Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */

/*
 * nfp_rtsym.c
 * Interface for accessing run-time symbol table
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Espen Skoglund <espen.skoglund@netronome.com>
 *          Francois H. Theron <francois.theron@netronome.com>
 */

#include <asm/unaligned.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/io-64-nonatomic-hi-lo.h>

#include "nfp.h"
#include "nfp_cpp.h"
#include "nfp_nffw.h"
#include "nfp6000/nfp6000.h"

/* These need to match the linker */
#define SYM_TGT_LMEM		0
#define SYM_TGT_EMU_CACHE	0x17

struct nfp_rtsym_entry {
	u8	type;
	u8	target;
	u8	island;
	u8	addr_hi;
	__le32	addr_lo;
	__le16	name;
	u8	menum;
	u8	size_hi;
	__le32	size_lo;
};

struct nfp_rtsym_table {
	struct nfp_cpp *cpp;
	int num;
	char *strtab;
	struct nfp_rtsym symtab[];
};

static int nfp_meid(u8 island_id, u8 menum)
{
	return (island_id & 0x3F) == island_id && menum < 12 ?
		(island_id << 4) | (menum + 4) : -1;
}

static void
nfp_rtsym_sw_entry_init(struct nfp_rtsym_table *cache, u32 strtab_size,
			struct nfp_rtsym *sw, struct nfp_rtsym_entry *fw)
{
	sw->type = fw->type;
	sw->name = cache->strtab + le16_to_cpu(fw->name) % strtab_size;
	sw->addr = ((u64)fw->addr_hi << 32) | le32_to_cpu(fw->addr_lo);
	sw->size = ((u64)fw->size_hi << 32) | le32_to_cpu(fw->size_lo);

	switch (fw->target) {
	case SYM_TGT_LMEM:
		sw->target = NFP_RTSYM_TARGET_LMEM;
		break;
	case SYM_TGT_EMU_CACHE:
		sw->target = NFP_RTSYM_TARGET_EMU_CACHE;
		break;
	default:
		sw->target = fw->target;
		break;
	}

	if (fw->menum != 0xff)
		sw->domain = nfp_meid(fw->island, fw->menum);
	else if (fw->island != 0xff)
		sw->domain = fw->island;
	else
		sw->domain = -1;
}

struct nfp_rtsym_table *nfp_rtsym_table_read(struct nfp_cpp *cpp)
{
	struct nfp_rtsym_table *rtbl;
	const struct nfp_mip *mip;

	mip = nfp_mip_open(cpp);
	rtbl = __nfp_rtsym_table_read(cpp, mip);
	nfp_mip_close(mip);

	return rtbl;
}

struct nfp_rtsym_table *
__nfp_rtsym_table_read(struct nfp_cpp *cpp, const struct nfp_mip *mip)
{
	const u32 dram = NFP_CPP_ID(NFP_CPP_TARGET_MU, NFP_CPP_ACTION_RW, 0) |
		NFP_ISL_EMEM0;
	u32 strtab_addr, symtab_addr, strtab_size, symtab_size;
	struct nfp_rtsym_entry *rtsymtab;
	struct nfp_rtsym_table *cache;
	int err, n, size;

	if (!mip)
		return NULL;

	nfp_mip_strtab(mip, &strtab_addr, &strtab_size);
	nfp_mip_symtab(mip, &symtab_addr, &symtab_size);

	if (!symtab_size || !strtab_size || symtab_size % sizeof(*rtsymtab))
		return NULL;

	/* Align to 64 bits */
	symtab_size = round_up(symtab_size, 8);
	strtab_size = round_up(strtab_size, 8);

	rtsymtab = kmalloc(symtab_size, GFP_KERNEL);
	if (!rtsymtab)
		return NULL;

	size = sizeof(*cache);
	size += symtab_size / sizeof(*rtsymtab) * sizeof(struct nfp_rtsym);
	size +=	strtab_size + 1;
	cache = kmalloc(size, GFP_KERNEL);
	if (!cache)
		goto exit_free_rtsym_raw;

	cache->cpp = cpp;
	cache->num = symtab_size / sizeof(*rtsymtab);
	cache->strtab = (void *)&cache->symtab[cache->num];

	err = nfp_cpp_read(cpp, dram, symtab_addr, rtsymtab, symtab_size);
	if (err != symtab_size)
		goto exit_free_cache;

	err = nfp_cpp_read(cpp, dram, strtab_addr, cache->strtab, strtab_size);
	if (err != strtab_size)
		goto exit_free_cache;
	cache->strtab[strtab_size] = '\0';

	for (n = 0; n < cache->num; n++)
		nfp_rtsym_sw_entry_init(cache, strtab_size,
					&cache->symtab[n], &rtsymtab[n]);

	kfree(rtsymtab);

	return cache;

exit_free_cache:
	kfree(cache);
exit_free_rtsym_raw:
	kfree(rtsymtab);
	return NULL;
}

/**
 * nfp_rtsym_count() - Get the number of RTSYM descriptors
 * @rtbl:	NFP RTsym table
 *
 * Return: Number of RTSYM descriptors
 */
int nfp_rtsym_count(struct nfp_rtsym_table *rtbl)
{
	if (!rtbl)
		return -EINVAL;
	return rtbl->num;
}

/**
 * nfp_rtsym_get() - Get the Nth RTSYM descriptor
 * @rtbl:	NFP RTsym table
 * @idx:	Index (0-based) of the RTSYM descriptor
 *
 * Return: const pointer to a struct nfp_rtsym descriptor, or NULL
 */
const struct nfp_rtsym *nfp_rtsym_get(struct nfp_rtsym_table *rtbl, int idx)
{
	if (!rtbl)
		return NULL;
	if (idx >= rtbl->num)
		return NULL;

	return &rtbl->symtab[idx];
}

/**
 * nfp_rtsym_lookup() - Return the RTSYM descriptor for a symbol name
 * @rtbl:	NFP RTsym table
 * @name:	Symbol name
 *
 * Return: const pointer to a struct nfp_rtsym descriptor, or NULL
 */
const struct nfp_rtsym *
nfp_rtsym_lookup(struct nfp_rtsym_table *rtbl, const char *name)
{
	int n;

	if (!rtbl)
		return NULL;

	for (n = 0; n < rtbl->num; n++)
		if (strcmp(name, rtbl->symtab[n].name) == 0)
			return &rtbl->symtab[n];

	return NULL;
}

u64 nfp_rtsym_size(const struct nfp_rtsym *sym)
{
	switch (sym->type) {
	case NFP_RTSYM_TYPE_NONE:
		pr_err("rtsym '%s': type NONE\n", sym->name);
		return 0;
	default:
		pr_warn("rtsym '%s': unknown type: %d\n", sym->name, sym->type);
		fallthrough;
	case NFP_RTSYM_TYPE_OBJECT:
	case NFP_RTSYM_TYPE_FUNCTION:
		return sym->size;
	case NFP_RTSYM_TYPE_ABS:
		return sizeof(u64);
	}
}

static int
nfp_rtsym_to_dest(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		  u8 action, u8 token, u64 off, u32 *cpp_id, u64 *addr)
{
	if (sym->type != NFP_RTSYM_TYPE_OBJECT) {
		nfp_err(cpp, "rtsym '%s': direct access to non-object rtsym\n",
			sym->name);
		return -EINVAL;
	}

	*addr = sym->addr + off;

	if (sym->target == NFP_RTSYM_TARGET_EMU_CACHE) {
		int locality_off = nfp_cpp_mu_locality_lsb(cpp);

		*addr &= ~(NFP_MU_ADDR_ACCESS_TYPE_MASK << locality_off);
		*addr |= NFP_MU_ADDR_ACCESS_TYPE_DIRECT << locality_off;

		*cpp_id = NFP_CPP_ISLAND_ID(NFP_CPP_TARGET_MU, action, token,
					    sym->domain);
	} else if (sym->target < 0) {
		nfp_err(cpp, "rtsym '%s': unhandled target encoding: %d\n",
			sym->name, sym->target);
		return -EINVAL;
	} else {
		*cpp_id = NFP_CPP_ISLAND_ID(sym->target, action, token,
					    sym->domain);
	}

	return 0;
}

int __nfp_rtsym_read(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		     u8 action, u8 token, u64 off, void *buf, size_t len)
{
	u64 sym_size = nfp_rtsym_size(sym);
	u32 cpp_id;
	u64 addr;
	int err;

	if (off > sym_size) {
		nfp_err(cpp, "rtsym '%s': read out of bounds: off: %lld + len: %zd > size: %lld\n",
			sym->name, off, len, sym_size);
		return -ENXIO;
	}
	len = min_t(size_t, len, sym_size - off);

	if (sym->type == NFP_RTSYM_TYPE_ABS) {
		u8 tmp[8];

		put_unaligned_le64(sym->addr, tmp);
		memcpy(buf, &tmp[off], len);

		return len;
	}

	err = nfp_rtsym_to_dest(cpp, sym, action, token, off, &cpp_id, &addr);
	if (err)
		return err;

	return nfp_cpp_read(cpp, cpp_id, addr, buf, len);
}

int nfp_rtsym_read(struct nfp_cpp *cpp, const struct nfp_rtsym *sym, u64 off,
		   void *buf, size_t len)
{
	return __nfp_rtsym_read(cpp, sym, NFP_CPP_ACTION_RW, 0, off, buf, len);
}

int __nfp_rtsym_readl(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		      u8 action, u8 token, u64 off, u32 *value)
{
	u32 cpp_id;
	u64 addr;
	int err;

	if (off + 4 > nfp_rtsym_size(sym)) {
		nfp_err(cpp, "rtsym '%s': readl out of bounds: off: %lld + 4 > size: %lld\n",
			sym->name, off, nfp_rtsym_size(sym));
		return -ENXIO;
	}

	err = nfp_rtsym_to_dest(cpp, sym, action, token, off, &cpp_id, &addr);
	if (err)
		return err;

	return nfp_cpp_readl(cpp, cpp_id, addr, value);
}

int nfp_rtsym_readl(struct nfp_cpp *cpp, const struct nfp_rtsym *sym, u64 off,
		    u32 *value)
{
	return __nfp_rtsym_readl(cpp, sym, NFP_CPP_ACTION_RW, 0, off, value);
}

int __nfp_rtsym_readq(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		      u8 action, u8 token, u64 off, u64 *value)
{
	u32 cpp_id;
	u64 addr;
	int err;

	if (off + 8 > nfp_rtsym_size(sym)) {
		nfp_err(cpp, "rtsym '%s': readq out of bounds: off: %lld + 8 > size: %lld\n",
			sym->name, off, nfp_rtsym_size(sym));
		return -ENXIO;
	}

	if (sym->type == NFP_RTSYM_TYPE_ABS) {
		*value = sym->addr;
		return 0;
	}

	err = nfp_rtsym_to_dest(cpp, sym, action, token, off, &cpp_id, &addr);
	if (err)
		return err;

	return nfp_cpp_readq(cpp, cpp_id, addr, value);
}

int nfp_rtsym_readq(struct nfp_cpp *cpp, const struct nfp_rtsym *sym, u64 off,
		    u64 *value)
{
	return __nfp_rtsym_readq(cpp, sym, NFP_CPP_ACTION_RW, 0, off, value);
}

int __nfp_rtsym_write(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		      u8 action, u8 token, u64 off, void *buf, size_t len)
{
	u64 sym_size = nfp_rtsym_size(sym);
	u32 cpp_id;
	u64 addr;
	int err;

	if (off > sym_size) {
		nfp_err(cpp, "rtsym '%s': write out of bounds: off: %lld + len: %zd > size: %lld\n",
			sym->name, off, len, sym_size);
		return -ENXIO;
	}
	len = min_t(size_t, len, sym_size - off);

	err = nfp_rtsym_to_dest(cpp, sym, action, token, off, &cpp_id, &addr);
	if (err)
		return err;

	return nfp_cpp_write(cpp, cpp_id, addr, buf, len);
}

int nfp_rtsym_write(struct nfp_cpp *cpp, const struct nfp_rtsym *sym, u64 off,
		    void *buf, size_t len)
{
	return __nfp_rtsym_write(cpp, sym, NFP_CPP_ACTION_RW, 0, off, buf, len);
}

int __nfp_rtsym_writel(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		       u8 action, u8 token, u64 off, u32 value)
{
	u32 cpp_id;
	u64 addr;
	int err;

	if (off + 4 > nfp_rtsym_size(sym)) {
		nfp_err(cpp, "rtsym '%s': writel out of bounds: off: %lld + 4 > size: %lld\n",
			sym->name, off, nfp_rtsym_size(sym));
		return -ENXIO;
	}

	err = nfp_rtsym_to_dest(cpp, sym, action, token, off, &cpp_id, &addr);
	if (err)
		return err;

	return nfp_cpp_writel(cpp, cpp_id, addr, value);
}

int nfp_rtsym_writel(struct nfp_cpp *cpp, const struct nfp_rtsym *sym, u64 off,
		     u32 value)
{
	return __nfp_rtsym_writel(cpp, sym, NFP_CPP_ACTION_RW, 0, off, value);
}

int __nfp_rtsym_writeq(struct nfp_cpp *cpp, const struct nfp_rtsym *sym,
		       u8 action, u8 token, u64 off, u64 value)
{
	u32 cpp_id;
	u64 addr;
	int err;

	if (off + 8 > nfp_rtsym_size(sym)) {
		nfp_err(cpp, "rtsym '%s': writeq out of bounds: off: %lld + 8 > size: %lld\n",
			sym->name, off, nfp_rtsym_size(sym));
		return -ENXIO;
	}

	err = nfp_rtsym_to_dest(cpp, sym, action, token, off, &cpp_id, &addr);
	if (err)
		return err;

	return nfp_cpp_writeq(cpp, cpp_id, addr, value);
}

int nfp_rtsym_writeq(struct nfp_cpp *cpp, const struct nfp_rtsym *sym, u64 off,
		     u64 value)
{
	return __nfp_rtsym_writeq(cpp, sym, NFP_CPP_ACTION_RW, 0, off, value);
}

/**
 * nfp_rtsym_read_le() - Read a simple unsigned scalar value from symbol
 * @rtbl:	NFP RTsym table
 * @name:	Symbol name
 * @error:	Poniter to error code (optional)
 *
 * Lookup a symbol, map, read it and return it's value. Value of the symbol
 * will be interpreted as a simple little-endian unsigned value. Symbol can
 * be 4 or 8 bytes in size.
 *
 * Return: value read, on error sets the error and returns ~0ULL.
 */
u64 nfp_rtsym_read_le(struct nfp_rtsym_table *rtbl, const char *name,
		      int *error)
{
	const struct nfp_rtsym *sym;
	u32 val32;
	u64 val;
	int err;

	sym = nfp_rtsym_lookup(rtbl, name);
	if (!sym) {
		err = -ENOENT;
		goto exit;
	}

	switch (nfp_rtsym_size(sym)) {
	case 4:
		err = nfp_rtsym_readl(rtbl->cpp, sym, 0, &val32);
		val = val32;
		break;
	case 8:
		err = nfp_rtsym_readq(rtbl->cpp, sym, 0, &val);
		break;
	default:
		nfp_err(rtbl->cpp,
			"rtsym '%s': unsupported or non-scalar size: %lld\n",
			name, nfp_rtsym_size(sym));
		err = -EINVAL;
		break;
	}

exit:
	if (error)
		*error = err;

	if (err)
		return ~0ULL;
	return val;
}

/**
 * nfp_rtsym_write_le() - Write an unsigned scalar value to a symbol
 * @rtbl:	NFP RTsym table
 * @name:	Symbol name
 * @value:	Value to write
 *
 * Lookup a symbol and write a value to it. Symbol can be 4 or 8 bytes in size.
 * If 4 bytes then the lower 32-bits of 'value' are used. Value will be
 * written as simple little-endian unsigned value.
 *
 * Return: 0 on success or error code.
 */
int nfp_rtsym_write_le(struct nfp_rtsym_table *rtbl, const char *name,
		       u64 value)
{
	const struct nfp_rtsym *sym;
	int err;

	sym = nfp_rtsym_lookup(rtbl, name);
	if (!sym)
		return -ENOENT;

	switch (nfp_rtsym_size(sym)) {
	case 4:
		err = nfp_rtsym_writel(rtbl->cpp, sym, 0, value);
		break;
	case 8:
		err = nfp_rtsym_writeq(rtbl->cpp, sym, 0, value);
		break;
	default:
		nfp_err(rtbl->cpp,
			"rtsym '%s': unsupported or non-scalar size: %lld\n",
			name, nfp_rtsym_size(sym));
		err = -EINVAL;
		break;
	}

	return err;
}

u8 __iomem *
nfp_rtsym_map(struct nfp_rtsym_table *rtbl, const char *name, const char *id,
	      unsigned int min_size, struct nfp_cpp_area **area)
{
	const struct nfp_rtsym *sym;
	u8 __iomem *mem;
	u32 cpp_id;
	u64 addr;
	int err;

	sym = nfp_rtsym_lookup(rtbl, name);
	if (!sym)
		return (u8 __iomem *)ERR_PTR(-ENOENT);

	err = nfp_rtsym_to_dest(rtbl->cpp, sym, NFP_CPP_ACTION_RW, 0, 0,
				&cpp_id, &addr);
	if (err) {
		nfp_err(rtbl->cpp, "rtsym '%s': mapping failed\n", name);
		return (u8 __iomem *)ERR_PTR(err);
	}

	if (sym->size < min_size) {
		nfp_err(rtbl->cpp, "rtsym '%s': too small\n", name);
		return (u8 __iomem *)ERR_PTR(-EINVAL);
	}

	mem = nfp_cpp_map_area(rtbl->cpp, id, cpp_id, addr, sym->size, area);
	if (IS_ERR(mem)) {
		nfp_err(rtbl->cpp, "rtysm '%s': failed to map: %ld\n",
			name, PTR_ERR(mem));
		return mem;
	}

	return mem;
}