Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // SPDX-License-Identifier: GPL-2.0-or-later /* Instantiate a public key crypto key from an X.509 Certificate * * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) "ASYM: "fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/err.h> #include <crypto/public_key.h> #include "asymmetric_keys.h" static bool use_builtin_keys; static struct asymmetric_key_id *ca_keyid; #ifndef MODULE static struct { struct asymmetric_key_id id; unsigned char data[10]; } cakey; static int __init ca_keys_setup(char *str) { if (!str) /* default system keyring */ return 1; if (strncmp(str, "id:", 3) == 0) { struct asymmetric_key_id *p = &cakey.id; size_t hexlen = (strlen(str) - 3) / 2; int ret; if (hexlen == 0 || hexlen > sizeof(cakey.data)) { pr_err("Missing or invalid ca_keys id\n"); return 1; } ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); if (ret < 0) pr_err("Unparsable ca_keys id hex string\n"); else ca_keyid = p; /* owner key 'id:xxxxxx' */ } else if (strcmp(str, "builtin") == 0) { use_builtin_keys = true; } return 1; } __setup("ca_keys=", ca_keys_setup); #endif /** * restrict_link_by_signature - Restrict additions to a ring of public keys * @dest_keyring: Keyring being linked to. * @type: The type of key being added. * @payload: The payload of the new key. * @trust_keyring: A ring of keys that can be used to vouch for the new cert. * * Check the new certificate against the ones in the trust keyring. If one of * those is the signing key and validates the new certificate, then mark the * new certificate as being trusted. * * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a * matching parent certificate in the trusted list, -EKEYREJECTED if the * signature check fails or the key is blacklisted, -ENOPKG if the signature * uses unsupported crypto, or some other error if there is a matching * certificate but the signature check cannot be performed. */ int restrict_link_by_signature(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *trust_keyring) { const struct public_key_signature *sig; struct key *key; int ret; pr_devel("==>%s()\n", __func__); if (!trust_keyring) return -ENOKEY; if (type != &key_type_asymmetric) return -EOPNOTSUPP; sig = payload->data[asym_auth]; if (!sig) return -ENOPKG; if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2]) return -ENOKEY; if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) return -EPERM; /* See if we have a key that signed this one. */ key = find_asymmetric_key(trust_keyring, sig->auth_ids[0], sig->auth_ids[1], sig->auth_ids[2], false); if (IS_ERR(key)) return -ENOKEY; if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags)) ret = -ENOKEY; else ret = verify_signature(key, sig); key_put(key); return ret; } static bool match_either_id(const struct asymmetric_key_id **pair, const struct asymmetric_key_id *single) { return (asymmetric_key_id_same(pair[0], single) || asymmetric_key_id_same(pair[1], single)); } static int key_or_keyring_common(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *trusted, bool check_dest) { const struct public_key_signature *sig; struct key *key = NULL; int ret; pr_devel("==>%s()\n", __func__); if (!dest_keyring) return -ENOKEY; else if (dest_keyring->type != &key_type_keyring) return -EOPNOTSUPP; if (!trusted && !check_dest) return -ENOKEY; if (type != &key_type_asymmetric) return -EOPNOTSUPP; sig = payload->data[asym_auth]; if (!sig) return -ENOPKG; if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2]) return -ENOKEY; if (trusted) { if (trusted->type == &key_type_keyring) { /* See if we have a key that signed this one. */ key = find_asymmetric_key(trusted, sig->auth_ids[0], sig->auth_ids[1], sig->auth_ids[2], false); if (IS_ERR(key)) key = NULL; } else if (trusted->type == &key_type_asymmetric) { const struct asymmetric_key_id **signer_ids; signer_ids = (const struct asymmetric_key_id **) asymmetric_key_ids(trusted)->id; /* * The auth_ids come from the candidate key (the * one that is being considered for addition to * dest_keyring) and identify the key that was * used to sign. * * The signer_ids are identifiers for the * signing key specified for dest_keyring. * * The first auth_id is the preferred id, 2nd and * 3rd are the fallbacks. If exactly one of * auth_ids[0] and auth_ids[1] is present, it may * match either signer_ids[0] or signed_ids[1]. * If both are present the first one may match * either signed_id but the second one must match * the second signer_id. If neither of them is * available, auth_ids[2] is matched against * signer_ids[2] as a fallback. */ if (!sig->auth_ids[0] && !sig->auth_ids[1]) { if (asymmetric_key_id_same(signer_ids[2], sig->auth_ids[2])) key = __key_get(trusted); } else if (!sig->auth_ids[0] || !sig->auth_ids[1]) { const struct asymmetric_key_id *auth_id; auth_id = sig->auth_ids[0] ?: sig->auth_ids[1]; if (match_either_id(signer_ids, auth_id)) key = __key_get(trusted); } else if (asymmetric_key_id_same(signer_ids[1], sig->auth_ids[1]) && match_either_id(signer_ids, sig->auth_ids[0])) { key = __key_get(trusted); } } else { return -EOPNOTSUPP; } } if (check_dest && !key) { /* See if the destination has a key that signed this one. */ key = find_asymmetric_key(dest_keyring, sig->auth_ids[0], sig->auth_ids[1], sig->auth_ids[2], false); if (IS_ERR(key)) key = NULL; } if (!key) return -ENOKEY; ret = key_validate(key); if (ret == 0) ret = verify_signature(key, sig); key_put(key); return ret; } /** * restrict_link_by_key_or_keyring - Restrict additions to a ring of public * keys using the restrict_key information stored in the ring. * @dest_keyring: Keyring being linked to. * @type: The type of key being added. * @payload: The payload of the new key. * @trusted: A key or ring of keys that can be used to vouch for the new cert. * * Check the new certificate only against the key or keys passed in the data * parameter. If one of those is the signing key and validates the new * certificate, then mark the new certificate as being ok to link. * * Returns 0 if the new certificate was accepted, -ENOKEY if we * couldn't find a matching parent certificate in the trusted list, * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses * unsupported crypto, or some other error if there is a matching certificate * but the signature check cannot be performed. */ int restrict_link_by_key_or_keyring(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *trusted) { return key_or_keyring_common(dest_keyring, type, payload, trusted, false); } /** * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of * public keys using the restrict_key information stored in the ring. * @dest_keyring: Keyring being linked to. * @type: The type of key being added. * @payload: The payload of the new key. * @trusted: A key or ring of keys that can be used to vouch for the new cert. * * Check the new certificate against the key or keys passed in the data * parameter and against the keys already linked to the destination keyring. If * one of those is the signing key and validates the new certificate, then mark * the new certificate as being ok to link. * * Returns 0 if the new certificate was accepted, -ENOKEY if we * couldn't find a matching parent certificate in the trusted list, * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses * unsupported crypto, or some other error if there is a matching certificate * but the signature check cannot be performed. */ int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *trusted) { return key_or_keyring_common(dest_keyring, type, payload, trusted, true); } |