Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 | // SPDX-License-Identifier: GPL-2.0-or-later /* * User-space Probes (UProbes) for x86 * * Copyright (C) IBM Corporation, 2008-2011 * Authors: * Srikar Dronamraju * Jim Keniston */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/uprobes.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <asm/processor.h> #include <asm/insn.h> #include <asm/mmu_context.h> /* Post-execution fixups. */ /* Adjust IP back to vicinity of actual insn */ #define UPROBE_FIX_IP 0x01 /* Adjust the return address of a call insn */ #define UPROBE_FIX_CALL 0x02 /* Instruction will modify TF, don't change it */ #define UPROBE_FIX_SETF 0x04 #define UPROBE_FIX_RIP_SI 0x08 #define UPROBE_FIX_RIP_DI 0x10 #define UPROBE_FIX_RIP_BX 0x20 #define UPROBE_FIX_RIP_MASK \ (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) #define UPROBE_TRAP_NR UINT_MAX /* Adaptations for mhiramat x86 decoder v14. */ #define OPCODE1(insn) ((insn)->opcode.bytes[0]) #define OPCODE2(insn) ((insn)->opcode.bytes[1]) #define OPCODE3(insn) ((insn)->opcode.bytes[2]) #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value) #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ << (row % 32)) /* * Good-instruction tables for 32-bit apps. This is non-const and volatile * to keep gcc from statically optimizing it out, as variable_test_bit makes * some versions of gcc to think only *(unsigned long*) is used. * * Opcodes we'll probably never support: * 6c-6f - ins,outs. SEGVs if used in userspace * e4-e7 - in,out imm. SEGVs if used in userspace * ec-ef - in,out acc. SEGVs if used in userspace * cc - int3. SIGTRAP if used in userspace * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs * (why we support bound (62) then? it's similar, and similarly unused...) * f1 - int1. SIGTRAP if used in userspace * f4 - hlt. SEGVs if used in userspace * fa - cli. SEGVs if used in userspace * fb - sti. SEGVs if used in userspace * * Opcodes which need some work to be supported: * 07,17,1f - pop es/ss/ds * Normally not used in userspace, but would execute if used. * Can cause GP or stack exception if tries to load wrong segment descriptor. * We hesitate to run them under single step since kernel's handling * of userspace single-stepping (TF flag) is fragile. * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e) * on the same grounds that they are never used. * cd - int N. * Used by userspace for "int 80" syscall entry. (Other "int N" * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). * Not supported since kernel's handling of userspace single-stepping * (TF flag) is fragile. * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad */ #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) static volatile u32 good_insns_32[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #else #define good_insns_32 NULL #endif /* Good-instruction tables for 64-bit apps. * * Genuinely invalid opcodes: * 06,07 - formerly push/pop es * 0e - formerly push cs * 16,17 - formerly push/pop ss * 1e,1f - formerly push/pop ds * 27,2f,37,3f - formerly daa/das/aaa/aas * 60,61 - formerly pusha/popa * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported) * 82 - formerly redundant encoding of Group1 * 9a - formerly call seg:ofs * ce - formerly into * d4,d5 - formerly aam/aad * d6 - formerly undocumented salc * ea - formerly jmp seg:ofs * * Opcodes we'll probably never support: * 6c-6f - ins,outs. SEGVs if used in userspace * e4-e7 - in,out imm. SEGVs if used in userspace * ec-ef - in,out acc. SEGVs if used in userspace * cc - int3. SIGTRAP if used in userspace * f1 - int1. SIGTRAP if used in userspace * f4 - hlt. SEGVs if used in userspace * fa - cli. SEGVs if used in userspace * fb - sti. SEGVs if used in userspace * * Opcodes which need some work to be supported: * cd - int N. * Used by userspace for "int 80" syscall entry. (Other "int N" * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). * Not supported since kernel's handling of userspace single-stepping * (TF flag) is fragile. * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad */ #if defined(CONFIG_X86_64) static volatile u32 good_insns_64[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */ W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */ W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #else #define good_insns_64 NULL #endif /* Using this for both 64-bit and 32-bit apps. * Opcodes we don't support: * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group. * Also encodes tons of other system insns if mod=11. * Some are in fact non-system: xend, xtest, rdtscp, maybe more * 0f 05 - syscall * 0f 06 - clts (CPL0 insn) * 0f 07 - sysret * 0f 08 - invd (CPL0 insn) * 0f 09 - wbinvd (CPL0 insn) * 0f 0b - ud2 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?) * 0f 34 - sysenter * 0f 35 - sysexit * 0f 37 - getsec * 0f 78 - vmread (Intel VMX. CPL0 insn) * 0f 79 - vmwrite (Intel VMX. CPL0 insn) * Note: with prefixes, these two opcodes are * extrq/insertq/AVX512 convert vector ops. * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt], * {rd,wr}{fs,gs}base,{s,l,m}fence. * Why? They are all user-executable. */ static volatile u32 good_2byte_insns[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #undef W /* * opcodes we may need to refine support for: * * 0f - 2-byte instructions: For many of these instructions, the validity * depends on the prefix and/or the reg field. On such instructions, we * just consider the opcode combination valid if it corresponds to any * valid instruction. * * 8f - Group 1 - only reg = 0 is OK * c6-c7 - Group 11 - only reg = 0 is OK * d9-df - fpu insns with some illegal encodings * f2, f3 - repnz, repz prefixes. These are also the first byte for * certain floating-point instructions, such as addsd. * * fe - Group 4 - only reg = 0 or 1 is OK * ff - Group 5 - only reg = 0-6 is OK * * others -- Do we need to support these? * * 0f - (floating-point?) prefetch instructions * 07, 17, 1f - pop es, pop ss, pop ds * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- * but 64 and 65 (fs: and gs:) seem to be used, so we support them * 67 - addr16 prefix * ce - into * f0 - lock prefix */ /* * TODO: * - Where necessary, examine the modrm byte and allow only valid instructions * in the different Groups and fpu instructions. */ static bool is_prefix_bad(struct insn *insn) { insn_byte_t p; int i; for_each_insn_prefix(insn, i, p) { insn_attr_t attr; attr = inat_get_opcode_attribute(p); switch (attr) { case INAT_MAKE_PREFIX(INAT_PFX_ES): case INAT_MAKE_PREFIX(INAT_PFX_CS): case INAT_MAKE_PREFIX(INAT_PFX_DS): case INAT_MAKE_PREFIX(INAT_PFX_SS): case INAT_MAKE_PREFIX(INAT_PFX_LOCK): return true; } } return false; } static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64) { enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32; u32 volatile *good_insns; int ret; ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m); if (ret < 0) return -ENOEXEC; if (is_prefix_bad(insn)) return -ENOTSUPP; /* We should not singlestep on the exception masking instructions */ if (insn_masking_exception(insn)) return -ENOTSUPP; if (x86_64) good_insns = good_insns_64; else good_insns = good_insns_32; if (test_bit(OPCODE1(insn), (unsigned long *)good_insns)) return 0; if (insn->opcode.nbytes == 2) { if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) return 0; } return -ENOTSUPP; } #ifdef CONFIG_X86_64 /* * If arch_uprobe->insn doesn't use rip-relative addressing, return * immediately. Otherwise, rewrite the instruction so that it accesses * its memory operand indirectly through a scratch register. Set * defparam->fixups accordingly. (The contents of the scratch register * will be saved before we single-step the modified instruction, * and restored afterward). * * We do this because a rip-relative instruction can access only a * relatively small area (+/- 2 GB from the instruction), and the XOL * area typically lies beyond that area. At least for instructions * that store to memory, we can't execute the original instruction * and "fix things up" later, because the misdirected store could be * disastrous. * * Some useful facts about rip-relative instructions: * * - There's always a modrm byte with bit layout "00 reg 101". * - There's never a SIB byte. * - The displacement is always 4 bytes. * - REX.B=1 bit in REX prefix, which normally extends r/m field, * has no effect on rip-relative mode. It doesn't make modrm byte * with r/m=101 refer to register 1101 = R13. */ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) { u8 *cursor; u8 reg; u8 reg2; if (!insn_rip_relative(insn)) return; /* * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. * Clear REX.b bit (extension of MODRM.rm field): * we want to encode low numbered reg, not r8+. */ if (insn->rex_prefix.nbytes) { cursor = auprobe->insn + insn_offset_rex_prefix(insn); /* REX byte has 0100wrxb layout, clearing REX.b bit */ *cursor &= 0xfe; } /* * Similar treatment for VEX3/EVEX prefix. * TODO: add XOP treatment when insn decoder supports them */ if (insn->vex_prefix.nbytes >= 3) { /* * vex2: c5 rvvvvLpp (has no b bit) * vex3/xop: c4/8f rxbmmmmm wvvvvLpp * evex: 62 rxbR00mm wvvvv1pp zllBVaaa * Setting VEX3.b (setting because it has inverted meaning). * Setting EVEX.x since (in non-SIB encoding) EVEX.x * is the 4th bit of MODRM.rm, and needs the same treatment. * For VEX3-encoded insns, VEX3.x value has no effect in * non-SIB encoding, the change is superfluous but harmless. */ cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; *cursor |= 0x60; } /* * Convert from rip-relative addressing to register-relative addressing * via a scratch register. * * This is tricky since there are insns with modrm byte * which also use registers not encoded in modrm byte: * [i]div/[i]mul: implicitly use dx:ax * shift ops: implicitly use cx * cmpxchg: implicitly uses ax * cmpxchg8/16b: implicitly uses dx:ax and bx:cx * Encoding: 0f c7/1 modrm * The code below thinks that reg=1 (cx), chooses si as scratch. * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. * First appeared in Haswell (BMI2 insn). It is vex-encoded. * Example where none of bx,cx,dx can be used as scratch reg: * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx * [v]pcmpistri: implicitly uses cx, xmm0 * [v]pcmpistrm: implicitly uses xmm0 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 * [v]pcmpestrm: implicitly uses ax, dx, xmm0 * Evil SSE4.2 string comparison ops from hell. * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). * AMD says it has no 3-operand form (vex.vvvv must be 1111) * and that it can have only register operands, not mem * (its modrm byte must have mode=11). * If these restrictions will ever be lifted, * we'll need code to prevent selection of di as scratch reg! * * Summary: I don't know any insns with modrm byte which * use SI register implicitly. DI register is used only * by one insn (maskmovq) and BX register is used * only by one too (cmpxchg8b). * BP is stack-segment based (may be a problem?). * AX, DX, CX are off-limits (many implicit users). * SP is unusable (it's stack pointer - think about "pop mem"; * also, rsp+disp32 needs sib encoding -> insn length change). */ reg = MODRM_REG(insn); /* Fetch modrm.reg */ reg2 = 0xff; /* Fetch vex.vvvv */ if (insn->vex_prefix.nbytes) reg2 = insn->vex_prefix.bytes[2]; /* * TODO: add XOP vvvv reading. * * vex.vvvv field is in bits 6-3, bits are inverted. * But in 32-bit mode, high-order bit may be ignored. * Therefore, let's consider only 3 low-order bits. */ reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; /* * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. * * Choose scratch reg. Order is important: must not select bx * if we can use si (cmpxchg8b case!) */ if (reg != 6 && reg2 != 6) { reg2 = 6; auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI; } else if (reg != 7 && reg2 != 7) { reg2 = 7; auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI; /* TODO (paranoia): force maskmovq to not use di */ } else { reg2 = 3; auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX; } /* * Point cursor at the modrm byte. The next 4 bytes are the * displacement. Beyond the displacement, for some instructions, * is the immediate operand. */ cursor = auprobe->insn + insn_offset_modrm(insn); /* * Change modrm from "00 reg 101" to "10 reg reg2". Example: * 89 05 disp32 mov %eax,disp32(%rip) becomes * 89 86 disp32 mov %eax,disp32(%rsi) */ *cursor = 0x80 | (reg << 3) | reg2; } static inline unsigned long * scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) { if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI) return ®s->si; if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI) return ®s->di; return ®s->bx; } /* * If we're emulating a rip-relative instruction, save the contents * of the scratch register and store the target address in that register. */ static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { struct uprobe_task *utask = current->utask; unsigned long *sr = scratch_reg(auprobe, regs); utask->autask.saved_scratch_register = *sr; *sr = utask->vaddr + auprobe->defparam.ilen; } } static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { struct uprobe_task *utask = current->utask; unsigned long *sr = scratch_reg(auprobe, regs); *sr = utask->autask.saved_scratch_register; } } #else /* 32-bit: */ /* * No RIP-relative addressing on 32-bit */ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) { } static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { } static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { } #endif /* CONFIG_X86_64 */ struct uprobe_xol_ops { bool (*emulate)(struct arch_uprobe *, struct pt_regs *); int (*pre_xol)(struct arch_uprobe *, struct pt_regs *); int (*post_xol)(struct arch_uprobe *, struct pt_regs *); void (*abort)(struct arch_uprobe *, struct pt_regs *); }; static inline int sizeof_long(struct pt_regs *regs) { /* * Check registers for mode as in_xxx_syscall() does not apply here. */ return user_64bit_mode(regs) ? 8 : 4; } static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { riprel_pre_xol(auprobe, regs); return 0; } static int emulate_push_stack(struct pt_regs *regs, unsigned long val) { unsigned long new_sp = regs->sp - sizeof_long(regs); if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs))) return -EFAULT; regs->sp = new_sp; return 0; } /* * We have to fix things up as follows: * * Typically, the new ip is relative to the copied instruction. We need * to make it relative to the original instruction (FIX_IP). Exceptions * are return instructions and absolute or indirect jump or call instructions. * * If the single-stepped instruction was a call, the return address that * is atop the stack is the address following the copied instruction. We * need to make it the address following the original instruction (FIX_CALL). * * If the original instruction was a rip-relative instruction such as * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". * We need to restore the contents of the scratch register * (FIX_RIP_reg). */ static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; riprel_post_xol(auprobe, regs); if (auprobe->defparam.fixups & UPROBE_FIX_IP) { long correction = utask->vaddr - utask->xol_vaddr; regs->ip += correction; } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) { regs->sp += sizeof_long(regs); /* Pop incorrect return address */ if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen)) return -ERESTART; } /* popf; tell the caller to not touch TF */ if (auprobe->defparam.fixups & UPROBE_FIX_SETF) utask->autask.saved_tf = true; return 0; } static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { riprel_post_xol(auprobe, regs); } static const struct uprobe_xol_ops default_xol_ops = { .pre_xol = default_pre_xol_op, .post_xol = default_post_xol_op, .abort = default_abort_op, }; static bool branch_is_call(struct arch_uprobe *auprobe) { return auprobe->branch.opc1 == 0xe8; } #define CASE_COND \ COND(70, 71, XF(OF)) \ COND(72, 73, XF(CF)) \ COND(74, 75, XF(ZF)) \ COND(78, 79, XF(SF)) \ COND(7a, 7b, XF(PF)) \ COND(76, 77, XF(CF) || XF(ZF)) \ COND(7c, 7d, XF(SF) != XF(OF)) \ COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF)) #define COND(op_y, op_n, expr) \ case 0x ## op_y: DO((expr) != 0) \ case 0x ## op_n: DO((expr) == 0) #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf)) static bool is_cond_jmp_opcode(u8 opcode) { switch (opcode) { #define DO(expr) \ return true; CASE_COND #undef DO default: return false; } } static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs) { unsigned long flags = regs->flags; switch (auprobe->branch.opc1) { #define DO(expr) \ return expr; CASE_COND #undef DO default: /* not a conditional jmp */ return true; } } #undef XF #undef COND #undef CASE_COND static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { unsigned long new_ip = regs->ip += auprobe->branch.ilen; unsigned long offs = (long)auprobe->branch.offs; if (branch_is_call(auprobe)) { /* * If it fails we execute this (mangled, see the comment in * branch_clear_offset) insn out-of-line. In the likely case * this should trigger the trap, and the probed application * should die or restart the same insn after it handles the * signal, arch_uprobe_post_xol() won't be even called. * * But there is corner case, see the comment in ->post_xol(). */ if (emulate_push_stack(regs, new_ip)) return false; } else if (!check_jmp_cond(auprobe, regs)) { offs = 0; } regs->ip = new_ip + offs; return true; } static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset; if (emulate_push_stack(regs, *src_ptr)) return false; regs->ip += auprobe->push.ilen; return true; } static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) { BUG_ON(!branch_is_call(auprobe)); /* * We can only get here if branch_emulate_op() failed to push the ret * address _and_ another thread expanded our stack before the (mangled) * "call" insn was executed out-of-line. Just restore ->sp and restart. * We could also restore ->ip and try to call branch_emulate_op() again. */ regs->sp += sizeof_long(regs); return -ERESTART; } static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn) { /* * Turn this insn into "call 1f; 1:", this is what we will execute * out-of-line if ->emulate() fails. We only need this to generate * a trap, so that the probed task receives the correct signal with * the properly filled siginfo. * * But see the comment in ->post_xol(), in the unlikely case it can * succeed. So we need to ensure that the new ->ip can not fall into * the non-canonical area and trigger #GP. * * We could turn it into (say) "pushf", but then we would need to * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte * of ->insn[] for set_orig_insn(). */ memset(auprobe->insn + insn_offset_immediate(insn), 0, insn->immediate.nbytes); } static const struct uprobe_xol_ops branch_xol_ops = { .emulate = branch_emulate_op, .post_xol = branch_post_xol_op, }; static const struct uprobe_xol_ops push_xol_ops = { .emulate = push_emulate_op, }; /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */ static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) { u8 opc1 = OPCODE1(insn); insn_byte_t p; int i; switch (opc1) { case 0xeb: /* jmp 8 */ case 0xe9: /* jmp 32 */ break; case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */ goto setup; case 0xe8: /* call relative */ branch_clear_offset(auprobe, insn); break; case 0x0f: if (insn->opcode.nbytes != 2) return -ENOSYS; /* * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches * OPCODE1() of the "short" jmp which checks the same condition. */ opc1 = OPCODE2(insn) - 0x10; fallthrough; default: if (!is_cond_jmp_opcode(opc1)) return -ENOSYS; } /* * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported. * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix. * No one uses these insns, reject any branch insns with such prefix. */ for_each_insn_prefix(insn, i, p) { if (p == 0x66) return -ENOTSUPP; } setup: auprobe->branch.opc1 = opc1; auprobe->branch.ilen = insn->length; auprobe->branch.offs = insn->immediate.value; auprobe->ops = &branch_xol_ops; return 0; } /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */ static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) { u8 opc1 = OPCODE1(insn), reg_offset = 0; if (opc1 < 0x50 || opc1 > 0x57) return -ENOSYS; if (insn->length > 2) return -ENOSYS; if (insn->length == 2) { /* only support rex_prefix 0x41 (x64 only) */ #ifdef CONFIG_X86_64 if (insn->rex_prefix.nbytes != 1 || insn->rex_prefix.bytes[0] != 0x41) return -ENOSYS; switch (opc1) { case 0x50: reg_offset = offsetof(struct pt_regs, r8); break; case 0x51: reg_offset = offsetof(struct pt_regs, r9); break; case 0x52: reg_offset = offsetof(struct pt_regs, r10); break; case 0x53: reg_offset = offsetof(struct pt_regs, r11); break; case 0x54: reg_offset = offsetof(struct pt_regs, r12); break; case 0x55: reg_offset = offsetof(struct pt_regs, r13); break; case 0x56: reg_offset = offsetof(struct pt_regs, r14); break; case 0x57: reg_offset = offsetof(struct pt_regs, r15); break; } #else return -ENOSYS; #endif } else { switch (opc1) { case 0x50: reg_offset = offsetof(struct pt_regs, ax); break; case 0x51: reg_offset = offsetof(struct pt_regs, cx); break; case 0x52: reg_offset = offsetof(struct pt_regs, dx); break; case 0x53: reg_offset = offsetof(struct pt_regs, bx); break; case 0x54: reg_offset = offsetof(struct pt_regs, sp); break; case 0x55: reg_offset = offsetof(struct pt_regs, bp); break; case 0x56: reg_offset = offsetof(struct pt_regs, si); break; case 0x57: reg_offset = offsetof(struct pt_regs, di); break; } } auprobe->push.reg_offset = reg_offset; auprobe->push.ilen = insn->length; auprobe->ops = &push_xol_ops; return 0; } /** * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. * @auprobe: the probepoint information. * @mm: the probed address space. * @addr: virtual address at which to install the probepoint * Return 0 on success or a -ve number on error. */ int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) { struct insn insn; u8 fix_ip_or_call = UPROBE_FIX_IP; int ret; ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm)); if (ret) return ret; ret = branch_setup_xol_ops(auprobe, &insn); if (ret != -ENOSYS) return ret; ret = push_setup_xol_ops(auprobe, &insn); if (ret != -ENOSYS) return ret; /* * Figure out which fixups default_post_xol_op() will need to perform, * and annotate defparam->fixups accordingly. */ switch (OPCODE1(&insn)) { case 0x9d: /* popf */ auprobe->defparam.fixups |= UPROBE_FIX_SETF; break; case 0xc3: /* ret or lret -- ip is correct */ case 0xcb: case 0xc2: case 0xca: case 0xea: /* jmp absolute -- ip is correct */ fix_ip_or_call = 0; break; case 0x9a: /* call absolute - Fix return addr, not ip */ fix_ip_or_call = UPROBE_FIX_CALL; break; case 0xff: switch (MODRM_REG(&insn)) { case 2: case 3: /* call or lcall, indirect */ fix_ip_or_call = UPROBE_FIX_CALL; break; case 4: case 5: /* jmp or ljmp, indirect */ fix_ip_or_call = 0; break; } fallthrough; default: riprel_analyze(auprobe, &insn); } auprobe->defparam.ilen = insn.length; auprobe->defparam.fixups |= fix_ip_or_call; auprobe->ops = &default_xol_ops; return 0; } /* * arch_uprobe_pre_xol - prepare to execute out of line. * @auprobe: the probepoint information. * @regs: reflects the saved user state of current task. */ int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; if (auprobe->ops->pre_xol) { int err = auprobe->ops->pre_xol(auprobe, regs); if (err) return err; } regs->ip = utask->xol_vaddr; utask->autask.saved_trap_nr = current->thread.trap_nr; current->thread.trap_nr = UPROBE_TRAP_NR; utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF); regs->flags |= X86_EFLAGS_TF; if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) set_task_blockstep(current, false); return 0; } /* * If xol insn itself traps and generates a signal(Say, * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped * instruction jumps back to its own address. It is assumed that anything * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. * * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). */ bool arch_uprobe_xol_was_trapped(struct task_struct *t) { if (t->thread.trap_nr != UPROBE_TRAP_NR) return true; return false; } /* * Called after single-stepping. To avoid the SMP problems that can * occur when we temporarily put back the original opcode to * single-step, we single-stepped a copy of the instruction. * * This function prepares to resume execution after the single-step. */ int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; bool send_sigtrap = utask->autask.saved_tf; int err = 0; WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); current->thread.trap_nr = utask->autask.saved_trap_nr; if (auprobe->ops->post_xol) { err = auprobe->ops->post_xol(auprobe, regs); if (err) { /* * Restore ->ip for restart or post mortem analysis. * ->post_xol() must not return -ERESTART unless this * is really possible. */ regs->ip = utask->vaddr; if (err == -ERESTART) err = 0; send_sigtrap = false; } } /* * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP * so we can get an extra SIGTRAP if we do not clear TF. We need * to examine the opcode to make it right. */ if (send_sigtrap) send_sig(SIGTRAP, current, 0); if (!utask->autask.saved_tf) regs->flags &= ~X86_EFLAGS_TF; return err; } /* callback routine for handling exceptions. */ int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = data; struct pt_regs *regs = args->regs; int ret = NOTIFY_DONE; /* We are only interested in userspace traps */ if (regs && !user_mode(regs)) return NOTIFY_DONE; switch (val) { case DIE_INT3: if (uprobe_pre_sstep_notifier(regs)) ret = NOTIFY_STOP; break; case DIE_DEBUG: if (uprobe_post_sstep_notifier(regs)) ret = NOTIFY_STOP; break; default: break; } return ret; } /* * This function gets called when XOL instruction either gets trapped or * the thread has a fatal signal. Reset the instruction pointer to its * probed address for the potential restart or for post mortem analysis. */ void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; if (auprobe->ops->abort) auprobe->ops->abort(auprobe, regs); current->thread.trap_nr = utask->autask.saved_trap_nr; regs->ip = utask->vaddr; /* clear TF if it was set by us in arch_uprobe_pre_xol() */ if (!utask->autask.saved_tf) regs->flags &= ~X86_EFLAGS_TF; } static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) { if (auprobe->ops->emulate) return auprobe->ops->emulate(auprobe, regs); return false; } bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) { bool ret = __skip_sstep(auprobe, regs); if (ret && (regs->flags & X86_EFLAGS_TF)) send_sig(SIGTRAP, current, 0); return ret; } unsigned long arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) { int rasize = sizeof_long(regs), nleft; unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize)) return -1; /* check whether address has been already hijacked */ if (orig_ret_vaddr == trampoline_vaddr) return orig_ret_vaddr; nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); if (likely(!nleft)) return orig_ret_vaddr; if (nleft != rasize) { pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n", current->pid, regs->sp, regs->ip); force_sig(SIGSEGV); } return -1; } bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, struct pt_regs *regs) { if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */ return regs->sp < ret->stack; else return regs->sp <= ret->stack; } |