Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | /* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #define gf100_clk(p) container_of((p), struct gf100_clk, base) #include "priv.h" #include "pll.h" #include <subdev/bios.h> #include <subdev/bios/pll.h> #include <subdev/timer.h> struct gf100_clk_info { u32 freq; u32 ssel; u32 mdiv; u32 dsrc; u32 ddiv; u32 coef; }; struct gf100_clk { struct nvkm_clk base; struct gf100_clk_info eng[16]; }; static u32 read_div(struct gf100_clk *, int, u32, u32); static u32 read_vco(struct gf100_clk *clk, u32 dsrc) { struct nvkm_device *device = clk->base.subdev.device; u32 ssrc = nvkm_rd32(device, dsrc); if (!(ssrc & 0x00000100)) return nvkm_clk_read(&clk->base, nv_clk_src_sppll0); return nvkm_clk_read(&clk->base, nv_clk_src_sppll1); } static u32 read_pll(struct gf100_clk *clk, u32 pll) { struct nvkm_device *device = clk->base.subdev.device; u32 ctrl = nvkm_rd32(device, pll + 0x00); u32 coef = nvkm_rd32(device, pll + 0x04); u32 P = (coef & 0x003f0000) >> 16; u32 N = (coef & 0x0000ff00) >> 8; u32 M = (coef & 0x000000ff) >> 0; u32 sclk; if (!(ctrl & 0x00000001)) return 0; switch (pll) { case 0x00e800: case 0x00e820: sclk = device->crystal; P = 1; break; case 0x132000: sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc); break; case 0x132020: sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref); break; case 0x137000: case 0x137020: case 0x137040: case 0x1370e0: sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140); break; default: return 0; } return sclk * N / M / P; } static u32 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl) { struct nvkm_device *device = clk->base.subdev.device; u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4)); u32 sclk, sctl, sdiv = 2; switch (ssrc & 0x00000003) { case 0: if ((ssrc & 0x00030000) != 0x00030000) return device->crystal; return 108000; case 2: return 100000; case 3: sclk = read_vco(clk, dsrc + (doff * 4)); /* Memclk has doff of 0 despite its alt. location */ if (doff <= 2) { sctl = nvkm_rd32(device, dctl + (doff * 4)); if (sctl & 0x80000000) { if (ssrc & 0x100) sctl >>= 8; sdiv = (sctl & 0x3f) + 2; } } return (sclk * 2) / sdiv; default: return 0; } } static u32 read_clk(struct gf100_clk *clk, int idx) { struct nvkm_device *device = clk->base.subdev.device; u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4)); u32 ssel = nvkm_rd32(device, 0x137100); u32 sclk, sdiv; if (ssel & (1 << idx)) { if (idx < 7) sclk = read_pll(clk, 0x137000 + (idx * 0x20)); else sclk = read_pll(clk, 0x1370e0); sdiv = ((sctl & 0x00003f00) >> 8) + 2; } else { sclk = read_div(clk, idx, 0x137160, 0x1371d0); sdiv = ((sctl & 0x0000003f) >> 0) + 2; } if (sctl & 0x80000000) return (sclk * 2) / sdiv; return sclk; } static int gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src) { struct gf100_clk *clk = gf100_clk(base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_href: return 100000; case nv_clk_src_sppll0: return read_pll(clk, 0x00e800); case nv_clk_src_sppll1: return read_pll(clk, 0x00e820); case nv_clk_src_mpllsrcref: return read_div(clk, 0, 0x137320, 0x137330); case nv_clk_src_mpllsrc: return read_pll(clk, 0x132020); case nv_clk_src_mpll: return read_pll(clk, 0x132000); case nv_clk_src_mdiv: return read_div(clk, 0, 0x137300, 0x137310); case nv_clk_src_mem: if (nvkm_rd32(device, 0x1373f0) & 0x00000002) return nvkm_clk_read(&clk->base, nv_clk_src_mpll); return nvkm_clk_read(&clk->base, nv_clk_src_mdiv); case nv_clk_src_gpc: return read_clk(clk, 0x00); case nv_clk_src_rop: return read_clk(clk, 0x01); case nv_clk_src_hubk07: return read_clk(clk, 0x02); case nv_clk_src_hubk06: return read_clk(clk, 0x07); case nv_clk_src_hubk01: return read_clk(clk, 0x08); case nv_clk_src_copy: return read_clk(clk, 0x09); case nv_clk_src_pmu: return read_clk(clk, 0x0c); case nv_clk_src_vdec: return read_clk(clk, 0x0e); default: nvkm_error(subdev, "invalid clock source %d\n", src); return -EINVAL; } } static u32 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv) { u32 div = min((ref * 2) / freq, (u32)65); if (div < 2) div = 2; *ddiv = div - 2; return (ref * 2) / div; } static u32 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv) { u32 sclk; /* use one of the fixed frequencies if possible */ *ddiv = 0x00000000; switch (freq) { case 27000: case 108000: *dsrc = 0x00000000; if (freq == 108000) *dsrc |= 0x00030000; return freq; case 100000: *dsrc = 0x00000002; return freq; default: *dsrc = 0x00000003; break; } /* otherwise, calculate the closest divider */ sclk = read_vco(clk, 0x137160 + (idx * 4)); if (idx < 7) sclk = calc_div(clk, idx, sclk, freq, ddiv); return sclk; } static u32 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_bios *bios = subdev->device->bios; struct nvbios_pll limits; int N, M, P, ret; ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits); if (ret) return 0; limits.refclk = read_div(clk, idx, 0x137120, 0x137140); if (!limits.refclk) return 0; ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P); if (ret <= 0) return 0; *coef = (P << 16) | (N << 8) | M; return ret; } static int calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom) { struct gf100_clk_info *info = &clk->eng[idx]; u32 freq = cstate->domain[dom]; u32 src0, div0, div1D, div1P = 0; u32 clk0, clk1 = 0; /* invalid clock domain */ if (!freq) return 0; /* first possible path, using only dividers */ clk0 = calc_src(clk, idx, freq, &src0, &div0); clk0 = calc_div(clk, idx, clk0, freq, &div1D); /* see if we can get any closer using PLLs */ if (clk0 != freq && (0x00004387 & (1 << idx))) { if (idx <= 7) clk1 = calc_pll(clk, idx, freq, &info->coef); else clk1 = cstate->domain[nv_clk_src_hubk06]; clk1 = calc_div(clk, idx, clk1, freq, &div1P); } /* select the method which gets closest to target freq */ if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { info->dsrc = src0; if (div0) { info->ddiv |= 0x80000000; info->ddiv |= div0 << 8; info->ddiv |= div0; } if (div1D) { info->mdiv |= 0x80000000; info->mdiv |= div1D; } info->ssel = info->coef = 0; info->freq = clk0; } else { if (div1P) { info->mdiv |= 0x80000000; info->mdiv |= div1P << 8; } info->ssel = (1 << idx); info->freq = clk1; } return 0; } static int gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) { struct gf100_clk *clk = gf100_clk(base); int ret; if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) || (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) || (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) || (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) || (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) || (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) || (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) || (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec))) return ret; return 0; } static void gf100_clk_prog_0(struct gf100_clk *clk, int idx) { struct gf100_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; if (idx < 7 && !info->ssel) { nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv); nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc); } } static void gf100_clk_prog_1(struct gf100_clk *clk, int idx) { struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, 0x137100, (1 << idx), 0x00000000); nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x137100) & (1 << idx))) break; ); } static void gf100_clk_prog_2(struct gf100_clk *clk, int idx) { struct gf100_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; const u32 addr = 0x137000 + (idx * 0x20); if (idx <= 7) { nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000); nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000); if (info->coef) { nvkm_wr32(device, addr + 0x04, info->coef); nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001); /* Test PLL lock */ nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000); nvkm_msec(device, 2000, if (nvkm_rd32(device, addr + 0x00) & 0x00020000) break; ); nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010); /* Enable sync mode */ nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004); } } } static void gf100_clk_prog_3(struct gf100_clk *clk, int idx) { struct gf100_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; if (info->ssel) { nvkm_mask(device, 0x137100, (1 << idx), info->ssel); nvkm_msec(device, 2000, u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx); if (tmp == info->ssel) break; ); } } static void gf100_clk_prog_4(struct gf100_clk *clk, int idx) { struct gf100_clk_info *info = &clk->eng[idx]; struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv); } static int gf100_clk_prog(struct nvkm_clk *base) { struct gf100_clk *clk = gf100_clk(base); struct { void (*exec)(struct gf100_clk *, int); } stage[] = { { gf100_clk_prog_0 }, /* div programming */ { gf100_clk_prog_1 }, /* select div mode */ { gf100_clk_prog_2 }, /* (maybe) program pll */ { gf100_clk_prog_3 }, /* (maybe) select pll mode */ { gf100_clk_prog_4 }, /* final divider */ }; int i, j; for (i = 0; i < ARRAY_SIZE(stage); i++) { for (j = 0; j < ARRAY_SIZE(clk->eng); j++) { if (!clk->eng[j].freq) continue; stage[i].exec(clk, j); } } return 0; } static void gf100_clk_tidy(struct nvkm_clk *base) { struct gf100_clk *clk = gf100_clk(base); memset(clk->eng, 0x00, sizeof(clk->eng)); } static const struct nvkm_clk_func gf100_clk = { .read = gf100_clk_read, .calc = gf100_clk_calc, .prog = gf100_clk_prog, .tidy = gf100_clk_tidy, .domains = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_href , 0xff }, { nv_clk_src_hubk06 , 0x00 }, { nv_clk_src_hubk01 , 0x01 }, { nv_clk_src_copy , 0x02 }, { nv_clk_src_gpc , 0x03, NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 }, { nv_clk_src_rop , 0x04 }, { nv_clk_src_mem , 0x05, 0, "memory", 1000 }, { nv_clk_src_vdec , 0x06 }, { nv_clk_src_pmu , 0x0a }, { nv_clk_src_hubk07 , 0x0b }, { nv_clk_src_max } } }; int gf100_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_clk **pclk) { struct gf100_clk *clk; if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL))) return -ENOMEM; *pclk = &clk->base; return nvkm_clk_ctor(&gf100_clk, device, type, inst, false, &clk->base); } |