Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 | // SPDX-License-Identifier: GPL-2.0-or-later /* * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project. * * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. * Copyright (c) 2002 Richard Russon */ #include <linux/buffer_head.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/swap.h> #include <linux/writeback.h> #include "attrib.h" #include "debug.h" #include "layout.h" #include "lcnalloc.h" #include "malloc.h" #include "mft.h" #include "ntfs.h" #include "types.h" /** * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode * @ni: ntfs inode for which to map (part of) a runlist * @vcn: map runlist part containing this vcn * @ctx: active attribute search context if present or NULL if not * * Map the part of a runlist containing the @vcn of the ntfs inode @ni. * * If @ctx is specified, it is an active search context of @ni and its base mft * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped * runlist fragments and allows their mapping. If you do not have the mft * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() * will perform the necessary mapping and unmapping. * * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and * restores it before returning. Thus, @ctx will be left pointing to the same * attribute on return as on entry. However, the actual pointers in @ctx may * point to different memory locations on return, so you must remember to reset * any cached pointers from the @ctx, i.e. after the call to * ntfs_map_runlist_nolock(), you will probably want to do: * m = ctx->mrec; * a = ctx->attr; * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that * you cache ctx->mrec in a variable @m of type MFT_RECORD *. * * Return 0 on success and -errno on error. There is one special error code * which is not an error as such. This is -ENOENT. It means that @vcn is out * of bounds of the runlist. * * Note the runlist can be NULL after this function returns if @vcn is zero and * the attribute has zero allocated size, i.e. there simply is no runlist. * * WARNING: If @ctx is supplied, regardless of whether success or failure is * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx * is no longer valid, i.e. you need to either call * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. * In that case PTR_ERR(@ctx->mrec) will give you the error code for * why the mapping of the old inode failed. * * Locking: - The runlist described by @ni must be locked for writing on entry * and is locked on return. Note the runlist will be modified. * - If @ctx is NULL, the base mft record of @ni must not be mapped on * entry and it will be left unmapped on return. * - If @ctx is not NULL, the base mft record must be mapped on entry * and it will be left mapped on return. */ int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) { VCN end_vcn; unsigned long flags; ntfs_inode *base_ni; MFT_RECORD *m; ATTR_RECORD *a; runlist_element *rl; struct page *put_this_page = NULL; int err = 0; bool ctx_is_temporary, ctx_needs_reset; ntfs_attr_search_ctx old_ctx = { NULL, }; ntfs_debug("Mapping runlist part containing vcn 0x%llx.", (unsigned long long)vcn); if (!NInoAttr(ni)) base_ni = ni; else base_ni = ni->ext.base_ntfs_ino; if (!ctx) { ctx_is_temporary = ctx_needs_reset = true; m = map_mft_record(base_ni); if (IS_ERR(m)) return PTR_ERR(m); ctx = ntfs_attr_get_search_ctx(base_ni, m); if (unlikely(!ctx)) { err = -ENOMEM; goto err_out; } } else { VCN allocated_size_vcn; BUG_ON(IS_ERR(ctx->mrec)); a = ctx->attr; BUG_ON(!a->non_resident); ctx_is_temporary = false; end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); read_lock_irqsave(&ni->size_lock, flags); allocated_size_vcn = ni->allocated_size >> ni->vol->cluster_size_bits; read_unlock_irqrestore(&ni->size_lock, flags); if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) end_vcn = allocated_size_vcn - 1; /* * If we already have the attribute extent containing @vcn in * @ctx, no need to look it up again. We slightly cheat in * that if vcn exceeds the allocated size, we will refuse to * map the runlist below, so there is definitely no need to get * the right attribute extent. */ if (vcn >= allocated_size_vcn || (a->type == ni->type && a->name_length == ni->name_len && !memcmp((u8*)a + le16_to_cpu(a->name_offset), ni->name, ni->name_len) && sle64_to_cpu(a->data.non_resident.lowest_vcn) <= vcn && end_vcn >= vcn)) ctx_needs_reset = false; else { /* Save the old search context. */ old_ctx = *ctx; /* * If the currently mapped (extent) inode is not the * base inode we will unmap it when we reinitialize the * search context which means we need to get a * reference to the page containing the mapped mft * record so we do not accidentally drop changes to the * mft record when it has not been marked dirty yet. */ if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != old_ctx.base_ntfs_ino) { put_this_page = old_ctx.ntfs_ino->page; get_page(put_this_page); } /* * Reinitialize the search context so we can lookup the * needed attribute extent. */ ntfs_attr_reinit_search_ctx(ctx); ctx_needs_reset = true; } } if (ctx_needs_reset) { err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, vcn, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) err = -EIO; goto err_out; } BUG_ON(!ctx->attr->non_resident); } a = ctx->attr; /* * Only decompress the mapping pairs if @vcn is inside it. Otherwise * we get into problems when we try to map an out of bounds vcn because * we then try to map the already mapped runlist fragment and * ntfs_mapping_pairs_decompress() fails. */ end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; if (unlikely(vcn && vcn >= end_vcn)) { err = -ENOENT; goto err_out; } rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl); if (IS_ERR(rl)) err = PTR_ERR(rl); else ni->runlist.rl = rl; err_out: if (ctx_is_temporary) { if (likely(ctx)) ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); } else if (ctx_needs_reset) { /* * If there is no attribute list, restoring the search context * is accomplished simply by copying the saved context back over * the caller supplied context. If there is an attribute list, * things are more complicated as we need to deal with mapping * of mft records and resulting potential changes in pointers. */ if (NInoAttrList(base_ni)) { /* * If the currently mapped (extent) inode is not the * one we had before, we need to unmap it and map the * old one. */ if (ctx->ntfs_ino != old_ctx.ntfs_ino) { /* * If the currently mapped inode is not the * base inode, unmap it. */ if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) { unmap_extent_mft_record(ctx->ntfs_ino); ctx->mrec = ctx->base_mrec; BUG_ON(!ctx->mrec); } /* * If the old mapped inode is not the base * inode, map it. */ if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != old_ctx.base_ntfs_ino) { retry_map: ctx->mrec = map_mft_record( old_ctx.ntfs_ino); /* * Something bad has happened. If out * of memory retry till it succeeds. * Any other errors are fatal and we * return the error code in ctx->mrec. * Let the caller deal with it... We * just need to fudge things so the * caller can reinit and/or put the * search context safely. */ if (IS_ERR(ctx->mrec)) { if (PTR_ERR(ctx->mrec) == -ENOMEM) { schedule(); goto retry_map; } else old_ctx.ntfs_ino = old_ctx. base_ntfs_ino; } } } /* Update the changed pointers in the saved context. */ if (ctx->mrec != old_ctx.mrec) { if (!IS_ERR(ctx->mrec)) old_ctx.attr = (ATTR_RECORD*)( (u8*)ctx->mrec + ((u8*)old_ctx.attr - (u8*)old_ctx.mrec)); old_ctx.mrec = ctx->mrec; } } /* Restore the search context to the saved one. */ *ctx = old_ctx; /* * We drop the reference on the page we took earlier. In the * case that IS_ERR(ctx->mrec) is true this means we might lose * some changes to the mft record that had been made between * the last time it was marked dirty/written out and now. This * at this stage is not a problem as the mapping error is fatal * enough that the mft record cannot be written out anyway and * the caller is very likely to shutdown the whole inode * immediately and mark the volume dirty for chkdsk to pick up * the pieces anyway. */ if (put_this_page) put_page(put_this_page); } return err; } /** * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode * @ni: ntfs inode for which to map (part of) a runlist * @vcn: map runlist part containing this vcn * * Map the part of a runlist containing the @vcn of the ntfs inode @ni. * * Return 0 on success and -errno on error. There is one special error code * which is not an error as such. This is -ENOENT. It means that @vcn is out * of bounds of the runlist. * * Locking: - The runlist must be unlocked on entry and is unlocked on return. * - This function takes the runlist lock for writing and may modify * the runlist. */ int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) { int err = 0; down_write(&ni->runlist.lock); /* Make sure someone else didn't do the work while we were sleeping. */ if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= LCN_RL_NOT_MAPPED)) err = ntfs_map_runlist_nolock(ni, vcn, NULL); up_write(&ni->runlist.lock); return err; } /** * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode * @ni: ntfs inode of the attribute whose runlist to search * @vcn: vcn to convert * @write_locked: true if the runlist is locked for writing * * Find the virtual cluster number @vcn in the runlist of the ntfs attribute * described by the ntfs inode @ni and return the corresponding logical cluster * number (lcn). * * If the @vcn is not mapped yet, the attempt is made to map the attribute * extent containing the @vcn and the vcn to lcn conversion is retried. * * If @write_locked is true the caller has locked the runlist for writing and * if false for reading. * * Since lcns must be >= 0, we use negative return codes with special meaning: * * Return code Meaning / Description * ========================================== * LCN_HOLE Hole / not allocated on disk. * LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds. * LCN_ENOMEM Not enough memory to map runlist. * LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc). * * Locking: - The runlist must be locked on entry and is left locked on return. * - If @write_locked is 'false', i.e. the runlist is locked for reading, * the lock may be dropped inside the function so you cannot rely on * the runlist still being the same when this function returns. */ LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, const bool write_locked) { LCN lcn; unsigned long flags; bool is_retry = false; BUG_ON(!ni); ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", ni->mft_no, (unsigned long long)vcn, write_locked ? "write" : "read"); BUG_ON(!NInoNonResident(ni)); BUG_ON(vcn < 0); if (!ni->runlist.rl) { read_lock_irqsave(&ni->size_lock, flags); if (!ni->allocated_size) { read_unlock_irqrestore(&ni->size_lock, flags); return LCN_ENOENT; } read_unlock_irqrestore(&ni->size_lock, flags); } retry_remap: /* Convert vcn to lcn. If that fails map the runlist and retry once. */ lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn); if (likely(lcn >= LCN_HOLE)) { ntfs_debug("Done, lcn 0x%llx.", (long long)lcn); return lcn; } if (lcn != LCN_RL_NOT_MAPPED) { if (lcn != LCN_ENOENT) lcn = LCN_EIO; } else if (!is_retry) { int err; if (!write_locked) { up_read(&ni->runlist.lock); down_write(&ni->runlist.lock); if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != LCN_RL_NOT_MAPPED)) { up_write(&ni->runlist.lock); down_read(&ni->runlist.lock); goto retry_remap; } } err = ntfs_map_runlist_nolock(ni, vcn, NULL); if (!write_locked) { up_write(&ni->runlist.lock); down_read(&ni->runlist.lock); } if (likely(!err)) { is_retry = true; goto retry_remap; } if (err == -ENOENT) lcn = LCN_ENOENT; else if (err == -ENOMEM) lcn = LCN_ENOMEM; else lcn = LCN_EIO; } if (lcn != LCN_ENOENT) ntfs_error(ni->vol->sb, "Failed with error code %lli.", (long long)lcn); return lcn; } /** * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode * @ni: ntfs inode describing the runlist to search * @vcn: vcn to find * @ctx: active attribute search context if present or NULL if not * * Find the virtual cluster number @vcn in the runlist described by the ntfs * inode @ni and return the address of the runlist element containing the @vcn. * * If the @vcn is not mapped yet, the attempt is made to map the attribute * extent containing the @vcn and the vcn to lcn conversion is retried. * * If @ctx is specified, it is an active search context of @ni and its base mft * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped * runlist fragments and allows their mapping. If you do not have the mft * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() * will perform the necessary mapping and unmapping. * * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and * restores it before returning. Thus, @ctx will be left pointing to the same * attribute on return as on entry. However, the actual pointers in @ctx may * point to different memory locations on return, so you must remember to reset * any cached pointers from the @ctx, i.e. after the call to * ntfs_attr_find_vcn_nolock(), you will probably want to do: * m = ctx->mrec; * a = ctx->attr; * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that * you cache ctx->mrec in a variable @m of type MFT_RECORD *. * Note you need to distinguish between the lcn of the returned runlist element * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on * read and allocate clusters on write. * * Return the runlist element containing the @vcn on success and * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR() * to decide if the return is success or failure and PTR_ERR() to get to the * error code if IS_ERR() is true. * * The possible error return codes are: * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. * -ENOMEM - Not enough memory to map runlist. * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). * * WARNING: If @ctx is supplied, regardless of whether success or failure is * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx * is no longer valid, i.e. you need to either call * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. * In that case PTR_ERR(@ctx->mrec) will give you the error code for * why the mapping of the old inode failed. * * Locking: - The runlist described by @ni must be locked for writing on entry * and is locked on return. Note the runlist may be modified when * needed runlist fragments need to be mapped. * - If @ctx is NULL, the base mft record of @ni must not be mapped on * entry and it will be left unmapped on return. * - If @ctx is not NULL, the base mft record must be mapped on entry * and it will be left mapped on return. */ runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, ntfs_attr_search_ctx *ctx) { unsigned long flags; runlist_element *rl; int err = 0; bool is_retry = false; BUG_ON(!ni); ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); BUG_ON(!NInoNonResident(ni)); BUG_ON(vcn < 0); if (!ni->runlist.rl) { read_lock_irqsave(&ni->size_lock, flags); if (!ni->allocated_size) { read_unlock_irqrestore(&ni->size_lock, flags); return ERR_PTR(-ENOENT); } read_unlock_irqrestore(&ni->size_lock, flags); } retry_remap: rl = ni->runlist.rl; if (likely(rl && vcn >= rl[0].vcn)) { while (likely(rl->length)) { if (unlikely(vcn < rl[1].vcn)) { if (likely(rl->lcn >= LCN_HOLE)) { ntfs_debug("Done."); return rl; } break; } rl++; } if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { if (likely(rl->lcn == LCN_ENOENT)) err = -ENOENT; else err = -EIO; } } if (!err && !is_retry) { /* * If the search context is invalid we cannot map the unmapped * region. */ if (IS_ERR(ctx->mrec)) err = PTR_ERR(ctx->mrec); else { /* * The @vcn is in an unmapped region, map the runlist * and retry. */ err = ntfs_map_runlist_nolock(ni, vcn, ctx); if (likely(!err)) { is_retry = true; goto retry_remap; } } if (err == -EINVAL) err = -EIO; } else if (!err) err = -EIO; if (err != -ENOENT) ntfs_error(ni->vol->sb, "Failed with error code %i.", err); return ERR_PTR(err); } /** * ntfs_attr_find - find (next) attribute in mft record * @type: attribute type to find * @name: attribute name to find (optional, i.e. NULL means don't care) * @name_len: attribute name length (only needed if @name present) * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) * @val: attribute value to find (optional, resident attributes only) * @val_len: attribute value length * @ctx: search context with mft record and attribute to search from * * You should not need to call this function directly. Use ntfs_attr_lookup() * instead. * * ntfs_attr_find() takes a search context @ctx as parameter and searches the * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an * attribute of @type, optionally @name and @val. * * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will * point to the found attribute. * * If the attribute is not found, ntfs_attr_find() returns -ENOENT and * @ctx->attr will point to the attribute before which the attribute being * searched for would need to be inserted if such an action were to be desired. * * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is * undefined and in particular do not rely on it not changing. * * If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it * is 'false', the search begins after @ctx->attr. * * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case * sensitive. When @name is present, @name_len is the @name length in Unicode * characters. * * If @name is not present (NULL), we assume that the unnamed attribute is * being searched for. * * Finally, the resident attribute value @val is looked for, if present. If * @val is not present (NULL), @val_len is ignored. * * ntfs_attr_find() only searches the specified mft record and it ignores the * presence of an attribute list attribute (unless it is the one being searched * for, obviously). If you need to take attribute lists into consideration, * use ntfs_attr_lookup() instead (see below). This also means that you cannot * use ntfs_attr_find() to search for extent records of non-resident * attributes, as extents with lowest_vcn != 0 are usually described by the * attribute list attribute only. - Note that it is possible that the first * extent is only in the attribute list while the last extent is in the base * mft record, so do not rely on being able to find the first extent in the * base mft record. * * Warning: Never use @val when looking for attribute types which can be * non-resident as this most likely will result in a crash! */ static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, const u32 name_len, const IGNORE_CASE_BOOL ic, const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) { ATTR_RECORD *a; ntfs_volume *vol = ctx->ntfs_ino->vol; ntfschar *upcase = vol->upcase; u32 upcase_len = vol->upcase_len; /* * Iterate over attributes in mft record starting at @ctx->attr, or the * attribute following that, if @ctx->is_first is 'true'. */ if (ctx->is_first) { a = ctx->attr; ctx->is_first = false; } else a = (ATTR_RECORD*)((u8*)ctx->attr + le32_to_cpu(ctx->attr->length)); for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { u8 *mrec_end = (u8 *)ctx->mrec + le32_to_cpu(ctx->mrec->bytes_allocated); u8 *name_end; /* check whether ATTR_RECORD wrap */ if ((u8 *)a < (u8 *)ctx->mrec) break; /* check whether Attribute Record Header is within bounds */ if ((u8 *)a > mrec_end || (u8 *)a + sizeof(ATTR_RECORD) > mrec_end) break; /* check whether ATTR_RECORD's name is within bounds */ name_end = (u8 *)a + le16_to_cpu(a->name_offset) + a->name_length * sizeof(ntfschar); if (name_end > mrec_end) break; ctx->attr = a; if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || a->type == AT_END)) return -ENOENT; if (unlikely(!a->length)) break; /* check whether ATTR_RECORD's length wrap */ if ((u8 *)a + le32_to_cpu(a->length) < (u8 *)a) break; /* check whether ATTR_RECORD's length is within bounds */ if ((u8 *)a + le32_to_cpu(a->length) > mrec_end) break; if (a->type != type) continue; /* * If @name is present, compare the two names. If @name is * missing, assume we want an unnamed attribute. */ if (!name) { /* The search failed if the found attribute is named. */ if (a->name_length) return -ENOENT; } else if (!ntfs_are_names_equal(name, name_len, (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), a->name_length, ic, upcase, upcase_len)) { register int rc; rc = ntfs_collate_names(name, name_len, (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), a->name_length, 1, IGNORE_CASE, upcase, upcase_len); /* * If @name collates before a->name, there is no * matching attribute. */ if (rc == -1) return -ENOENT; /* If the strings are not equal, continue search. */ if (rc) continue; rc = ntfs_collate_names(name, name_len, (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), a->name_length, 1, CASE_SENSITIVE, upcase, upcase_len); if (rc == -1) return -ENOENT; if (rc) continue; } /* * The names match or @name not present and attribute is * unnamed. If no @val specified, we have found the attribute * and are done. */ if (!val) return 0; /* @val is present; compare values. */ else { register int rc; rc = memcmp(val, (u8*)a + le16_to_cpu( a->data.resident.value_offset), min_t(u32, val_len, le32_to_cpu( a->data.resident.value_length))); /* * If @val collates before the current attribute's * value, there is no matching attribute. */ if (!rc) { register u32 avl; avl = le32_to_cpu( a->data.resident.value_length); if (val_len == avl) return 0; if (val_len < avl) return -ENOENT; } else if (rc < 0) return -ENOENT; } } ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk."); NVolSetErrors(vol); return -EIO; } /** * load_attribute_list - load an attribute list into memory * @vol: ntfs volume from which to read * @runlist: runlist of the attribute list * @al_start: destination buffer * @size: size of the destination buffer in bytes * @initialized_size: initialized size of the attribute list * * Walk the runlist @runlist and load all clusters from it copying them into * the linear buffer @al. The maximum number of bytes copied to @al is @size * bytes. Note, @size does not need to be a multiple of the cluster size. If * @initialized_size is less than @size, the region in @al between * @initialized_size and @size will be zeroed and not read from disk. * * Return 0 on success or -errno on error. */ int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, const s64 size, const s64 initialized_size) { LCN lcn; u8 *al = al_start; u8 *al_end = al + initialized_size; runlist_element *rl; struct buffer_head *bh; struct super_block *sb; unsigned long block_size; unsigned long block, max_block; int err = 0; unsigned char block_size_bits; ntfs_debug("Entering."); if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || initialized_size > size) return -EINVAL; if (!initialized_size) { memset(al, 0, size); return 0; } sb = vol->sb; block_size = sb->s_blocksize; block_size_bits = sb->s_blocksize_bits; down_read(&runlist->lock); rl = runlist->rl; if (!rl) { ntfs_error(sb, "Cannot read attribute list since runlist is " "missing."); goto err_out; } /* Read all clusters specified by the runlist one run at a time. */ while (rl->length) { lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", (unsigned long long)rl->vcn, (unsigned long long)lcn); /* The attribute list cannot be sparse. */ if (lcn < 0) { ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot " "read attribute list."); goto err_out; } block = lcn << vol->cluster_size_bits >> block_size_bits; /* Read the run from device in chunks of block_size bytes. */ max_block = block + (rl->length << vol->cluster_size_bits >> block_size_bits); ntfs_debug("max_block = 0x%lx.", max_block); do { ntfs_debug("Reading block = 0x%lx.", block); bh = sb_bread(sb, block); if (!bh) { ntfs_error(sb, "sb_bread() failed. Cannot " "read attribute list."); goto err_out; } if (al + block_size >= al_end) goto do_final; memcpy(al, bh->b_data, block_size); brelse(bh); al += block_size; } while (++block < max_block); rl++; } if (initialized_size < size) { initialize: memset(al_start + initialized_size, 0, size - initialized_size); } done: up_read(&runlist->lock); return err; do_final: if (al < al_end) { /* * Partial block. * * Note: The attribute list can be smaller than its allocation * by multiple clusters. This has been encountered by at least * two people running Windows XP, thus we cannot do any * truncation sanity checking here. (AIA) */ memcpy(al, bh->b_data, al_end - al); brelse(bh); if (initialized_size < size) goto initialize; goto done; } brelse(bh); /* Real overflow! */ ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " "is truncated."); err_out: err = -EIO; goto done; } /** * ntfs_external_attr_find - find an attribute in the attribute list of an inode * @type: attribute type to find * @name: attribute name to find (optional, i.e. NULL means don't care) * @name_len: attribute name length (only needed if @name present) * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) * @val: attribute value to find (optional, resident attributes only) * @val_len: attribute value length * @ctx: search context with mft record and attribute to search from * * You should not need to call this function directly. Use ntfs_attr_lookup() * instead. * * Find an attribute by searching the attribute list for the corresponding * attribute list entry. Having found the entry, map the mft record if the * attribute is in a different mft record/inode, ntfs_attr_find() the attribute * in there and return it. * * On first search @ctx->ntfs_ino must be the base mft record and @ctx must * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is * then the base inode). * * After finishing with the attribute/mft record you need to call * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any * mapped inodes, etc). * * If the attribute is found, ntfs_external_attr_find() returns 0 and * @ctx->attr will point to the found attribute. @ctx->mrec will point to the * mft record in which @ctx->attr is located and @ctx->al_entry will point to * the attribute list entry for the attribute. * * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and * @ctx->attr will point to the attribute in the base mft record before which * the attribute being searched for would need to be inserted if such an action * were to be desired. @ctx->mrec will point to the mft record in which * @ctx->attr is located and @ctx->al_entry will point to the attribute list * entry of the attribute before which the attribute being searched for would * need to be inserted if such an action were to be desired. * * Thus to insert the not found attribute, one wants to add the attribute to * @ctx->mrec (the base mft record) and if there is not enough space, the * attribute should be placed in a newly allocated extent mft record. The * attribute list entry for the inserted attribute should be inserted in the * attribute list attribute at @ctx->al_entry. * * On actual error, ntfs_external_attr_find() returns -EIO. In this case * @ctx->attr is undefined and in particular do not rely on it not changing. */ static int ntfs_external_attr_find(const ATTR_TYPE type, const ntfschar *name, const u32 name_len, const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) { ntfs_inode *base_ni, *ni; ntfs_volume *vol; ATTR_LIST_ENTRY *al_entry, *next_al_entry; u8 *al_start, *al_end; ATTR_RECORD *a; ntfschar *al_name; u32 al_name_len; int err = 0; static const char *es = " Unmount and run chkdsk."; ni = ctx->ntfs_ino; base_ni = ctx->base_ntfs_ino; ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); if (!base_ni) { /* First call happens with the base mft record. */ base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; ctx->base_mrec = ctx->mrec; } if (ni == base_ni) ctx->base_attr = ctx->attr; if (type == AT_END) goto not_found; vol = base_ni->vol; al_start = base_ni->attr_list; al_end = al_start + base_ni->attr_list_size; if (!ctx->al_entry) ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; /* * Iterate over entries in attribute list starting at @ctx->al_entry, * or the entry following that, if @ctx->is_first is 'true'. */ if (ctx->is_first) { al_entry = ctx->al_entry; ctx->is_first = false; } else al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + le16_to_cpu(ctx->al_entry->length)); for (;; al_entry = next_al_entry) { /* Out of bounds check. */ if ((u8*)al_entry < base_ni->attr_list || (u8*)al_entry > al_end) break; /* Inode is corrupt. */ ctx->al_entry = al_entry; /* Catch the end of the attribute list. */ if ((u8*)al_entry == al_end) goto not_found; if (!al_entry->length) break; if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + le16_to_cpu(al_entry->length) > al_end) break; next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + le16_to_cpu(al_entry->length)); if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) goto not_found; if (type != al_entry->type) continue; /* * If @name is present, compare the two names. If @name is * missing, assume we want an unnamed attribute. */ al_name_len = al_entry->name_length; al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); if (!name) { if (al_name_len) goto not_found; } else if (!ntfs_are_names_equal(al_name, al_name_len, name, name_len, ic, vol->upcase, vol->upcase_len)) { register int rc; rc = ntfs_collate_names(name, name_len, al_name, al_name_len, 1, IGNORE_CASE, vol->upcase, vol->upcase_len); /* * If @name collates before al_name, there is no * matching attribute. */ if (rc == -1) goto not_found; /* If the strings are not equal, continue search. */ if (rc) continue; /* * FIXME: Reverse engineering showed 0, IGNORE_CASE but * that is inconsistent with ntfs_attr_find(). The * subsequent rc checks were also different. Perhaps I * made a mistake in one of the two. Need to recheck * which is correct or at least see what is going on... * (AIA) */ rc = ntfs_collate_names(name, name_len, al_name, al_name_len, 1, CASE_SENSITIVE, vol->upcase, vol->upcase_len); if (rc == -1) goto not_found; if (rc) continue; } /* * The names match or @name not present and attribute is * unnamed. Now check @lowest_vcn. Continue search if the * next attribute list entry still fits @lowest_vcn. Otherwise * we have reached the right one or the search has failed. */ if (lowest_vcn && (u8*)next_al_entry >= al_start && (u8*)next_al_entry + 6 < al_end && (u8*)next_al_entry + le16_to_cpu( next_al_entry->length) <= al_end && sle64_to_cpu(next_al_entry->lowest_vcn) <= lowest_vcn && next_al_entry->type == al_entry->type && next_al_entry->name_length == al_name_len && ntfs_are_names_equal((ntfschar*)((u8*) next_al_entry + next_al_entry->name_offset), next_al_entry->name_length, al_name, al_name_len, CASE_SENSITIVE, vol->upcase, vol->upcase_len)) continue; if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { ntfs_error(vol->sb, "Found stale mft " "reference in attribute list " "of base inode 0x%lx.%s", base_ni->mft_no, es); err = -EIO; break; } } else { /* Mft references do not match. */ /* If there is a mapped record unmap it first. */ if (ni != base_ni) unmap_extent_mft_record(ni); /* Do we want the base record back? */ if (MREF_LE(al_entry->mft_reference) == base_ni->mft_no) { ni = ctx->ntfs_ino = base_ni; ctx->mrec = ctx->base_mrec; } else { /* We want an extent record. */ ctx->mrec = map_extent_mft_record(base_ni, le64_to_cpu( al_entry->mft_reference), &ni); if (IS_ERR(ctx->mrec)) { ntfs_error(vol->sb, "Failed to map " "extent mft record " "0x%lx of base inode " "0x%lx.%s", MREF_LE(al_entry-> mft_reference), base_ni->mft_no, es); err = PTR_ERR(ctx->mrec); if (err == -ENOENT) err = -EIO; /* Cause @ctx to be sanitized below. */ ni = NULL; break; } ctx->ntfs_ino = ni; } ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + le16_to_cpu(ctx->mrec->attrs_offset)); } /* * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the * mft record containing the attribute represented by the * current al_entry. */ /* * We could call into ntfs_attr_find() to find the right * attribute in this mft record but this would be less * efficient and not quite accurate as ntfs_attr_find() ignores * the attribute instance numbers for example which become * important when one plays with attribute lists. Also, * because a proper match has been found in the attribute list * entry above, the comparison can now be optimized. So it is * worth re-implementing a simplified ntfs_attr_find() here. */ a = ctx->attr; /* * Use a manual loop so we can still use break and continue * with the same meanings as above. */ do_next_attr_loop: if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + le32_to_cpu(ctx->mrec->bytes_allocated)) break; if (a->type == AT_END) break; if (!a->length) break; if (al_entry->instance != a->instance) goto do_next_attr; /* * If the type and/or the name are mismatched between the * attribute list entry and the attribute record, there is * corruption so we break and return error EIO. */ if (al_entry->type != a->type) break; if (!ntfs_are_names_equal((ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), a->name_length, al_name, al_name_len, CASE_SENSITIVE, vol->upcase, vol->upcase_len)) break; ctx->attr = a; /* * If no @val specified or @val specified and it matches, we * have found it! */ if (!val || (!a->non_resident && le32_to_cpu( a->data.resident.value_length) == val_len && !memcmp((u8*)a + le16_to_cpu(a->data.resident.value_offset), val, val_len))) { ntfs_debug("Done, found."); return 0; } do_next_attr: /* Proceed to the next attribute in the current mft record. */ a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); goto do_next_attr_loop; } if (!err) { ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " "attribute list attribute.%s", base_ni->mft_no, es); err = -EIO; } if (ni != base_ni) { if (ni) unmap_extent_mft_record(ni); ctx->ntfs_ino = base_ni; ctx->mrec = ctx->base_mrec; ctx->attr = ctx->base_attr; } if (err != -ENOMEM) NVolSetErrors(vol); return err; not_found: /* * If we were looking for AT_END, we reset the search context @ctx and * use ntfs_attr_find() to seek to the end of the base mft record. */ if (type == AT_END) { ntfs_attr_reinit_search_ctx(ctx); return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, ctx); } /* * The attribute was not found. Before we return, we want to ensure * @ctx->mrec and @ctx->attr indicate the position at which the * attribute should be inserted in the base mft record. Since we also * want to preserve @ctx->al_entry we cannot reinitialize the search * context using ntfs_attr_reinit_search_ctx() as this would set * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve * @ctx->al_entry as the remaining fields (base_*) are identical to * their non base_ counterparts and we cannot set @ctx->base_attr * correctly yet as we do not know what @ctx->attr will be set to by * the call to ntfs_attr_find() below. */ if (ni != base_ni) unmap_extent_mft_record(ni); ctx->mrec = ctx->base_mrec; ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + le16_to_cpu(ctx->mrec->attrs_offset)); ctx->is_first = true; ctx->ntfs_ino = base_ni; ctx->base_ntfs_ino = NULL; ctx->base_mrec = NULL; ctx->base_attr = NULL; /* * In case there are multiple matches in the base mft record, need to * keep enumerating until we get an attribute not found response (or * another error), otherwise we would keep returning the same attribute * over and over again and all programs using us for enumeration would * lock up in a tight loop. */ do { err = ntfs_attr_find(type, name, name_len, ic, val, val_len, ctx); } while (!err); ntfs_debug("Done, not found."); return err; } /** * ntfs_attr_lookup - find an attribute in an ntfs inode * @type: attribute type to find * @name: attribute name to find (optional, i.e. NULL means don't care) * @name_len: attribute name length (only needed if @name present) * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) * @val: attribute value to find (optional, resident attributes only) * @val_len: attribute value length * @ctx: search context with mft record and attribute to search from * * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must * be the base mft record and @ctx must have been obtained from a call to * ntfs_attr_get_search_ctx(). * * This function transparently handles attribute lists and @ctx is used to * continue searches where they were left off at. * * After finishing with the attribute/mft record you need to call * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any * mapped inodes, etc). * * Return 0 if the search was successful and -errno if not. * * When 0, @ctx->attr is the found attribute and it is in mft record * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is * the attribute list entry of the found attribute. * * When -ENOENT, @ctx->attr is the attribute which collates just after the * attribute being searched for, i.e. if one wants to add the attribute to the * mft record this is the correct place to insert it into. If an attribute * list attribute is present, @ctx->al_entry is the attribute list entry which * collates just after the attribute list entry of the attribute being searched * for, i.e. if one wants to add the attribute to the mft record this is the * correct place to insert its attribute list entry into. * * When -errno != -ENOENT, an error occurred during the lookup. @ctx->attr is * then undefined and in particular you should not rely on it not changing. */ int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, const u32 name_len, const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) { ntfs_inode *base_ni; ntfs_debug("Entering."); BUG_ON(IS_ERR(ctx->mrec)); if (ctx->base_ntfs_ino) base_ni = ctx->base_ntfs_ino; else base_ni = ctx->ntfs_ino; /* Sanity check, just for debugging really. */ BUG_ON(!base_ni); if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) return ntfs_attr_find(type, name, name_len, ic, val, val_len, ctx); return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, val, val_len, ctx); } /** * ntfs_attr_init_search_ctx - initialize an attribute search context * @ctx: attribute search context to initialize * @ni: ntfs inode with which to initialize the search context * @mrec: mft record with which to initialize the search context * * Initialize the attribute search context @ctx with @ni and @mrec. */ static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, ntfs_inode *ni, MFT_RECORD *mrec) { *ctx = (ntfs_attr_search_ctx) { .mrec = mrec, /* Sanity checks are performed elsewhere. */ .attr = (ATTR_RECORD*)((u8*)mrec + le16_to_cpu(mrec->attrs_offset)), .is_first = true, .ntfs_ino = ni, }; } /** * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context * @ctx: attribute search context to reinitialize * * Reinitialize the attribute search context @ctx, unmapping an associated * extent mft record if present, and initialize the search context again. * * This is used when a search for a new attribute is being started to reset * the search context to the beginning. */ void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) { if (likely(!ctx->base_ntfs_ino)) { /* No attribute list. */ ctx->is_first = true; /* Sanity checks are performed elsewhere. */ ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + le16_to_cpu(ctx->mrec->attrs_offset)); /* * This needs resetting due to ntfs_external_attr_find() which * can leave it set despite having zeroed ctx->base_ntfs_ino. */ ctx->al_entry = NULL; return; } /* Attribute list. */ if (ctx->ntfs_ino != ctx->base_ntfs_ino) unmap_extent_mft_record(ctx->ntfs_ino); ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); return; } /** * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context * @ni: ntfs inode with which to initialize the search context * @mrec: mft record with which to initialize the search context * * Allocate a new attribute search context, initialize it with @ni and @mrec, * and return it. Return NULL if allocation failed. */ ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) { ntfs_attr_search_ctx *ctx; ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS); if (ctx) ntfs_attr_init_search_ctx(ctx, ni, mrec); return ctx; } /** * ntfs_attr_put_search_ctx - release an attribute search context * @ctx: attribute search context to free * * Release the attribute search context @ctx, unmapping an associated extent * mft record if present. */ void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) { if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) unmap_extent_mft_record(ctx->ntfs_ino); kmem_cache_free(ntfs_attr_ctx_cache, ctx); return; } #ifdef NTFS_RW /** * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file * @vol: ntfs volume to which the attribute belongs * @type: attribute type which to find * * Search for the attribute definition record corresponding to the attribute * @type in the $AttrDef system file. * * Return the attribute type definition record if found and NULL if not found. */ static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, const ATTR_TYPE type) { ATTR_DEF *ad; BUG_ON(!vol->attrdef); BUG_ON(!type); for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < vol->attrdef_size && ad->type; ++ad) { /* We have not found it yet, carry on searching. */ if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) continue; /* We found the attribute; return it. */ if (likely(ad->type == type)) return ad; /* We have gone too far already. No point in continuing. */ break; } /* Attribute not found. */ ntfs_debug("Attribute type 0x%x not found in $AttrDef.", le32_to_cpu(type)); return NULL; } /** * ntfs_attr_size_bounds_check - check a size of an attribute type for validity * @vol: ntfs volume to which the attribute belongs * @type: attribute type which to check * @size: size which to check * * Check whether the @size in bytes is valid for an attribute of @type on the * ntfs volume @vol. This information is obtained from $AttrDef system file. * * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not * listed in $AttrDef. */ int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, const s64 size) { ATTR_DEF *ad; BUG_ON(size < 0); /* * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not * listed in $AttrDef. */ if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) return -ERANGE; /* Get the $AttrDef entry for the attribute @type. */ ad = ntfs_attr_find_in_attrdef(vol, type); if (unlikely(!ad)) return -ENOENT; /* Do the bounds check. */ if (((sle64_to_cpu(ad->min_size) > 0) && size < sle64_to_cpu(ad->min_size)) || ((sle64_to_cpu(ad->max_size) > 0) && size > sle64_to_cpu(ad->max_size))) return -ERANGE; return 0; } /** * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident * @vol: ntfs volume to which the attribute belongs * @type: attribute type which to check * * Check whether the attribute of @type on the ntfs volume @vol is allowed to * be non-resident. This information is obtained from $AttrDef system file. * * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and * -ENOENT if the attribute is not listed in $AttrDef. */ int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) { ATTR_DEF *ad; /* Find the attribute definition record in $AttrDef. */ ad = ntfs_attr_find_in_attrdef(vol, type); if (unlikely(!ad)) return -ENOENT; /* Check the flags and return the result. */ if (ad->flags & ATTR_DEF_RESIDENT) return -EPERM; return 0; } /** * ntfs_attr_can_be_resident - check if an attribute can be resident * @vol: ntfs volume to which the attribute belongs * @type: attribute type which to check * * Check whether the attribute of @type on the ntfs volume @vol is allowed to * be resident. This information is derived from our ntfs knowledge and may * not be completely accurate, especially when user defined attributes are * present. Basically we allow everything to be resident except for index * allocation and $EA attributes. * * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. * * Warning: In the system file $MFT the attribute $Bitmap must be non-resident * otherwise windows will not boot (blue screen of death)! We cannot * check for this here as we do not know which inode's $Bitmap is * being asked about so the caller needs to special case this. */ int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) { if (type == AT_INDEX_ALLOCATION) return -EPERM; return 0; } /** * ntfs_attr_record_resize - resize an attribute record * @m: mft record containing attribute record * @a: attribute record to resize * @new_size: new size in bytes to which to resize the attribute record @a * * Resize the attribute record @a, i.e. the resident part of the attribute, in * the mft record @m to @new_size bytes. * * Return 0 on success and -errno on error. The following error codes are * defined: * -ENOSPC - Not enough space in the mft record @m to perform the resize. * * Note: On error, no modifications have been performed whatsoever. * * Warning: If you make a record smaller without having copied all the data you * are interested in the data may be overwritten. */ int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) { ntfs_debug("Entering for new_size %u.", new_size); /* Align to 8 bytes if it is not already done. */ if (new_size & 7) new_size = (new_size + 7) & ~7; /* If the actual attribute length has changed, move things around. */ if (new_size != le32_to_cpu(a->length)) { u32 new_muse = le32_to_cpu(m->bytes_in_use) - le32_to_cpu(a->length) + new_size; /* Not enough space in this mft record. */ if (new_muse > le32_to_cpu(m->bytes_allocated)) return -ENOSPC; /* Move attributes following @a to their new location. */ memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), le32_to_cpu(m->bytes_in_use) - ((u8*)a - (u8*)m) - le32_to_cpu(a->length)); /* Adjust @m to reflect the change in used space. */ m->bytes_in_use = cpu_to_le32(new_muse); /* Adjust @a to reflect the new size. */ if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) a->length = cpu_to_le32(new_size); } return 0; } /** * ntfs_resident_attr_value_resize - resize the value of a resident attribute * @m: mft record containing attribute record * @a: attribute record whose value to resize * @new_size: new size in bytes to which to resize the attribute value of @a * * Resize the value of the attribute @a in the mft record @m to @new_size bytes. * If the value is made bigger, the newly allocated space is cleared. * * Return 0 on success and -errno on error. The following error codes are * defined: * -ENOSPC - Not enough space in the mft record @m to perform the resize. * * Note: On error, no modifications have been performed whatsoever. * * Warning: If you make a record smaller without having copied all the data you * are interested in the data may be overwritten. */ int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, const u32 new_size) { u32 old_size; /* Resize the resident part of the attribute record. */ if (ntfs_attr_record_resize(m, a, le16_to_cpu(a->data.resident.value_offset) + new_size)) return -ENOSPC; /* * The resize succeeded! If we made the attribute value bigger, clear * the area between the old size and @new_size. */ old_size = le32_to_cpu(a->data.resident.value_length); if (new_size > old_size) memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + old_size, 0, new_size - old_size); /* Finally update the length of the attribute value. */ a->data.resident.value_length = cpu_to_le32(new_size); return 0; } /** * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute * @ni: ntfs inode describing the attribute to convert * @data_size: size of the resident data to copy to the non-resident attribute * * Convert the resident ntfs attribute described by the ntfs inode @ni to a * non-resident one. * * @data_size must be equal to the attribute value size. This is needed since * we need to know the size before we can map the mft record and our callers * always know it. The reason we cannot simply read the size from the vfs * inode i_size is that this is not necessarily uptodate. This happens when * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). * * Return 0 on success and -errno on error. The following error return codes * are defined: * -EPERM - The attribute is not allowed to be non-resident. * -ENOMEM - Not enough memory. * -ENOSPC - Not enough disk space. * -EINVAL - Attribute not defined on the volume. * -EIO - I/o error or other error. * Note that -ENOSPC is also returned in the case that there is not enough * space in the mft record to do the conversion. This can happen when the mft * record is already very full. The caller is responsible for trying to make * space in the mft record and trying again. FIXME: Do we need a separate * error return code for this kind of -ENOSPC or is it always worth trying * again in case the attribute may then fit in a resident state so no need to * make it non-resident at all? Ho-hum... (AIA) * * NOTE to self: No changes in the attribute list are required to move from * a resident to a non-resident attribute. * * Locking: - The caller must hold i_mutex on the inode. */ int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) { s64 new_size; struct inode *vi = VFS_I(ni); ntfs_volume *vol = ni->vol; ntfs_inode *base_ni; MFT_RECORD *m; ATTR_RECORD *a; ntfs_attr_search_ctx *ctx; struct page *page; runlist_element *rl; u8 *kaddr; unsigned long flags; int mp_size, mp_ofs, name_ofs, arec_size, err, err2; u32 attr_size; u8 old_res_attr_flags; /* Check that the attribute is allowed to be non-resident. */ err = ntfs_attr_can_be_non_resident(vol, ni->type); if (unlikely(err)) { if (err == -EPERM) ntfs_debug("Attribute is not allowed to be " "non-resident."); else ntfs_debug("Attribute not defined on the NTFS " "volume!"); return err; } /* * FIXME: Compressed and encrypted attributes are not supported when * writing and we should never have gotten here for them. */ BUG_ON(NInoCompressed(ni)); BUG_ON(NInoEncrypted(ni)); /* * The size needs to be aligned to a cluster boundary for allocation * purposes. */ new_size = (data_size + vol->cluster_size - 1) & ~(vol->cluster_size - 1); if (new_size > 0) { /* * Will need the page later and since the page lock nests * outside all ntfs locks, we need to get the page now. */ page = find_or_create_page(vi->i_mapping, 0, mapping_gfp_mask(vi->i_mapping)); if (unlikely(!page)) return -ENOMEM; /* Start by allocating clusters to hold the attribute value. */ rl = ntfs_cluster_alloc(vol, 0, new_size >> vol->cluster_size_bits, -1, DATA_ZONE, true); if (IS_ERR(rl)) { err = PTR_ERR(rl); ntfs_debug("Failed to allocate cluster%s, error code " "%i.", (new_size >> vol->cluster_size_bits) > 1 ? "s" : "", err); goto page_err_out; } } else { rl = NULL; page = NULL; } /* Determine the size of the mapping pairs array. */ mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1); if (unlikely(mp_size < 0)) { err = mp_size; ntfs_debug("Failed to get size for mapping pairs array, error " "code %i.", err); goto rl_err_out; } down_write(&ni->runlist.lock); if (!NInoAttr(ni)) base_ni = ni; else base_ni = ni->ext.base_ntfs_ino; m = map_mft_record(base_ni); if (IS_ERR(m)) { err = PTR_ERR(m); m = NULL; ctx = NULL; goto err_out; } ctx = ntfs_attr_get_search_ctx(base_ni, m); if (unlikely(!ctx)) { err = -ENOMEM; goto err_out; } err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) err = -EIO; goto err_out; } m = ctx->mrec; a = ctx->attr; BUG_ON(NInoNonResident(ni)); BUG_ON(a->non_resident); /* * Calculate new offsets for the name and the mapping pairs array. */ if (NInoSparse(ni) || NInoCompressed(ni)) name_ofs = (offsetof(ATTR_REC, data.non_resident.compressed_size) + sizeof(a->data.non_resident.compressed_size) + 7) & ~7; else name_ofs = (offsetof(ATTR_REC, data.non_resident.compressed_size) + 7) & ~7; mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; /* * Determine the size of the resident part of the now non-resident * attribute record. */ arec_size = (mp_ofs + mp_size + 7) & ~7; /* * If the page is not uptodate bring it uptodate by copying from the * attribute value. */ attr_size = le32_to_cpu(a->data.resident.value_length); BUG_ON(attr_size != data_size); if (page && !PageUptodate(page)) { kaddr = kmap_atomic(page); memcpy(kaddr, (u8*)a + le16_to_cpu(a->data.resident.value_offset), attr_size); memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size); kunmap_atomic(kaddr); flush_dcache_page(page); SetPageUptodate(page); } /* Backup the attribute flag. */ old_res_attr_flags = a->data.resident.flags; /* Resize the resident part of the attribute record. */ err = ntfs_attr_record_resize(m, a, arec_size); if (unlikely(err)) goto err_out; /* * Convert the resident part of the attribute record to describe a * non-resident attribute. */ a->non_resident = 1; /* Move the attribute name if it exists and update the offset. */ if (a->name_length) memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), a->name_length * sizeof(ntfschar)); a->name_offset = cpu_to_le16(name_ofs); /* Setup the fields specific to non-resident attributes. */ a->data.non_resident.lowest_vcn = 0; a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >> vol->cluster_size_bits); a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs); memset(&a->data.non_resident.reserved, 0, sizeof(a->data.non_resident.reserved)); a->data.non_resident.allocated_size = cpu_to_sle64(new_size); a->data.non_resident.data_size = a->data.non_resident.initialized_size = cpu_to_sle64(attr_size); if (NInoSparse(ni) || NInoCompressed(ni)) { a->data.non_resident.compression_unit = 0; if (NInoCompressed(ni) || vol->major_ver < 3) a->data.non_resident.compression_unit = 4; a->data.non_resident.compressed_size = a->data.non_resident.allocated_size; } else a->data.non_resident.compression_unit = 0; /* Generate the mapping pairs array into the attribute record. */ err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs, arec_size - mp_ofs, rl, 0, -1, NULL); if (unlikely(err)) { ntfs_debug("Failed to build mapping pairs, error code %i.", err); goto undo_err_out; } /* Setup the in-memory attribute structure to be non-resident. */ ni->runlist.rl = rl; write_lock_irqsave(&ni->size_lock, flags); ni->allocated_size = new_size; if (NInoSparse(ni) || NInoCompressed(ni)) { ni->itype.compressed.size = ni->allocated_size; if (a->data.non_resident.compression_unit) { ni->itype.compressed.block_size = 1U << (a->data. non_resident.compression_unit + vol->cluster_size_bits); ni->itype.compressed.block_size_bits = ffs(ni->itype.compressed.block_size) - 1; ni->itype.compressed.block_clusters = 1U << a->data.non_resident.compression_unit; } else { ni->itype.compressed.block_size = 0; ni->itype.compressed.block_size_bits = 0; ni->itype.compressed.block_clusters = 0; } vi->i_blocks = ni->itype.compressed.size >> 9; } else vi->i_blocks = ni->allocated_size >> 9; write_unlock_irqrestore(&ni->size_lock, flags); /* * This needs to be last since the address space operations ->read_folio * and ->writepage can run concurrently with us as they are not * serialized on i_mutex. Note, we are not allowed to fail once we flip * this switch, which is another reason to do this last. */ NInoSetNonResident(ni); /* Mark the mft record dirty, so it gets written back. */ flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); if (page) { set_page_dirty(page); unlock_page(page); put_page(page); } ntfs_debug("Done."); return 0; undo_err_out: /* Convert the attribute back into a resident attribute. */ a->non_resident = 0; /* Move the attribute name if it exists and update the offset. */ name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) + sizeof(a->data.resident.reserved) + 7) & ~7; if (a->name_length) memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), a->name_length * sizeof(ntfschar)); mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; a->name_offset = cpu_to_le16(name_ofs); arec_size = (mp_ofs + attr_size + 7) & ~7; /* Resize the resident part of the attribute record. */ err2 = ntfs_attr_record_resize(m, a, arec_size); if (unlikely(err2)) { /* * This cannot happen (well if memory corruption is at work it * could happen in theory), but deal with it as well as we can. * If the old size is too small, truncate the attribute, * otherwise simply give it a larger allocated size. * FIXME: Should check whether chkdsk complains when the * allocated size is much bigger than the resident value size. */ arec_size = le32_to_cpu(a->length); if ((mp_ofs + attr_size) > arec_size) { err2 = attr_size; attr_size = arec_size - mp_ofs; ntfs_error(vol->sb, "Failed to undo partial resident " "to non-resident attribute " "conversion. Truncating inode 0x%lx, " "attribute type 0x%x from %i bytes to " "%i bytes to maintain metadata " "consistency. THIS MEANS YOU ARE " "LOSING %i BYTES DATA FROM THIS %s.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err2, attr_size, err2 - attr_size, ((ni->type == AT_DATA) && !ni->name_len) ? "FILE": "ATTRIBUTE"); write_lock_irqsave(&ni->size_lock, flags); ni->initialized_size = attr_size; i_size_write(vi, attr_size); write_unlock_irqrestore(&ni->size_lock, flags); } } /* Setup the fields specific to resident attributes. */ a->data.resident.value_length = cpu_to_le32(attr_size); a->data.resident.value_offset = cpu_to_le16(mp_ofs); a->data.resident.flags = old_res_attr_flags; memset(&a->data.resident.reserved, 0, sizeof(a->data.resident.reserved)); /* Copy the data from the page back to the attribute value. */ if (page) { kaddr = kmap_atomic(page); memcpy((u8*)a + mp_ofs, kaddr, attr_size); kunmap_atomic(kaddr); } /* Setup the allocated size in the ntfs inode in case it changed. */ write_lock_irqsave(&ni->size_lock, flags); ni->allocated_size = arec_size - mp_ofs; write_unlock_irqrestore(&ni->size_lock, flags); /* Mark the mft record dirty, so it gets written back. */ flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); err_out: if (ctx) ntfs_attr_put_search_ctx(ctx); if (m) unmap_mft_record(base_ni); ni->runlist.rl = NULL; up_write(&ni->runlist.lock); rl_err_out: if (rl) { if (ntfs_cluster_free_from_rl(vol, rl) < 0) { ntfs_error(vol->sb, "Failed to release allocated " "cluster(s) in error code path. Run " "chkdsk to recover the lost " "cluster(s)."); NVolSetErrors(vol); } ntfs_free(rl); page_err_out: unlock_page(page); put_page(page); } if (err == -EINVAL) err = -EIO; return err; } /** * ntfs_attr_extend_allocation - extend the allocated space of an attribute * @ni: ntfs inode of the attribute whose allocation to extend * @new_alloc_size: new size in bytes to which to extend the allocation to * @new_data_size: new size in bytes to which to extend the data to * @data_start: beginning of region which is required to be non-sparse * * Extend the allocated space of an attribute described by the ntfs inode @ni * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be * implemented as a hole in the file (as long as both the volume and the ntfs * inode @ni have sparse support enabled). If @data_start is >= 0, then the * region between the old allocated size and @data_start - 1 may be made sparse * but the regions between @data_start and @new_alloc_size must be backed by * actual clusters. * * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size * of the attribute is extended to @new_data_size. Note that the i_size of the * vfs inode is not updated. Only the data size in the base attribute record * is updated. The caller has to update i_size separately if this is required. * WARNING: It is a BUG() for @new_data_size to be smaller than the old data * size as well as for @new_data_size to be greater than @new_alloc_size. * * For resident attributes this involves resizing the attribute record and if * necessary moving it and/or other attributes into extent mft records and/or * converting the attribute to a non-resident attribute which in turn involves * extending the allocation of a non-resident attribute as described below. * * For non-resident attributes this involves allocating clusters in the data * zone on the volume (except for regions that are being made sparse) and * extending the run list to describe the allocated clusters as well as * updating the mapping pairs array of the attribute. This in turn involves * resizing the attribute record and if necessary moving it and/or other * attributes into extent mft records and/or splitting the attribute record * into multiple extent attribute records. * * Also, the attribute list attribute is updated if present and in some of the * above cases (the ones where extent mft records/attributes come into play), * an attribute list attribute is created if not already present. * * Return the new allocated size on success and -errno on error. In the case * that an error is encountered but a partial extension at least up to * @data_start (if present) is possible, the allocation is partially extended * and this is returned. This means the caller must check the returned size to * determine if the extension was partial. If @data_start is -1 then partial * allocations are not performed. * * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. * * Locking: This function takes the runlist lock of @ni for writing as well as * locking the mft record of the base ntfs inode. These locks are maintained * throughout execution of the function. These locks are required so that the * attribute can be resized safely and so that it can for example be converted * from resident to non-resident safely. * * TODO: At present attribute list attribute handling is not implemented. * * TODO: At present it is not safe to call this function for anything other * than the $DATA attribute(s) of an uncompressed and unencrypted file. */ s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, const s64 new_data_size, const s64 data_start) { VCN vcn; s64 ll, allocated_size, start = data_start; struct inode *vi = VFS_I(ni); ntfs_volume *vol = ni->vol; ntfs_inode *base_ni; MFT_RECORD *m; ATTR_RECORD *a; ntfs_attr_search_ctx *ctx; runlist_element *rl, *rl2; unsigned long flags; int err, mp_size; u32 attr_len = 0; /* Silence stupid gcc warning. */ bool mp_rebuilt; #ifdef DEBUG read_lock_irqsave(&ni->size_lock, flags); allocated_size = ni->allocated_size; read_unlock_irqrestore(&ni->size_lock, flags); ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " "old_allocated_size 0x%llx, " "new_allocated_size 0x%llx, new_data_size 0x%llx, " "data_start 0x%llx.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), (unsigned long long)allocated_size, (unsigned long long)new_alloc_size, (unsigned long long)new_data_size, (unsigned long long)start); #endif retry_extend: /* * For non-resident attributes, @start and @new_size need to be aligned * to cluster boundaries for allocation purposes. */ if (NInoNonResident(ni)) { if (start > 0) start &= ~(s64)vol->cluster_size_mask; new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & ~(s64)vol->cluster_size_mask; } BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); /* Check if new size is allowed in $AttrDef. */ err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); if (unlikely(err)) { /* Only emit errors when the write will fail completely. */ read_lock_irqsave(&ni->size_lock, flags); allocated_size = ni->allocated_size; read_unlock_irqrestore(&ni->size_lock, flags); if (start < 0 || start >= allocated_size) { if (err == -ERANGE) { ntfs_error(vol->sb, "Cannot extend allocation " "of inode 0x%lx, attribute " "type 0x%x, because the new " "allocation would exceed the " "maximum allowed size for " "this attribute type.", vi->i_ino, (unsigned) le32_to_cpu(ni->type)); } else { ntfs_error(vol->sb, "Cannot extend allocation " "of inode 0x%lx, attribute " "type 0x%x, because this " "attribute type is not " "defined on the NTFS volume. " "Possible corruption! You " "should run chkdsk!", vi->i_ino, (unsigned) le32_to_cpu(ni->type)); } } /* Translate error code to be POSIX conformant for write(2). */ if (err == -ERANGE) err = -EFBIG; else err = -EIO; return err; } if (!NInoAttr(ni)) base_ni = ni; else base_ni = ni->ext.base_ntfs_ino; /* * We will be modifying both the runlist (if non-resident) and the mft * record so lock them both down. */ down_write(&ni->runlist.lock); m = map_mft_record(base_ni); if (IS_ERR(m)) { err = PTR_ERR(m); m = NULL; ctx = NULL; goto err_out; } ctx = ntfs_attr_get_search_ctx(base_ni, m); if (unlikely(!ctx)) { err = -ENOMEM; goto err_out; } read_lock_irqsave(&ni->size_lock, flags); allocated_size = ni->allocated_size; read_unlock_irqrestore(&ni->size_lock, flags); /* * If non-resident, seek to the last extent. If resident, there is * only one extent, so seek to that. */ vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : 0; /* * Abort if someone did the work whilst we waited for the locks. If we * just converted the attribute from resident to non-resident it is * likely that exactly this has happened already. We cannot quite * abort if we need to update the data size. */ if (unlikely(new_alloc_size <= allocated_size)) { ntfs_debug("Allocated size already exceeds requested size."); new_alloc_size = allocated_size; if (new_data_size < 0) goto done; /* * We want the first attribute extent so that we can update the * data size. */ vcn = 0; } err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, vcn, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) err = -EIO; goto err_out; } m = ctx->mrec; a = ctx->attr; /* Use goto to reduce indentation. */ if (a->non_resident) goto do_non_resident_extend; BUG_ON(NInoNonResident(ni)); /* The total length of the attribute value. */ attr_len = le32_to_cpu(a->data.resident.value_length); /* * Extend the attribute record to be able to store the new attribute * size. ntfs_attr_record_resize() will not do anything if the size is * not changing. */ if (new_alloc_size < vol->mft_record_size && !ntfs_attr_record_resize(m, a, le16_to_cpu(a->data.resident.value_offset) + new_alloc_size)) { /* The resize succeeded! */ write_lock_irqsave(&ni->size_lock, flags); ni->allocated_size = le32_to_cpu(a->length) - le16_to_cpu(a->data.resident.value_offset); write_unlock_irqrestore(&ni->size_lock, flags); if (new_data_size >= 0) { BUG_ON(new_data_size < attr_len); a->data.resident.value_length = cpu_to_le32((u32)new_data_size); } goto flush_done; } /* * We have to drop all the locks so we can call * ntfs_attr_make_non_resident(). This could be optimised by try- * locking the first page cache page and only if that fails dropping * the locks, locking the page, and redoing all the locking and * lookups. While this would be a huge optimisation, it is not worth * it as this is definitely a slow code path. */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); /* * Not enough space in the mft record, try to make the attribute * non-resident and if successful restart the extension process. */ err = ntfs_attr_make_non_resident(ni, attr_len); if (likely(!err)) goto retry_extend; /* * Could not make non-resident. If this is due to this not being * permitted for this attribute type or there not being enough space, * try to make other attributes non-resident. Otherwise fail. */ if (unlikely(err != -EPERM && err != -ENOSPC)) { /* Only emit errors when the write will fail completely. */ read_lock_irqsave(&ni->size_lock, flags); allocated_size = ni->allocated_size; read_unlock_irqrestore(&ni->size_lock, flags); if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot extend allocation of " "inode 0x%lx, attribute type 0x%x, " "because the conversion from resident " "to non-resident attribute failed " "with error code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); if (err != -ENOMEM) err = -EIO; goto conv_err_out; } /* TODO: Not implemented from here, abort. */ read_lock_irqsave(&ni->size_lock, flags); allocated_size = ni->allocated_size; read_unlock_irqrestore(&ni->size_lock, flags); if (start < 0 || start >= allocated_size) { if (err == -ENOSPC) ntfs_error(vol->sb, "Not enough space in the mft " "record/on disk for the non-resident " "attribute value. This case is not " "implemented yet."); else /* if (err == -EPERM) */ ntfs_error(vol->sb, "This attribute type may not be " "non-resident. This case is not " "implemented yet."); } err = -EOPNOTSUPP; goto conv_err_out; #if 0 // TODO: Attempt to make other attributes non-resident. if (!err) goto do_resident_extend; /* * Both the attribute list attribute and the standard information * attribute must remain in the base inode. Thus, if this is one of * these attributes, we have to try to move other attributes out into * extent mft records instead. */ if (ni->type == AT_ATTRIBUTE_LIST || ni->type == AT_STANDARD_INFORMATION) { // TODO: Attempt to move other attributes into extent mft // records. err = -EOPNOTSUPP; if (!err) goto do_resident_extend; goto err_out; } // TODO: Attempt to move this attribute to an extent mft record, but // only if it is not already the only attribute in an mft record in // which case there would be nothing to gain. err = -EOPNOTSUPP; if (!err) goto do_resident_extend; /* There is nothing we can do to make enough space. )-: */ goto err_out; #endif do_non_resident_extend: BUG_ON(!NInoNonResident(ni)); if (new_alloc_size == allocated_size) { BUG_ON(vcn); goto alloc_done; } /* * If the data starts after the end of the old allocation, this is a * $DATA attribute and sparse attributes are enabled on the volume and * for this inode, then create a sparse region between the old * allocated size and the start of the data. Otherwise simply proceed * with filling the whole space between the old allocated size and the * new allocated size with clusters. */ if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) goto skip_sparse; // TODO: This is not implemented yet. We just fill in with real // clusters for now... ntfs_debug("Inserting holes is not-implemented yet. Falling back to " "allocating real clusters instead."); skip_sparse: rl = ni->runlist.rl; if (likely(rl)) { /* Seek to the end of the runlist. */ while (rl->length) rl++; } /* If this attribute extent is not mapped, map it now. */ if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { if (!rl && !allocated_size) goto first_alloc; rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); if (IS_ERR(rl)) { err = PTR_ERR(rl); if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot extend allocation " "of inode 0x%lx, attribute " "type 0x%x, because the " "mapping of a runlist " "fragment failed with error " "code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); if (err != -ENOMEM) err = -EIO; goto err_out; } ni->runlist.rl = rl; /* Seek to the end of the runlist. */ while (rl->length) rl++; } /* * We now know the runlist of the last extent is mapped and @rl is at * the end of the runlist. We want to begin allocating clusters * starting at the last allocated cluster to reduce fragmentation. If * there are no valid LCNs in the attribute we let the cluster * allocator choose the starting cluster. */ /* If the last LCN is a hole or simillar seek back to last real LCN. */ while (rl->lcn < 0 && rl > ni->runlist.rl) rl--; first_alloc: // FIXME: Need to implement partial allocations so at least part of the // write can be performed when start >= 0. (Needed for POSIX write(2) // conformance.) rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, (new_alloc_size - allocated_size) >> vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? rl->lcn + rl->length : -1, DATA_ZONE, true); if (IS_ERR(rl2)) { err = PTR_ERR(rl2); if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot extend allocation of " "inode 0x%lx, attribute type 0x%x, " "because the allocation of clusters " "failed with error code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); if (err != -ENOMEM && err != -ENOSPC) err = -EIO; goto err_out; } rl = ntfs_runlists_merge(ni->runlist.rl, rl2); if (IS_ERR(rl)) { err = PTR_ERR(rl); if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot extend allocation of " "inode 0x%lx, attribute type 0x%x, " "because the runlist merge failed " "with error code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); if (err != -ENOMEM) err = -EIO; if (ntfs_cluster_free_from_rl(vol, rl2)) { ntfs_error(vol->sb, "Failed to release allocated " "cluster(s) in error code path. Run " "chkdsk to recover the lost " "cluster(s)."); NVolSetErrors(vol); } ntfs_free(rl2); goto err_out; } ni->runlist.rl = rl; ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - allocated_size) >> vol->cluster_size_bits); /* Find the runlist element with which the attribute extent starts. */ ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); rl2 = ntfs_rl_find_vcn_nolock(rl, ll); BUG_ON(!rl2); BUG_ON(!rl2->length); BUG_ON(rl2->lcn < LCN_HOLE); mp_rebuilt = false; /* Get the size for the new mapping pairs array for this extent. */ mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); if (unlikely(mp_size <= 0)) { err = mp_size; if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot extend allocation of " "inode 0x%lx, attribute type 0x%x, " "because determining the size for the " "mapping pairs failed with error code " "%i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); err = -EIO; goto undo_alloc; } /* Extend the attribute record to fit the bigger mapping pairs array. */ attr_len = le32_to_cpu(a->length); err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); if (unlikely(err)) { BUG_ON(err != -ENOSPC); // TODO: Deal with this by moving this extent to a new mft // record or by starting a new extent in a new mft record, // possibly by extending this extent partially and filling it // and creating a new extent for the remainder, or by making // other attributes non-resident and/or by moving other // attributes out of this mft record. if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Not enough space in the mft " "record for the extended attribute " "record. This case is not " "implemented yet."); err = -EOPNOTSUPP; goto undo_alloc; } mp_rebuilt = true; /* Generate the mapping pairs array directly into the attr record. */ err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(a->data.non_resident.mapping_pairs_offset), mp_size, rl2, ll, -1, NULL); if (unlikely(err)) { if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot extend allocation of " "inode 0x%lx, attribute type 0x%x, " "because building the mapping pairs " "failed with error code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); err = -EIO; goto undo_alloc; } /* Update the highest_vcn. */ a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> vol->cluster_size_bits) - 1); /* * We now have extended the allocated size of the attribute. Reflect * this in the ntfs_inode structure and the attribute record. */ if (a->data.non_resident.lowest_vcn) { /* * We are not in the first attribute extent, switch to it, but * first ensure the changes will make it to disk later. */ flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); ntfs_attr_reinit_search_ctx(ctx); err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) goto restore_undo_alloc; /* @m is not used any more so no need to set it. */ a = ctx->attr; } write_lock_irqsave(&ni->size_lock, flags); ni->allocated_size = new_alloc_size; a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); /* * FIXME: This would fail if @ni is a directory, $MFT, or an index, * since those can have sparse/compressed set. For example can be * set compressed even though it is not compressed itself and in that * case the bit means that files are to be created compressed in the * directory... At present this is ok as this code is only called for * regular files, and only for their $DATA attribute(s). * FIXME: The calculation is wrong if we created a hole above. For now * it does not matter as we never create holes. */ if (NInoSparse(ni) || NInoCompressed(ni)) { ni->itype.compressed.size += new_alloc_size - allocated_size; a->data.non_resident.compressed_size = cpu_to_sle64(ni->itype.compressed.size); vi->i_blocks = ni->itype.compressed.size >> 9; } else vi->i_blocks = new_alloc_size >> 9; write_unlock_irqrestore(&ni->size_lock, flags); alloc_done: if (new_data_size >= 0) { BUG_ON(new_data_size < sle64_to_cpu(a->data.non_resident.data_size)); a->data.non_resident.data_size = cpu_to_sle64(new_data_size); } flush_done: /* Ensure the changes make it to disk. */ flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); done: ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); ntfs_debug("Done, new_allocated_size 0x%llx.", (unsigned long long)new_alloc_size); return new_alloc_size; restore_undo_alloc: if (start < 0 || start >= allocated_size) ntfs_error(vol->sb, "Cannot complete extension of allocation " "of inode 0x%lx, attribute type 0x%x, because " "lookup of first attribute extent failed with " "error code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); if (err == -ENOENT) err = -EIO; ntfs_attr_reinit_search_ctx(ctx); if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, allocated_size >> vol->cluster_size_bits, NULL, 0, ctx)) { ntfs_error(vol->sb, "Failed to find last attribute extent of " "attribute in error code path. Run chkdsk to " "recover."); write_lock_irqsave(&ni->size_lock, flags); ni->allocated_size = new_alloc_size; /* * FIXME: This would fail if @ni is a directory... See above. * FIXME: The calculation is wrong if we created a hole above. * For now it does not matter as we never create holes. */ if (NInoSparse(ni) || NInoCompressed(ni)) { ni->itype.compressed.size += new_alloc_size - allocated_size; vi->i_blocks = ni->itype.compressed.size >> 9; } else vi->i_blocks = new_alloc_size >> 9; write_unlock_irqrestore(&ni->size_lock, flags); ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); /* * The only thing that is now wrong is the allocated size of the * base attribute extent which chkdsk should be able to fix. */ NVolSetErrors(vol); return err; } ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( (allocated_size >> vol->cluster_size_bits) - 1); undo_alloc: ll = allocated_size >> vol->cluster_size_bits; if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { ntfs_error(vol->sb, "Failed to release allocated cluster(s) " "in error code path. Run chkdsk to recover " "the lost cluster(s)."); NVolSetErrors(vol); } m = ctx->mrec; a = ctx->attr; /* * If the runlist truncation fails and/or the search context is no * longer valid, we cannot resize the attribute record or build the * mapping pairs array thus we mark the inode bad so that no access to * the freed clusters can happen. */ if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { ntfs_error(vol->sb, "Failed to %s in error code path. Run " "chkdsk to recover.", IS_ERR(m) ? "restore attribute search context" : "truncate attribute runlist"); NVolSetErrors(vol); } else if (mp_rebuilt) { if (ntfs_attr_record_resize(m, a, attr_len)) { ntfs_error(vol->sb, "Failed to restore attribute " "record in error code path. Run " "chkdsk to recover."); NVolSetErrors(vol); } else /* if (success) */ { if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( a->data.non_resident. mapping_pairs_offset), attr_len - le16_to_cpu(a->data.non_resident. mapping_pairs_offset), rl2, ll, -1, NULL)) { ntfs_error(vol->sb, "Failed to restore " "mapping pairs array in error " "code path. Run chkdsk to " "recover."); NVolSetErrors(vol); } flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); } } err_out: if (ctx) ntfs_attr_put_search_ctx(ctx); if (m) unmap_mft_record(base_ni); up_write(&ni->runlist.lock); conv_err_out: ntfs_debug("Failed. Returning error code %i.", err); return err; } /** * ntfs_attr_set - fill (a part of) an attribute with a byte * @ni: ntfs inode describing the attribute to fill * @ofs: offset inside the attribute at which to start to fill * @cnt: number of bytes to fill * @val: the unsigned 8-bit value with which to fill the attribute * * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at * byte offset @ofs inside the attribute with the constant byte @val. * * This function is effectively like memset() applied to an ntfs attribute. * Note thie function actually only operates on the page cache pages belonging * to the ntfs attribute and it marks them dirty after doing the memset(). * Thus it relies on the vm dirty page write code paths to cause the modified * pages to be written to the mft record/disk. * * Return 0 on success and -errno on error. An error code of -ESPIPE means * that @ofs + @cnt were outside the end of the attribute and no write was * performed. */ int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) { ntfs_volume *vol = ni->vol; struct address_space *mapping; struct page *page; u8 *kaddr; pgoff_t idx, end; unsigned start_ofs, end_ofs, size; ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", (long long)ofs, (long long)cnt, val); BUG_ON(ofs < 0); BUG_ON(cnt < 0); if (!cnt) goto done; /* * FIXME: Compressed and encrypted attributes are not supported when * writing and we should never have gotten here for them. */ BUG_ON(NInoCompressed(ni)); BUG_ON(NInoEncrypted(ni)); mapping = VFS_I(ni)->i_mapping; /* Work out the starting index and page offset. */ idx = ofs >> PAGE_SHIFT; start_ofs = ofs & ~PAGE_MASK; /* Work out the ending index and page offset. */ end = ofs + cnt; end_ofs = end & ~PAGE_MASK; /* If the end is outside the inode size return -ESPIPE. */ if (unlikely(end > i_size_read(VFS_I(ni)))) { ntfs_error(vol->sb, "Request exceeds end of attribute."); return -ESPIPE; } end >>= PAGE_SHIFT; /* If there is a first partial page, need to do it the slow way. */ if (start_ofs) { page = read_mapping_page(mapping, idx, NULL); if (IS_ERR(page)) { ntfs_error(vol->sb, "Failed to read first partial " "page (error, index 0x%lx).", idx); return PTR_ERR(page); } /* * If the last page is the same as the first page, need to * limit the write to the end offset. */ size = PAGE_SIZE; if (idx == end) size = end_ofs; kaddr = kmap_atomic(page); memset(kaddr + start_ofs, val, size - start_ofs); flush_dcache_page(page); kunmap_atomic(kaddr); set_page_dirty(page); put_page(page); balance_dirty_pages_ratelimited(mapping); cond_resched(); if (idx == end) goto done; idx++; } /* Do the whole pages the fast way. */ for (; idx < end; idx++) { /* Find or create the current page. (The page is locked.) */ page = grab_cache_page(mapping, idx); if (unlikely(!page)) { ntfs_error(vol->sb, "Insufficient memory to grab " "page (index 0x%lx).", idx); return -ENOMEM; } kaddr = kmap_atomic(page); memset(kaddr, val, PAGE_SIZE); flush_dcache_page(page); kunmap_atomic(kaddr); /* * If the page has buffers, mark them uptodate since buffer * state and not page state is definitive in 2.6 kernels. */ if (page_has_buffers(page)) { struct buffer_head *bh, *head; bh = head = page_buffers(page); do { set_buffer_uptodate(bh); } while ((bh = bh->b_this_page) != head); } /* Now that buffers are uptodate, set the page uptodate, too. */ SetPageUptodate(page); /* * Set the page and all its buffers dirty and mark the inode * dirty, too. The VM will write the page later on. */ set_page_dirty(page); /* Finally unlock and release the page. */ unlock_page(page); put_page(page); balance_dirty_pages_ratelimited(mapping); cond_resched(); } /* If there is a last partial page, need to do it the slow way. */ if (end_ofs) { page = read_mapping_page(mapping, idx, NULL); if (IS_ERR(page)) { ntfs_error(vol->sb, "Failed to read last partial page " "(error, index 0x%lx).", idx); return PTR_ERR(page); } kaddr = kmap_atomic(page); memset(kaddr, val, end_ofs); flush_dcache_page(page); kunmap_atomic(kaddr); set_page_dirty(page); put_page(page); balance_dirty_pages_ratelimited(mapping); cond_resched(); } done: ntfs_debug("Done."); return 0; } #endif /* NTFS_RW */ |