Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) International Business Machines Corp., 2006 * * Author: Artem Bityutskiy (Битюцкий Артём) */ /* * The UBI Eraseblock Association (EBA) sub-system. * * This sub-system is responsible for I/O to/from logical eraseblock. * * Although in this implementation the EBA table is fully kept and managed in * RAM, which assumes poor scalability, it might be (partially) maintained on * flash in future implementations. * * The EBA sub-system implements per-logical eraseblock locking. Before * accessing a logical eraseblock it is locked for reading or writing. The * per-logical eraseblock locking is implemented by means of the lock tree. The * lock tree is an RB-tree which refers all the currently locked logical * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. * They are indexed by (@vol_id, @lnum) pairs. * * EBA also maintains the global sequence counter which is incremented each * time a logical eraseblock is mapped to a physical eraseblock and it is * stored in the volume identifier header. This means that each VID header has * a unique sequence number. The sequence number is only increased an we assume * 64 bits is enough to never overflow. */ #include <linux/slab.h> #include <linux/crc32.h> #include <linux/err.h> #include "ubi.h" /* Number of physical eraseblocks reserved for atomic LEB change operation */ #define EBA_RESERVED_PEBS 1 /** * struct ubi_eba_entry - structure encoding a single LEB -> PEB association * @pnum: the physical eraseblock number attached to the LEB * * This structure is encoding a LEB -> PEB association. Note that the LEB * number is not stored here, because it is the index used to access the * entries table. */ struct ubi_eba_entry { int pnum; }; /** * struct ubi_eba_table - LEB -> PEB association information * @entries: the LEB to PEB mapping (one entry per LEB). * * This structure is private to the EBA logic and should be kept here. * It is encoding the LEB to PEB association table, and is subject to * changes. */ struct ubi_eba_table { struct ubi_eba_entry *entries; }; /** * next_sqnum - get next sequence number. * @ubi: UBI device description object * * This function returns next sequence number to use, which is just the current * global sequence counter value. It also increases the global sequence * counter. */ unsigned long long ubi_next_sqnum(struct ubi_device *ubi) { unsigned long long sqnum; spin_lock(&ubi->ltree_lock); sqnum = ubi->global_sqnum++; spin_unlock(&ubi->ltree_lock); return sqnum; } /** * ubi_get_compat - get compatibility flags of a volume. * @ubi: UBI device description object * @vol_id: volume ID * * This function returns compatibility flags for an internal volume. User * volumes have no compatibility flags, so %0 is returned. */ static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) { if (vol_id == UBI_LAYOUT_VOLUME_ID) return UBI_LAYOUT_VOLUME_COMPAT; return 0; } /** * ubi_eba_get_ldesc - get information about a LEB * @vol: volume description object * @lnum: logical eraseblock number * @ldesc: the LEB descriptor to fill * * Used to query information about a specific LEB. * It is currently only returning the physical position of the LEB, but will be * extended to provide more information. */ void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, struct ubi_eba_leb_desc *ldesc) { ldesc->lnum = lnum; ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; } /** * ubi_eba_create_table - allocate a new EBA table and initialize it with all * LEBs unmapped * @vol: volume containing the EBA table to copy * @nentries: number of entries in the table * * Allocate a new EBA table and initialize it with all LEBs unmapped. * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. */ struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, int nentries) { struct ubi_eba_table *tbl; int err = -ENOMEM; int i; tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); if (!tbl) return ERR_PTR(-ENOMEM); tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), GFP_KERNEL); if (!tbl->entries) goto err; for (i = 0; i < nentries; i++) tbl->entries[i].pnum = UBI_LEB_UNMAPPED; return tbl; err: kfree(tbl); return ERR_PTR(err); } /** * ubi_eba_destroy_table - destroy an EBA table * @tbl: the table to destroy * * Destroy an EBA table. */ void ubi_eba_destroy_table(struct ubi_eba_table *tbl) { if (!tbl) return; kfree(tbl->entries); kfree(tbl); } /** * ubi_eba_copy_table - copy the EBA table attached to vol into another table * @vol: volume containing the EBA table to copy * @dst: destination * @nentries: number of entries to copy * * Copy the EBA table stored in vol into the one pointed by dst. */ void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, int nentries) { struct ubi_eba_table *src; int i; ubi_assert(dst && vol && vol->eba_tbl); src = vol->eba_tbl; for (i = 0; i < nentries; i++) dst->entries[i].pnum = src->entries[i].pnum; } /** * ubi_eba_replace_table - assign a new EBA table to a volume * @vol: volume containing the EBA table to copy * @tbl: new EBA table * * Assign a new EBA table to the volume and release the old one. */ void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) { ubi_eba_destroy_table(vol->eba_tbl); vol->eba_tbl = tbl; } /** * ltree_lookup - look up the lock tree. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function returns a pointer to the corresponding &struct ubi_ltree_entry * object if the logical eraseblock is locked and %NULL if it is not. * @ubi->ltree_lock has to be locked. */ static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, int lnum) { struct rb_node *p; p = ubi->ltree.rb_node; while (p) { struct ubi_ltree_entry *le; le = rb_entry(p, struct ubi_ltree_entry, rb); if (vol_id < le->vol_id) p = p->rb_left; else if (vol_id > le->vol_id) p = p->rb_right; else { if (lnum < le->lnum) p = p->rb_left; else if (lnum > le->lnum) p = p->rb_right; else return le; } } return NULL; } /** * ltree_add_entry - add new entry to the lock tree. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the * lock tree. If such entry is already there, its usage counter is increased. * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation * failed. */ static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le, *le1, *le_free; le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); if (!le) return ERR_PTR(-ENOMEM); le->users = 0; init_rwsem(&le->mutex); le->vol_id = vol_id; le->lnum = lnum; spin_lock(&ubi->ltree_lock); le1 = ltree_lookup(ubi, vol_id, lnum); if (le1) { /* * This logical eraseblock is already locked. The newly * allocated lock entry is not needed. */ le_free = le; le = le1; } else { struct rb_node **p, *parent = NULL; /* * No lock entry, add the newly allocated one to the * @ubi->ltree RB-tree. */ le_free = NULL; p = &ubi->ltree.rb_node; while (*p) { parent = *p; le1 = rb_entry(parent, struct ubi_ltree_entry, rb); if (vol_id < le1->vol_id) p = &(*p)->rb_left; else if (vol_id > le1->vol_id) p = &(*p)->rb_right; else { ubi_assert(lnum != le1->lnum); if (lnum < le1->lnum) p = &(*p)->rb_left; else p = &(*p)->rb_right; } } rb_link_node(&le->rb, parent, p); rb_insert_color(&le->rb, &ubi->ltree); } le->users += 1; spin_unlock(&ubi->ltree_lock); kfree(le_free); return le; } /** * leb_read_lock - lock logical eraseblock for reading. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function locks a logical eraseblock for reading. Returns zero in case * of success and a negative error code in case of failure. */ static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; le = ltree_add_entry(ubi, vol_id, lnum); if (IS_ERR(le)) return PTR_ERR(le); down_read(&le->mutex); return 0; } /** * leb_read_unlock - unlock logical eraseblock. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number */ static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; spin_lock(&ubi->ltree_lock); le = ltree_lookup(ubi, vol_id, lnum); le->users -= 1; ubi_assert(le->users >= 0); up_read(&le->mutex); if (le->users == 0) { rb_erase(&le->rb, &ubi->ltree); kfree(le); } spin_unlock(&ubi->ltree_lock); } /** * leb_write_lock - lock logical eraseblock for writing. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function locks a logical eraseblock for writing. Returns zero in case * of success and a negative error code in case of failure. */ static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; le = ltree_add_entry(ubi, vol_id, lnum); if (IS_ERR(le)) return PTR_ERR(le); down_write(&le->mutex); return 0; } /** * leb_write_trylock - try to lock logical eraseblock for writing. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number * * This function locks a logical eraseblock for writing if there is no * contention and does nothing if there is contention. Returns %0 in case of * success, %1 in case of contention, and a negative error code in case of * failure. */ static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; le = ltree_add_entry(ubi, vol_id, lnum); if (IS_ERR(le)) return PTR_ERR(le); if (down_write_trylock(&le->mutex)) return 0; /* Contention, cancel */ spin_lock(&ubi->ltree_lock); le->users -= 1; ubi_assert(le->users >= 0); if (le->users == 0) { rb_erase(&le->rb, &ubi->ltree); kfree(le); } spin_unlock(&ubi->ltree_lock); return 1; } /** * leb_write_unlock - unlock logical eraseblock. * @ubi: UBI device description object * @vol_id: volume ID * @lnum: logical eraseblock number */ static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) { struct ubi_ltree_entry *le; spin_lock(&ubi->ltree_lock); le = ltree_lookup(ubi, vol_id, lnum); le->users -= 1; ubi_assert(le->users >= 0); up_write(&le->mutex); if (le->users == 0) { rb_erase(&le->rb, &ubi->ltree); kfree(le); } spin_unlock(&ubi->ltree_lock); } /** * ubi_eba_is_mapped - check if a LEB is mapped. * @vol: volume description object * @lnum: logical eraseblock number * * This function returns true if the LEB is mapped, false otherwise. */ bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) { return vol->eba_tbl->entries[lnum].pnum >= 0; } /** * ubi_eba_unmap_leb - un-map logical eraseblock. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * * This function un-maps logical eraseblock @lnum and schedules corresponding * physical eraseblock for erasure. Returns zero in case of success and a * negative error code in case of failure. */ int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum) { int err, pnum, vol_id = vol->vol_id; if (ubi->ro_mode) return -EROFS; err = leb_write_lock(ubi, vol_id, lnum); if (err) return err; pnum = vol->eba_tbl->entries[lnum].pnum; if (pnum < 0) /* This logical eraseblock is already unmapped */ goto out_unlock; dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); down_read(&ubi->fm_eba_sem); vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; up_read(&ubi->fm_eba_sem); err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); out_unlock: leb_write_unlock(ubi, vol_id, lnum); return err; } #ifdef CONFIG_MTD_UBI_FASTMAP /** * check_mapping - check and fixup a mapping * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @pnum: physical eraseblock number * * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap * operations, if such an operation is interrupted the mapping still looks * good, but upon first read an ECC is reported to the upper layer. * Normaly during the full-scan at attach time this is fixed, for Fastmap * we have to deal with it while reading. * If the PEB behind a LEB shows this symthom we change the mapping to * %UBI_LEB_UNMAPPED and schedule the PEB for erasure. * * Returns 0 on success, negative error code in case of failure. */ static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, int *pnum) { int err; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; if (!ubi->fast_attach) return 0; if (!vol->checkmap || test_bit(lnum, vol->checkmap)) return 0; vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0); if (err > 0 && err != UBI_IO_BITFLIPS) { int torture = 0; switch (err) { case UBI_IO_FF: case UBI_IO_FF_BITFLIPS: case UBI_IO_BAD_HDR: case UBI_IO_BAD_HDR_EBADMSG: break; default: ubi_assert(0); } if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS) torture = 1; down_read(&ubi->fm_eba_sem); vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; up_read(&ubi->fm_eba_sem); ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture); *pnum = UBI_LEB_UNMAPPED; } else if (err < 0) { ubi_err(ubi, "unable to read VID header back from PEB %i: %i", *pnum, err); goto out_free; } else { int found_vol_id, found_lnum; ubi_assert(err == 0 || err == UBI_IO_BITFLIPS); vid_hdr = ubi_get_vid_hdr(vidb); found_vol_id = be32_to_cpu(vid_hdr->vol_id); found_lnum = be32_to_cpu(vid_hdr->lnum); if (found_lnum != lnum || found_vol_id != vol->vol_id) { ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i", *pnum, found_vol_id, found_lnum, vol->vol_id, lnum); ubi_ro_mode(ubi); err = -EINVAL; goto out_free; } } set_bit(lnum, vol->checkmap); err = 0; out_free: ubi_free_vid_buf(vidb); return err; } #else static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, int *pnum) { return 0; } #endif /** * ubi_eba_read_leb - read data. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: buffer to store the read data * @offset: offset from where to read * @len: how many bytes to read * @check: data CRC check flag * * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF * bytes. The @check flag only makes sense for static volumes and forces * eraseblock data CRC checking. * * In case of success this function returns zero. In case of a static volume, * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be * returned for any volume type if an ECC error was detected by the MTD device * driver. Other negative error cored may be returned in case of other errors. */ int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, void *buf, int offset, int len, int check) { int err, pnum, scrub = 0, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; uint32_t crc; err = leb_read_lock(ubi, vol_id, lnum); if (err) return err; pnum = vol->eba_tbl->entries[lnum].pnum; if (pnum >= 0) { err = check_mapping(ubi, vol, lnum, &pnum); if (err < 0) goto out_unlock; } if (pnum == UBI_LEB_UNMAPPED) { /* * The logical eraseblock is not mapped, fill the whole buffer * with 0xFF bytes. The exception is static volumes for which * it is an error to read unmapped logical eraseblocks. */ dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", len, offset, vol_id, lnum); leb_read_unlock(ubi, vol_id, lnum); ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); memset(buf, 0xFF, len); return 0; } dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); if (vol->vol_type == UBI_DYNAMIC_VOLUME) check = 0; retry: if (check) { vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) { err = -ENOMEM; goto out_unlock; } vid_hdr = ubi_get_vid_hdr(vidb); err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); if (err && err != UBI_IO_BITFLIPS) { if (err > 0) { /* * The header is either absent or corrupted. * The former case means there is a bug - * switch to read-only mode just in case. * The latter case means a real corruption - we * may try to recover data. FIXME: but this is * not implemented. */ if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_BAD_HDR) { ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", pnum, vol_id, lnum); err = -EBADMSG; } else { /* * Ending up here in the non-Fastmap case * is a clear bug as the VID header had to * be present at scan time to have it referenced. * With fastmap the story is more complicated. * Fastmap has the mapping info without the need * of a full scan. So the LEB could have been * unmapped, Fastmap cannot know this and keeps * the LEB referenced. * This is valid and works as the layer above UBI * has to do bookkeeping about used/referenced * LEBs in any case. */ if (ubi->fast_attach) { err = -EBADMSG; } else { err = -EINVAL; ubi_ro_mode(ubi); } } } goto out_free; } else if (err == UBI_IO_BITFLIPS) scrub = 1; ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); crc = be32_to_cpu(vid_hdr->data_crc); ubi_free_vid_buf(vidb); } err = ubi_io_read_data(ubi, buf, pnum, offset, len); if (err) { if (err == UBI_IO_BITFLIPS) scrub = 1; else if (mtd_is_eccerr(err)) { if (vol->vol_type == UBI_DYNAMIC_VOLUME) goto out_unlock; scrub = 1; if (!check) { ubi_msg(ubi, "force data checking"); check = 1; goto retry; } } else goto out_unlock; } if (check) { uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); if (crc1 != crc) { ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", crc1, crc); err = -EBADMSG; goto out_unlock; } } if (scrub) err = ubi_wl_scrub_peb(ubi, pnum); leb_read_unlock(ubi, vol_id, lnum); return err; out_free: ubi_free_vid_buf(vidb); out_unlock: leb_read_unlock(ubi, vol_id, lnum); return err; } /** * ubi_eba_read_leb_sg - read data into a scatter gather list. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @sgl: UBI scatter gather list to store the read data * @offset: offset from where to read * @len: how many bytes to read * @check: data CRC check flag * * This function works exactly like ubi_eba_read_leb(). But instead of * storing the read data into a buffer it writes to an UBI scatter gather * list. */ int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, struct ubi_sgl *sgl, int lnum, int offset, int len, int check) { int to_read; int ret; struct scatterlist *sg; for (;;) { ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); sg = &sgl->sg[sgl->list_pos]; if (len < sg->length - sgl->page_pos) to_read = len; else to_read = sg->length - sgl->page_pos; ret = ubi_eba_read_leb(ubi, vol, lnum, sg_virt(sg) + sgl->page_pos, offset, to_read, check); if (ret < 0) return ret; offset += to_read; len -= to_read; if (!len) { sgl->page_pos += to_read; if (sgl->page_pos == sg->length) { sgl->list_pos++; sgl->page_pos = 0; } break; } sgl->list_pos++; sgl->page_pos = 0; } return ret; } /** * try_recover_peb - try to recover from write failure. * @vol: volume description object * @pnum: the physical eraseblock to recover * @lnum: logical eraseblock number * @buf: data which was not written because of the write failure * @offset: offset of the failed write * @len: how many bytes should have been written * @vidb: VID buffer * @retry: whether the caller should retry in case of failure * * This function is called in case of a write failure and moves all good data * from the potentially bad physical eraseblock to a good physical eraseblock. * This function also writes the data which was not written due to the failure. * Returns 0 in case of success, and a negative error code in case of failure. * In case of failure, the %retry parameter is set to false if this is a fatal * error (retrying won't help), and true otherwise. */ static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, const void *buf, int offset, int len, struct ubi_vid_io_buf *vidb, bool *retry) { struct ubi_device *ubi = vol->ubi; struct ubi_vid_hdr *vid_hdr; int new_pnum, err, vol_id = vol->vol_id, data_size; uint32_t crc; *retry = false; new_pnum = ubi_wl_get_peb(ubi); if (new_pnum < 0) { err = new_pnum; goto out_put; } ubi_msg(ubi, "recover PEB %d, move data to PEB %d", pnum, new_pnum); err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); if (err && err != UBI_IO_BITFLIPS) { if (err > 0) err = -EIO; goto out_put; } vid_hdr = ubi_get_vid_hdr(vidb); ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); mutex_lock(&ubi->buf_mutex); memset(ubi->peb_buf + offset, 0xFF, len); /* Read everything before the area where the write failure happened */ if (offset > 0) { err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); if (err && err != UBI_IO_BITFLIPS) goto out_unlock; } *retry = true; memcpy(ubi->peb_buf + offset, buf, len); data_size = offset + len; crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->copy_flag = 1; vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->data_crc = cpu_to_be32(crc); err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); if (err) goto out_unlock; err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); out_unlock: mutex_unlock(&ubi->buf_mutex); if (!err) vol->eba_tbl->entries[lnum].pnum = new_pnum; out_put: up_read(&ubi->fm_eba_sem); if (!err) { ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); ubi_msg(ubi, "data was successfully recovered"); } else if (new_pnum >= 0) { /* * Bad luck? This physical eraseblock is bad too? Crud. Let's * try to get another one. */ ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); ubi_warn(ubi, "failed to write to PEB %d", new_pnum); } return err; } /** * recover_peb - recover from write failure. * @ubi: UBI device description object * @pnum: the physical eraseblock to recover * @vol_id: volume ID * @lnum: logical eraseblock number * @buf: data which was not written because of the write failure * @offset: offset of the failed write * @len: how many bytes should have been written * * This function is called in case of a write failure and moves all good data * from the potentially bad physical eraseblock to a good physical eraseblock. * This function also writes the data which was not written due to the failure. * Returns 0 in case of success, and a negative error code in case of failure. * This function tries %UBI_IO_RETRIES before giving up. */ static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, const void *buf, int offset, int len) { int err, idx = vol_id2idx(ubi, vol_id), tries; struct ubi_volume *vol = ubi->volumes[idx]; struct ubi_vid_io_buf *vidb; vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { bool retry; err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, &retry); if (!err || !retry) break; ubi_msg(ubi, "try again"); } ubi_free_vid_buf(vidb); return err; } /** * try_write_vid_and_data - try to write VID header and data to a new PEB. * @vol: volume description object * @lnum: logical eraseblock number * @vidb: the VID buffer to write * @buf: buffer containing the data * @offset: where to start writing data * @len: how many bytes should be written * * This function tries to write VID header and data belonging to logical * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero * in case of success and a negative error code in case of failure. * In case of error, it is possible that something was still written to the * flash media, but may be some garbage. */ static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, struct ubi_vid_io_buf *vidb, const void *buf, int offset, int len) { struct ubi_device *ubi = vol->ubi; int pnum, opnum, err, err2, vol_id = vol->vol_id; pnum = ubi_wl_get_peb(ubi); if (pnum < 0) { err = pnum; goto out_put; } opnum = vol->eba_tbl->entries[lnum].pnum; dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); err = ubi_io_write_vid_hdr(ubi, pnum, vidb); if (err) { ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", vol_id, lnum, pnum); goto out_put; } if (len) { err = ubi_io_write_data(ubi, buf, pnum, offset, len); if (err) { ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); goto out_put; } } vol->eba_tbl->entries[lnum].pnum = pnum; out_put: up_read(&ubi->fm_eba_sem); if (err && pnum >= 0) { err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); if (err2) { ubi_warn(ubi, "failed to return physical eraseblock %d, error %d", pnum, err2); } } else if (!err && opnum >= 0) { err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); if (err2) { ubi_warn(ubi, "failed to return physical eraseblock %d, error %d", opnum, err2); } } return err; } /** * ubi_eba_write_leb - write data to dynamic volume. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: the data to write * @offset: offset within the logical eraseblock where to write * @len: how many bytes to write * * This function writes data to logical eraseblock @lnum of a dynamic volume * @vol. Returns zero in case of success and a negative error code in case * of failure. In case of error, it is possible that something was still * written to the flash media, but may be some garbage. * This function retries %UBI_IO_RETRIES times before giving up. */ int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, const void *buf, int offset, int len) { int err, pnum, tries, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; if (ubi->ro_mode) return -EROFS; err = leb_write_lock(ubi, vol_id, lnum); if (err) return err; pnum = vol->eba_tbl->entries[lnum].pnum; if (pnum >= 0) { err = check_mapping(ubi, vol, lnum, &pnum); if (err < 0) goto out; } if (pnum >= 0) { dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", len, offset, vol_id, lnum, pnum); err = ubi_io_write_data(ubi, buf, pnum, offset, len); if (err) { ubi_warn(ubi, "failed to write data to PEB %d", pnum); if (err == -EIO && ubi->bad_allowed) err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len); } goto out; } /* * The logical eraseblock is not mapped. We have to get a free physical * eraseblock and write the volume identifier header there first. */ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) { leb_write_unlock(ubi, vol_id, lnum); return -ENOMEM; } vid_hdr = ubi_get_vid_hdr(vidb); vid_hdr->vol_type = UBI_VID_DYNAMIC; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); if (err != -EIO || !ubi->bad_allowed) break; /* * Fortunately, this is the first write operation to this * physical eraseblock, so just put it and request a new one. * We assume that if this physical eraseblock went bad, the * erase code will handle that. */ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg(ubi, "try another PEB"); } ubi_free_vid_buf(vidb); out: if (err) ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); return err; } /** * ubi_eba_write_leb_st - write data to static volume. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: data to write * @len: how many bytes to write * @used_ebs: how many logical eraseblocks will this volume contain * * This function writes data to logical eraseblock @lnum of static volume * @vol. The @used_ebs argument should contain total number of logical * eraseblock in this static volume. * * When writing to the last logical eraseblock, the @len argument doesn't have * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent * to the real data size, although the @buf buffer has to contain the * alignment. In all other cases, @len has to be aligned. * * It is prohibited to write more than once to logical eraseblocks of static * volumes. This function returns zero in case of success and a negative error * code in case of failure. */ int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, const void *buf, int len, int used_ebs) { int err, tries, data_size = len, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; uint32_t crc; if (ubi->ro_mode) return -EROFS; if (lnum == used_ebs - 1) /* If this is the last LEB @len may be unaligned */ len = ALIGN(data_size, ubi->min_io_size); else ubi_assert(!(len & (ubi->min_io_size - 1))); vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; vid_hdr = ubi_get_vid_hdr(vidb); err = leb_write_lock(ubi, vol_id, lnum); if (err) goto out; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); crc = crc32(UBI_CRC32_INIT, buf, data_size); vid_hdr->vol_type = UBI_VID_STATIC; vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->used_ebs = cpu_to_be32(used_ebs); vid_hdr->data_crc = cpu_to_be32(crc); ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); if (err != -EIO || !ubi->bad_allowed) break; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg(ubi, "try another PEB"); } if (err) ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); out: ubi_free_vid_buf(vidb); return err; } /* * ubi_eba_atomic_leb_change - change logical eraseblock atomically. * @ubi: UBI device description object * @vol: volume description object * @lnum: logical eraseblock number * @buf: data to write * @len: how many bytes to write * * This function changes the contents of a logical eraseblock atomically. @buf * has to contain new logical eraseblock data, and @len - the length of the * data, which has to be aligned. This function guarantees that in case of an * unclean reboot the old contents is preserved. Returns zero in case of * success and a negative error code in case of failure. * * UBI reserves one LEB for the "atomic LEB change" operation, so only one * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. */ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, const void *buf, int len) { int err, tries, vol_id = vol->vol_id; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; uint32_t crc; if (ubi->ro_mode) return -EROFS; if (len == 0) { /* * Special case when data length is zero. In this case the LEB * has to be unmapped and mapped somewhere else. */ err = ubi_eba_unmap_leb(ubi, vol, lnum); if (err) return err; return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); } vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); if (!vidb) return -ENOMEM; vid_hdr = ubi_get_vid_hdr(vidb); mutex_lock(&ubi->alc_mutex); err = leb_write_lock(ubi, vol_id, lnum); if (err) goto out_mutex; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); vid_hdr->data_pad = cpu_to_be32(vol->data_pad); crc = crc32(UBI_CRC32_INIT, buf, len); vid_hdr->vol_type = UBI_VID_DYNAMIC; vid_hdr->data_size = cpu_to_be32(len); vid_hdr->copy_flag = 1; vid_hdr->data_crc = cpu_to_be32(crc); dbg_eba("change LEB %d:%d", vol_id, lnum); for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); if (err != -EIO || !ubi->bad_allowed) break; vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg(ubi, "try another PEB"); } /* * This flash device does not admit of bad eraseblocks or * something nasty and unexpected happened. Switch to read-only * mode just in case. */ if (err) ubi_ro_mode(ubi); leb_write_unlock(ubi, vol_id, lnum); out_mutex: mutex_unlock(&ubi->alc_mutex); ubi_free_vid_buf(vidb); return err; } /** * is_error_sane - check whether a read error is sane. * @err: code of the error happened during reading * * This is a helper function for 'ubi_eba_copy_leb()' which is called when we * cannot read data from the target PEB (an error @err happened). If the error * code is sane, then we treat this error as non-fatal. Otherwise the error is * fatal and UBI will be switched to R/O mode later. * * The idea is that we try not to switch to R/O mode if the read error is * something which suggests there was a real read problem. E.g., %-EIO. Or a * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O * mode, simply because we do not know what happened at the MTD level, and we * cannot handle this. E.g., the underlying driver may have become crazy, and * it is safer to switch to R/O mode to preserve the data. * * And bear in mind, this is about reading from the target PEB, i.e. the PEB * which we have just written. */ static int is_error_sane(int err) { if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) return 0; return 1; } /** * ubi_eba_copy_leb - copy logical eraseblock. * @ubi: UBI device description object * @from: physical eraseblock number from where to copy * @to: physical eraseblock number where to copy * @vidb: data structure from where the VID header is derived * * This function copies logical eraseblock from physical eraseblock @from to * physical eraseblock @to. The @vid_hdr buffer may be changed by this * function. Returns: * o %0 in case of success; * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; * o a negative error code in case of failure. */ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, struct ubi_vid_io_buf *vidb) { int err, vol_id, lnum, data_size, aldata_size, idx; struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); struct ubi_volume *vol; uint32_t crc; ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); vol_id = be32_to_cpu(vid_hdr->vol_id); lnum = be32_to_cpu(vid_hdr->lnum); dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); if (vid_hdr->vol_type == UBI_VID_STATIC) { data_size = be32_to_cpu(vid_hdr->data_size); aldata_size = ALIGN(data_size, ubi->min_io_size); } else data_size = aldata_size = ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); idx = vol_id2idx(ubi, vol_id); spin_lock(&ubi->volumes_lock); /* * Note, we may race with volume deletion, which means that the volume * this logical eraseblock belongs to might be being deleted. Since the * volume deletion un-maps all the volume's logical eraseblocks, it will * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. */ vol = ubi->volumes[idx]; spin_unlock(&ubi->volumes_lock); if (!vol) { /* No need to do further work, cancel */ dbg_wl("volume %d is being removed, cancel", vol_id); return MOVE_CANCEL_RACE; } /* * We do not want anybody to write to this logical eraseblock while we * are moving it, so lock it. * * Note, we are using non-waiting locking here, because we cannot sleep * on the LEB, since it may cause deadlocks. Indeed, imagine a task is * unmapping the LEB which is mapped to the PEB we are going to move * (@from). This task locks the LEB and goes sleep in the * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the * LEB is already locked, we just do not move it and return * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because * we do not know the reasons of the contention - it may be just a * normal I/O on this LEB, so we want to re-try. */ err = leb_write_trylock(ubi, vol_id, lnum); if (err) { dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); return MOVE_RETRY; } /* * The LEB might have been put meanwhile, and the task which put it is * probably waiting on @ubi->move_mutex. No need to continue the work, * cancel it. */ if (vol->eba_tbl->entries[lnum].pnum != from) { dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); err = MOVE_CANCEL_RACE; goto out_unlock_leb; } /* * OK, now the LEB is locked and we can safely start moving it. Since * this function utilizes the @ubi->peb_buf buffer which is shared * with some other functions - we lock the buffer by taking the * @ubi->buf_mutex. */ mutex_lock(&ubi->buf_mutex); dbg_wl("read %d bytes of data", aldata_size); err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); if (err && err != UBI_IO_BITFLIPS) { ubi_warn(ubi, "error %d while reading data from PEB %d", err, from); err = MOVE_SOURCE_RD_ERR; goto out_unlock_buf; } /* * Now we have got to calculate how much data we have to copy. In * case of a static volume it is fairly easy - the VID header contains * the data size. In case of a dynamic volume it is more difficult - we * have to read the contents, cut 0xFF bytes from the end and copy only * the first part. We must do this to avoid writing 0xFF bytes as it * may have some side-effects. And not only this. It is important not * to include those 0xFFs to CRC because later the they may be filled * by data. */ if (vid_hdr->vol_type == UBI_VID_DYNAMIC) aldata_size = data_size = ubi_calc_data_len(ubi, ubi->peb_buf, data_size); cond_resched(); crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); cond_resched(); /* * It may turn out to be that the whole @from physical eraseblock * contains only 0xFF bytes. Then we have to only write the VID header * and do not write any data. This also means we should not set * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. */ if (data_size > 0) { vid_hdr->copy_flag = 1; vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->data_crc = cpu_to_be32(crc); } vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); err = ubi_io_write_vid_hdr(ubi, to, vidb); if (err) { if (err == -EIO) err = MOVE_TARGET_WR_ERR; goto out_unlock_buf; } cond_resched(); /* Read the VID header back and check if it was written correctly */ err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); if (err) { if (err != UBI_IO_BITFLIPS) { ubi_warn(ubi, "error %d while reading VID header back from PEB %d", err, to); if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else err = MOVE_TARGET_BITFLIPS; goto out_unlock_buf; } if (data_size > 0) { err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err == -EIO) err = MOVE_TARGET_WR_ERR; goto out_unlock_buf; } cond_resched(); } ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); vol->eba_tbl->entries[lnum].pnum = to; out_unlock_buf: mutex_unlock(&ubi->buf_mutex); out_unlock_leb: leb_write_unlock(ubi, vol_id, lnum); return err; } /** * print_rsvd_warning - warn about not having enough reserved PEBs. * @ubi: UBI device description object * @ai: UBI attach info object * * This is a helper function for 'ubi_eba_init()' which is called when UBI * cannot reserve enough PEBs for bad block handling. This function makes a * decision whether we have to print a warning or not. The algorithm is as * follows: * o if this is a new UBI image, then just print the warning * o if this is an UBI image which has already been used for some time, print * a warning only if we can reserve less than 10% of the expected amount of * the reserved PEB. * * The idea is that when UBI is used, PEBs become bad, and the reserved pool * of PEBs becomes smaller, which is normal and we do not want to scare users * with a warning every time they attach the MTD device. This was an issue * reported by real users. */ static void print_rsvd_warning(struct ubi_device *ubi, struct ubi_attach_info *ai) { /* * The 1 << 18 (256KiB) number is picked randomly, just a reasonably * large number to distinguish between newly flashed and used images. */ if (ai->max_sqnum > (1 << 18)) { int min = ubi->beb_rsvd_level / 10; if (!min) min = 1; if (ubi->beb_rsvd_pebs > min) return; } ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); if (ubi->corr_peb_count) ubi_warn(ubi, "%d PEBs are corrupted and not used", ubi->corr_peb_count); } /** * self_check_eba - run a self check on the EBA table constructed by fastmap. * @ubi: UBI device description object * @ai_fastmap: UBI attach info object created by fastmap * @ai_scan: UBI attach info object created by scanning * * Returns < 0 in case of an internal error, 0 otherwise. * If a bad EBA table entry was found it will be printed out and * ubi_assert() triggers. */ int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, struct ubi_attach_info *ai_scan) { int i, j, num_volumes, ret = 0; int **scan_eba, **fm_eba; struct ubi_ainf_volume *av; struct ubi_volume *vol; struct ubi_ainf_peb *aeb; struct rb_node *rb; num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL); if (!scan_eba) return -ENOMEM; fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL); if (!fm_eba) { kfree(scan_eba); return -ENOMEM; } for (i = 0; i < num_volumes; i++) { vol = ubi->volumes[i]; if (!vol) continue; scan_eba[i] = kmalloc_array(vol->reserved_pebs, sizeof(**scan_eba), GFP_KERNEL); if (!scan_eba[i]) { ret = -ENOMEM; goto out_free; } fm_eba[i] = kmalloc_array(vol->reserved_pebs, sizeof(**fm_eba), GFP_KERNEL); if (!fm_eba[i]) { ret = -ENOMEM; goto out_free; } for (j = 0; j < vol->reserved_pebs; j++) scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); if (!av) continue; ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) scan_eba[i][aeb->lnum] = aeb->pnum; av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); if (!av) continue; ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) fm_eba[i][aeb->lnum] = aeb->pnum; for (j = 0; j < vol->reserved_pebs; j++) { if (scan_eba[i][j] != fm_eba[i][j]) { if (scan_eba[i][j] == UBI_LEB_UNMAPPED || fm_eba[i][j] == UBI_LEB_UNMAPPED) continue; ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", vol->vol_id, j, fm_eba[i][j], scan_eba[i][j]); ubi_assert(0); } } } out_free: for (i = 0; i < num_volumes; i++) { if (!ubi->volumes[i]) continue; kfree(scan_eba[i]); kfree(fm_eba[i]); } kfree(scan_eba); kfree(fm_eba); return ret; } /** * ubi_eba_init - initialize the EBA sub-system using attaching information. * @ubi: UBI device description object * @ai: attaching information * * This function returns zero in case of success and a negative error code in * case of failure. */ int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) { int i, err, num_volumes; struct ubi_ainf_volume *av; struct ubi_volume *vol; struct ubi_ainf_peb *aeb; struct rb_node *rb; dbg_eba("initialize EBA sub-system"); spin_lock_init(&ubi->ltree_lock); mutex_init(&ubi->alc_mutex); ubi->ltree = RB_ROOT; ubi->global_sqnum = ai->max_sqnum + 1; num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; for (i = 0; i < num_volumes; i++) { struct ubi_eba_table *tbl; vol = ubi->volumes[i]; if (!vol) continue; cond_resched(); tbl = ubi_eba_create_table(vol, vol->reserved_pebs); if (IS_ERR(tbl)) { err = PTR_ERR(tbl); goto out_free; } ubi_eba_replace_table(vol, tbl); av = ubi_find_av(ai, idx2vol_id(ubi, i)); if (!av) continue; ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { if (aeb->lnum >= vol->reserved_pebs) { /* * This may happen in case of an unclean reboot * during re-size. */ ubi_move_aeb_to_list(av, aeb, &ai->erase); } else { struct ubi_eba_entry *entry; entry = &vol->eba_tbl->entries[aeb->lnum]; entry->pnum = aeb->pnum; } } } if (ubi->avail_pebs < EBA_RESERVED_PEBS) { ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", ubi->avail_pebs, EBA_RESERVED_PEBS); if (ubi->corr_peb_count) ubi_err(ubi, "%d PEBs are corrupted and not used", ubi->corr_peb_count); err = -ENOSPC; goto out_free; } ubi->avail_pebs -= EBA_RESERVED_PEBS; ubi->rsvd_pebs += EBA_RESERVED_PEBS; if (ubi->bad_allowed) { ubi_calculate_reserved(ubi); if (ubi->avail_pebs < ubi->beb_rsvd_level) { /* No enough free physical eraseblocks */ ubi->beb_rsvd_pebs = ubi->avail_pebs; print_rsvd_warning(ubi, ai); } else ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; ubi->avail_pebs -= ubi->beb_rsvd_pebs; ubi->rsvd_pebs += ubi->beb_rsvd_pebs; } dbg_eba("EBA sub-system is initialized"); return 0; out_free: for (i = 0; i < num_volumes; i++) { if (!ubi->volumes[i]) continue; ubi_eba_replace_table(ubi->volumes[i], NULL); } return err; } |