Linux Audio
Check our new training course
Embedded Linux Audio
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 David Daney */ #include <linux/sched.h> #include <asm/processor.h> #include <asm/watch.h> /* * Install the watch registers for the current thread. A maximum of * four registers are installed although the machine may have more. */ void mips_install_watch_registers(struct task_struct *t) { struct mips3264_watch_reg_state *watches = &t->thread.watch.mips3264; unsigned int watchhi = MIPS_WATCHHI_G | /* Trap all ASIDs */ MIPS_WATCHHI_IRW; /* Clear result bits */ switch (current_cpu_data.watch_reg_use_cnt) { default: BUG(); case 4: write_c0_watchlo3(watches->watchlo[3]); write_c0_watchhi3(watchhi | watches->watchhi[3]); fallthrough; case 3: write_c0_watchlo2(watches->watchlo[2]); write_c0_watchhi2(watchhi | watches->watchhi[2]); fallthrough; case 2: write_c0_watchlo1(watches->watchlo[1]); write_c0_watchhi1(watchhi | watches->watchhi[1]); fallthrough; case 1: write_c0_watchlo0(watches->watchlo[0]); write_c0_watchhi0(watchhi | watches->watchhi[0]); } } /* * Read back the watchhi registers so the user space debugger has * access to the I, R, and W bits. A maximum of four registers are * read although the machine may have more. */ void mips_read_watch_registers(void) { struct mips3264_watch_reg_state *watches = ¤t->thread.watch.mips3264; unsigned int watchhi_mask = MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW; switch (current_cpu_data.watch_reg_use_cnt) { default: BUG(); case 4: watches->watchhi[3] = (read_c0_watchhi3() & watchhi_mask); fallthrough; case 3: watches->watchhi[2] = (read_c0_watchhi2() & watchhi_mask); fallthrough; case 2: watches->watchhi[1] = (read_c0_watchhi1() & watchhi_mask); fallthrough; case 1: watches->watchhi[0] = (read_c0_watchhi0() & watchhi_mask); } if (current_cpu_data.watch_reg_use_cnt == 1 && (watches->watchhi[0] & MIPS_WATCHHI_IRW) == 0) { /* Pathological case of release 1 architecture that * doesn't set the condition bits. We assume that * since we got here, the watch condition was met and * signal that the conditions requested in watchlo * were met. */ watches->watchhi[0] |= (watches->watchlo[0] & MIPS_WATCHHI_IRW); } } /* * Disable all watch registers. Although only four registers are * installed, all are cleared to eliminate the possibility of endless * looping in the watch handler. */ void mips_clear_watch_registers(void) { switch (current_cpu_data.watch_reg_count) { default: BUG(); case 8: write_c0_watchlo7(0); fallthrough; case 7: write_c0_watchlo6(0); fallthrough; case 6: write_c0_watchlo5(0); fallthrough; case 5: write_c0_watchlo4(0); fallthrough; case 4: write_c0_watchlo3(0); fallthrough; case 3: write_c0_watchlo2(0); fallthrough; case 2: write_c0_watchlo1(0); fallthrough; case 1: write_c0_watchlo0(0); } } void mips_probe_watch_registers(struct cpuinfo_mips *c) { unsigned int t; if ((c->options & MIPS_CPU_WATCH) == 0) return; /* * Check which of the I,R and W bits are supported, then * disable the register. */ write_c0_watchlo0(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo0(); write_c0_watchlo0(0); c->watch_reg_masks[0] = t & MIPS_WATCHLO_IRW; /* Write the mask bits and read them back to determine which * can be used. */ c->watch_reg_count = 1; c->watch_reg_use_cnt = 1; t = read_c0_watchhi0(); write_c0_watchhi0(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi0(); c->watch_reg_masks[0] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; write_c0_watchlo1(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo1(); write_c0_watchlo1(0); c->watch_reg_masks[1] = t & MIPS_WATCHLO_IRW; c->watch_reg_count = 2; c->watch_reg_use_cnt = 2; t = read_c0_watchhi1(); write_c0_watchhi1(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi1(); c->watch_reg_masks[1] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; write_c0_watchlo2(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo2(); write_c0_watchlo2(0); c->watch_reg_masks[2] = t & MIPS_WATCHLO_IRW; c->watch_reg_count = 3; c->watch_reg_use_cnt = 3; t = read_c0_watchhi2(); write_c0_watchhi2(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi2(); c->watch_reg_masks[2] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; write_c0_watchlo3(MIPS_WATCHLO_IRW); back_to_back_c0_hazard(); t = read_c0_watchlo3(); write_c0_watchlo3(0); c->watch_reg_masks[3] = t & MIPS_WATCHLO_IRW; c->watch_reg_count = 4; c->watch_reg_use_cnt = 4; t = read_c0_watchhi3(); write_c0_watchhi3(t | MIPS_WATCHHI_MASK); back_to_back_c0_hazard(); t = read_c0_watchhi3(); c->watch_reg_masks[3] |= (t & MIPS_WATCHHI_MASK); if ((t & MIPS_WATCHHI_M) == 0) return; /* We use at most 4, but probe and report up to 8. */ c->watch_reg_count = 5; t = read_c0_watchhi4(); if ((t & MIPS_WATCHHI_M) == 0) return; c->watch_reg_count = 6; t = read_c0_watchhi5(); if ((t & MIPS_WATCHHI_M) == 0) return; c->watch_reg_count = 7; t = read_c0_watchhi6(); if ((t & MIPS_WATCHHI_M) == 0) return; c->watch_reg_count = 8; }