Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | // SPDX-License-Identifier: GPL-2.0 /* * * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. * */ #include <linux/fs.h> #include "debug.h" #include "ntfs.h" #include "ntfs_fs.h" /* * al_is_valid_le * * Return: True if @le is valid. */ static inline bool al_is_valid_le(const struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le) { if (!le || !ni->attr_list.le || !ni->attr_list.size) return false; return PtrOffset(ni->attr_list.le, le) + le16_to_cpu(le->size) <= ni->attr_list.size; } void al_destroy(struct ntfs_inode *ni) { run_close(&ni->attr_list.run); kfree(ni->attr_list.le); ni->attr_list.le = NULL; ni->attr_list.size = 0; ni->attr_list.dirty = false; } /* * ntfs_load_attr_list * * This method makes sure that the ATTRIB list, if present, * has been properly set up. */ int ntfs_load_attr_list(struct ntfs_inode *ni, struct ATTRIB *attr) { int err; size_t lsize; void *le = NULL; if (ni->attr_list.size) return 0; if (!attr->non_res) { lsize = le32_to_cpu(attr->res.data_size); /* attr is resident: lsize < record_size (1K or 4K) */ le = kvmalloc(al_aligned(lsize), GFP_KERNEL); if (!le) { err = -ENOMEM; goto out; } memcpy(le, resident_data(attr), lsize); } else if (attr->nres.svcn) { err = -EINVAL; goto out; } else { u16 run_off = le16_to_cpu(attr->nres.run_off); lsize = le64_to_cpu(attr->nres.data_size); run_init(&ni->attr_list.run); if (run_off > le32_to_cpu(attr->size)) { err = -EINVAL; goto out; } err = run_unpack_ex(&ni->attr_list.run, ni->mi.sbi, ni->mi.rno, 0, le64_to_cpu(attr->nres.evcn), 0, Add2Ptr(attr, run_off), le32_to_cpu(attr->size) - run_off); if (err < 0) goto out; /* attr is nonresident. * The worst case: * 1T (2^40) extremely fragmented file. * cluster = 4K (2^12) => 2^28 fragments * 2^9 fragments per one record => 2^19 records * 2^5 bytes of ATTR_LIST_ENTRY per one record => 2^24 bytes. * * the result is 16M bytes per attribute list. * Use kvmalloc to allocate in range [several Kbytes - dozen Mbytes] */ le = kvmalloc(al_aligned(lsize), GFP_KERNEL); if (!le) { err = -ENOMEM; goto out; } err = ntfs_read_run_nb(ni->mi.sbi, &ni->attr_list.run, 0, le, lsize, NULL); if (err) goto out; } ni->attr_list.size = lsize; ni->attr_list.le = le; return 0; out: ni->attr_list.le = le; al_destroy(ni); return err; } /* * al_enumerate * * Return: * * The next list le. * * If @le is NULL then return the first le. */ struct ATTR_LIST_ENTRY *al_enumerate(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le) { size_t off; u16 sz; if (!le) { le = ni->attr_list.le; } else { sz = le16_to_cpu(le->size); if (sz < sizeof(struct ATTR_LIST_ENTRY)) { /* Impossible 'cause we should not return such le. */ return NULL; } le = Add2Ptr(le, sz); } /* Check boundary. */ off = PtrOffset(ni->attr_list.le, le); if (off + sizeof(struct ATTR_LIST_ENTRY) > ni->attr_list.size) { /* The regular end of list. */ return NULL; } sz = le16_to_cpu(le->size); /* Check le for errors. */ if (sz < sizeof(struct ATTR_LIST_ENTRY) || off + sz > ni->attr_list.size || sz < le->name_off + le->name_len * sizeof(short)) { return NULL; } return le; } /* * al_find_le * * Find the first le in the list which matches type, name and VCN. * * Return: NULL if not found. */ struct ATTR_LIST_ENTRY *al_find_le(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, const struct ATTRIB *attr) { CLST svcn = attr_svcn(attr); return al_find_ex(ni, le, attr->type, attr_name(attr), attr->name_len, &svcn); } /* * al_find_ex * * Find the first le in the list which matches type, name and VCN. * * Return: NULL if not found. */ struct ATTR_LIST_ENTRY *al_find_ex(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, const __le16 *name, u8 name_len, const CLST *vcn) { struct ATTR_LIST_ENTRY *ret = NULL; u32 type_in = le32_to_cpu(type); while ((le = al_enumerate(ni, le))) { u64 le_vcn; int diff = le32_to_cpu(le->type) - type_in; /* List entries are sorted by type, name and VCN. */ if (diff < 0) continue; if (diff > 0) return ret; if (le->name_len != name_len) continue; le_vcn = le64_to_cpu(le->vcn); if (!le_vcn) { /* * Compare entry names only for entry with vcn == 0. */ diff = ntfs_cmp_names(le_name(le), name_len, name, name_len, ni->mi.sbi->upcase, true); if (diff < 0) continue; if (diff > 0) return ret; } if (!vcn) return le; if (*vcn == le_vcn) return le; if (*vcn < le_vcn) return ret; ret = le; } return ret; } /* * al_find_le_to_insert * * Find the first list entry which matches type, name and VCN. */ static struct ATTR_LIST_ENTRY *al_find_le_to_insert(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, CLST vcn) { struct ATTR_LIST_ENTRY *le = NULL, *prev; u32 type_in = le32_to_cpu(type); /* List entries are sorted by type, name and VCN. */ while ((le = al_enumerate(ni, prev = le))) { int diff = le32_to_cpu(le->type) - type_in; if (diff < 0) continue; if (diff > 0) return le; if (!le->vcn) { /* * Compare entry names only for entry with vcn == 0. */ diff = ntfs_cmp_names(le_name(le), le->name_len, name, name_len, ni->mi.sbi->upcase, true); if (diff < 0) continue; if (diff > 0) return le; } if (le64_to_cpu(le->vcn) >= vcn) return le; } return prev ? Add2Ptr(prev, le16_to_cpu(prev->size)) : ni->attr_list.le; } /* * al_add_le * * Add an "attribute list entry" to the list. */ int al_add_le(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name, u8 name_len, CLST svcn, __le16 id, const struct MFT_REF *ref, struct ATTR_LIST_ENTRY **new_le) { int err; struct ATTRIB *attr; struct ATTR_LIST_ENTRY *le; size_t off; u16 sz; size_t asize, new_asize, old_size; u64 new_size; typeof(ni->attr_list) *al = &ni->attr_list; /* * Compute the size of the new 'le' */ sz = le_size(name_len); old_size = al->size; new_size = old_size + sz; asize = al_aligned(old_size); new_asize = al_aligned(new_size); /* Scan forward to the point at which the new 'le' should be inserted. */ le = al_find_le_to_insert(ni, type, name, name_len, svcn); off = PtrOffset(al->le, le); if (new_size > asize) { void *ptr = kmalloc(new_asize, GFP_NOFS); if (!ptr) return -ENOMEM; memcpy(ptr, al->le, off); memcpy(Add2Ptr(ptr, off + sz), le, old_size - off); le = Add2Ptr(ptr, off); kfree(al->le); al->le = ptr; } else { memmove(Add2Ptr(le, sz), le, old_size - off); } *new_le = le; al->size = new_size; le->type = type; le->size = cpu_to_le16(sz); le->name_len = name_len; le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); le->vcn = cpu_to_le64(svcn); le->ref = *ref; le->id = id; memcpy(le->name, name, sizeof(short) * name_len); err = attr_set_size(ni, ATTR_LIST, NULL, 0, &al->run, new_size, &new_size, true, &attr); if (err) { /* Undo memmove above. */ memmove(le, Add2Ptr(le, sz), old_size - off); al->size = old_size; return err; } al->dirty = true; if (attr && attr->non_res) { err = ntfs_sb_write_run(ni->mi.sbi, &al->run, 0, al->le, al->size, 0); if (err) return err; al->dirty = false; } return 0; } /* * al_remove_le - Remove @le from attribute list. */ bool al_remove_le(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le) { u16 size; size_t off; typeof(ni->attr_list) *al = &ni->attr_list; if (!al_is_valid_le(ni, le)) return false; /* Save on stack the size of 'le' */ size = le16_to_cpu(le->size); off = PtrOffset(al->le, le); memmove(le, Add2Ptr(le, size), al->size - (off + size)); al->size -= size; al->dirty = true; return true; } /* * al_delete_le - Delete first le from the list which matches its parameters. */ bool al_delete_le(struct ntfs_inode *ni, enum ATTR_TYPE type, CLST vcn, const __le16 *name, size_t name_len, const struct MFT_REF *ref) { u16 size; struct ATTR_LIST_ENTRY *le; size_t off; typeof(ni->attr_list) *al = &ni->attr_list; /* Scan forward to the first le that matches the input. */ le = al_find_ex(ni, NULL, type, name, name_len, &vcn); if (!le) return false; off = PtrOffset(al->le, le); next: if (off >= al->size) return false; if (le->type != type) return false; if (le->name_len != name_len) return false; if (name_len && ntfs_cmp_names(le_name(le), name_len, name, name_len, ni->mi.sbi->upcase, true)) return false; if (le64_to_cpu(le->vcn) != vcn) return false; /* * The caller specified a segment reference, so we have to * scan through the matching entries until we find that segment * reference or we run of matching entries. */ if (ref && memcmp(ref, &le->ref, sizeof(*ref))) { off += le16_to_cpu(le->size); le = Add2Ptr(al->le, off); goto next; } /* Save on stack the size of 'le'. */ size = le16_to_cpu(le->size); /* Delete the le. */ memmove(le, Add2Ptr(le, size), al->size - (off + size)); al->size -= size; al->dirty = true; return true; } int al_update(struct ntfs_inode *ni, int sync) { int err; struct ATTRIB *attr; typeof(ni->attr_list) *al = &ni->attr_list; if (!al->dirty || !al->size) return 0; /* * Attribute list increased on demand in al_add_le. * Attribute list decreased here. */ err = attr_set_size(ni, ATTR_LIST, NULL, 0, &al->run, al->size, NULL, false, &attr); if (err) goto out; if (!attr->non_res) { memcpy(resident_data(attr), al->le, al->size); } else { err = ntfs_sb_write_run(ni->mi.sbi, &al->run, 0, al->le, al->size, sync); if (err) goto out; attr->nres.valid_size = attr->nres.data_size; } ni->mi.dirty = true; al->dirty = false; out: return err; } |