_work *irq_work) { struct policy_dbs_info *policy_dbs; policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); schedule_work_on(smp_processor_id(), &policy_dbs->work); } static void dbs_update_util_handler(struct update_util_data *data, u64 time, unsigned int flags) { struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; u64 delta_ns, lst; if (!cpufreq_this_cpu_can_update(policy_dbs->policy)) return; /* * The work may not be allowed to be queued up right now. * Possible reasons: * - Work has already been queued up or is in progress. * - It is too early (too little time from the previous sample). */ if (policy_dbs->work_in_progress) return; /* * If the reads below are reordered before the check above, the value * of sample_delay_ns used in the computation may be stale. */ smp_rmb(); lst = READ_ONCE(policy_dbs->last_sample_time); delta_ns = time - lst; if ((s64)delta_ns < policy_dbs->sample_delay_ns) return; /* * If the policy is not shared, the irq_work may be queued up right away * at this point. Otherwise, we need to ensure that only one of the * CPUs sharing the policy will do that. */ if (policy_dbs->is_shared) { if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) return; /* * If another CPU updated last_sample_time in the meantime, we * shouldn't be here, so clear the work counter and bail out. */ if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { atomic_set(&policy_dbs->work_count, 0); return; } } policy_dbs->last_sample_time = time; policy_dbs->work_in_progress = true; irq_work_queue(&policy_dbs->irq_work); } static void gov_set_update_util(struct policy_dbs_info *policy_dbs, unsigned int delay_us) { struct cpufreq_policy *policy = policy_dbs->policy; int cpu; gov_update_sample_delay(policy_dbs, delay_us); policy_dbs->last_sample_time = 0; for_each_cpu(cpu, policy->cpus) { struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); cpufreq_add_update_util_hook(cpu, &cdbs->update_util, dbs_update_util_handler); } } static inline void gov_clear_update_util(struct cpufreq_policy *policy) { int i; for_each_cpu(i, policy->cpus) cpufreq_remove_update_util_hook(i); synchronize_rcu(); } static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, struct dbs_governor *gov) { struct policy_dbs_info *policy_dbs; int j; /* Allocate memory for per-policy governor data. */ policy_dbs = gov->alloc(); if (!policy_dbs) return NULL; policy_dbs->policy = policy; mutex_init(&policy_dbs->update_mutex); atomic_set(&policy_dbs->work_count, 0); init_irq_work(&policy_dbs->irq_work, dbs_irq_work); INIT_WORK(&policy_dbs->work, dbs_work_handler); /* Set policy_dbs for all CPUs, online+offline */ for_each_cpu(j, policy->related_cpus) { struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); j_cdbs->policy_dbs = policy_dbs; } return policy_dbs; } static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, struct dbs_governor *gov) { int j; mutex_destroy(&policy_dbs->update_mutex); for_each_cpu(j, policy_dbs->policy->related_cpus) { struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); j_cdbs->policy_dbs = NULL; j_cdbs->update_util.func = NULL; } gov->free(policy_dbs); } static void cpufreq_dbs_data_release(struct kobject *kobj) { struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj)); struct dbs_governor *gov = dbs_data->gov; gov->exit(dbs_data); kfree(dbs_data); } int cpufreq_dbs_governor_init(struct cpufreq_policy *policy) { struct dbs_governor *gov = dbs_governor_of(policy); struct dbs_data *dbs_data; struct policy_dbs_info *policy_dbs; int ret = 0; /* State should be equivalent to EXIT */ if (policy->governor_data) return -EBUSY; policy_dbs = alloc_policy_dbs_info(policy, gov); if (!policy_dbs) return -ENOMEM; /* Protect gov->gdbs_data against concurrent updates. */ mutex_lock(&gov_dbs_data_mutex); dbs_data = gov->gdbs_data; if (dbs_data) { if (WARN_ON(have_governor_per_policy())) { ret = -EINVAL; goto free_policy_dbs_info; } policy_dbs->dbs_data = dbs_data; policy->governor_data = policy_dbs; gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list); goto out; } dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); if (!dbs_data) { ret = -ENOMEM; goto free_policy_dbs_info; } dbs_data->gov = gov; gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list); ret = gov->init(dbs_data); if (ret) goto free_policy_dbs_info; /* * The sampling interval should not be less than the transition latency * of the CPU and it also cannot be too small for dbs_update() to work * correctly. */ dbs_data->sampling_rate = max_t(unsigned int, CPUFREQ_DBS_MIN_SAMPLING_INTERVAL, cpufreq_policy_transition_delay_us(policy)); if (!have_governor_per_policy()) gov->gdbs_data = dbs_data; policy_dbs->dbs_data = dbs_data; policy->governor_data = policy_dbs; gov->kobj_type.sysfs_ops = &governor_sysfs_ops; gov->kobj_type.release = cpufreq_dbs_data_release; ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type, get_governor_parent_kobj(policy), "%s", gov->gov.name); if (!ret) goto out; /* Failure, so roll back. */ pr_err("initialization failed (dbs_data kobject init error %d)\n", ret); kobject_put(&dbs_data->attr_set.kobj); policy->governor_data = NULL; if (!have_governor_per_policy()) gov->gdbs_data = NULL; gov->exit(dbs_data); kfree(dbs_data); free_policy_dbs_info: free_policy_dbs_info(policy_dbs, gov); out: mutex_unlock(&gov_dbs_data_mutex); return ret; } EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init); void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy) { struct dbs_governor *gov = dbs_governor_of(policy); struct policy_dbs_info *policy_dbs = policy->governor_data; struct dbs_data *dbs_data = policy_dbs->dbs_data; unsigned int count; /* Protect gov->gdbs_data against concurrent updates. */ mutex_lock(&gov_dbs_data_mutex); count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list); policy->governor_data = NULL; if (!count && !have_governor_per_policy()) gov->gdbs_data = NULL; free_policy_dbs_info(policy_dbs, gov); mutex_unlock(&gov_dbs_data_mutex); } EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit); int cpufreq_dbs_governor_start(struct cpufreq_policy *policy) { struct dbs_governor *gov = dbs_governor_of(policy); struct policy_dbs_info *policy_dbs = policy->governor_data; struct dbs_data *dbs_data = policy_dbs->dbs_data; unsigned int sampling_rate, ignore_nice, j; unsigned int io_busy; if (!policy->cur) return -EINVAL; policy_dbs->is_shared = policy_is_shared(policy); policy_dbs->rate_mult = 1; sampling_rate = dbs_data->sampling_rate; ignore_nice = dbs_data->ignore_nice_load; io_busy = dbs_data->io_is_busy; for_each_cpu(j, policy->cpus) { struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy); /* * Make the first invocation of dbs_update() compute the load. */ j_cdbs->prev_load = 0; if (ignore_nice) j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j); } gov->start(policy); gov_set_update_util(policy_dbs, sampling_rate); return 0; } EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start); void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy) { struct policy_dbs_info *policy_dbs = policy->governor_data; gov_clear_update_util(policy_dbs->policy); irq_work_sync(&policy_dbs->irq_work); cancel_work_sync(&policy_dbs->work); atomic_set(&policy_dbs->work_count, 0); policy_dbs->work_in_progress = false; } EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop); void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy) { struct policy_dbs_info *policy_dbs; /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */ mutex_lock(&gov_dbs_data_mutex); policy_dbs = policy->governor_data; if (!policy_dbs) goto out; mutex_lock(&policy_dbs->update_mutex); cpufreq_policy_apply_limits(policy); gov_update_sample_delay(policy_dbs, 0); mutex_unlock(&policy_dbs->update_mutex); out: mutex_unlock(&gov_dbs_data_mutex); } EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits); |