Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 | /* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. * */ #ifndef HABANALABSP_H_ #define HABANALABSP_H_ #include "../include/common/cpucp_if.h" #include "../include/common/qman_if.h" #include "../include/hw_ip/mmu/mmu_general.h" #include <uapi/misc/habanalabs.h> #include <linux/cdev.h> #include <linux/iopoll.h> #include <linux/irqreturn.h> #include <linux/dma-direction.h> #include <linux/scatterlist.h> #include <linux/hashtable.h> #include <linux/debugfs.h> #include <linux/rwsem.h> #include <linux/eventfd.h> #include <linux/bitfield.h> #include <linux/genalloc.h> #include <linux/sched/signal.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/coresight.h> #include <linux/dma-buf.h> #define HL_NAME "habanalabs" struct hl_device; struct hl_fpriv; #define PCI_VENDOR_ID_HABANALABS 0x1da3 /* Use upper bits of mmap offset to store habana driver specific information. * bits[63:59] - Encode mmap type * bits[45:0] - mmap offset value * * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these * defines are w.r.t to PAGE_SIZE */ #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) #define HL_PENDING_RESET_PER_SEC 10 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ #define HL_PENDING_RESET_LONG_SEC 60 #define HL_HARD_RESET_MAX_TIMEOUT 120 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ #define HL_INVALID_QUEUE UINT_MAX #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE #define HL_STATE_DUMP_HIST_LEN 5 /* Default value for device reset trigger , an invalid value */ #define HL_RESET_TRIGGER_DEFAULT 0xFF #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /* Memory */ #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /* MMU */ #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /** * enum hl_mmu_page_table_location - mmu page table location * @MMU_DR_PGT: page-table is located on device DRAM. * @MMU_HR_PGT: page-table is located on host memory. * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. */ enum hl_mmu_page_table_location { MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ MMU_HR_PGT, /* host resident MMU PGT */ MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ }; /** * enum hl_mmu_enablement - what mmu modules to enable * @MMU_EN_NONE: mmu disabled. * @MMU_EN_ALL: enable all. * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled. */ enum hl_mmu_enablement { MMU_EN_NONE = 0, MMU_EN_ALL = 1, MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */ }; /* * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream */ #define HL_RSVD_SOBS 2 #define HL_RSVD_MONS 1 /* * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream */ #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 #define HL_MAX_SOB_VAL (1 << 15) #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) #define HL_PCI_NUM_BARS 6 /* Completion queue entry relates to completed job */ #define HL_COMPLETION_MODE_JOB 0 /* Completion queue entry relates to completed command submission */ #define HL_COMPLETION_MODE_CS 1 #define HL_MAX_DCORES 8 /* DMA alloc/free wrappers */ #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \ hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__) #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \ hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__) #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) /* * Reset Flags * * - HL_DRV_RESET_HARD * If set do hard reset to all engines. If not set reset just * compute/DMA engines. * * - HL_DRV_RESET_FROM_RESET_THR * Set if the caller is the hard-reset thread * * - HL_DRV_RESET_HEARTBEAT * Set if reset is due to heartbeat * * - HL_DRV_RESET_TDR * Set if reset is due to TDR * * - HL_DRV_RESET_DEV_RELEASE * Set if reset is due to device release * * - HL_DRV_RESET_BYPASS_REQ_TO_FW * F/W will perform the reset. No need to ask it to reset the device. This is relevant * only when running with secured f/w * * - HL_DRV_RESET_FW_FATAL_ERR * Set if reset is due to a fatal error from FW * * - HL_DRV_RESET_DELAY * Set if a delay should be added before the reset */ #define HL_DRV_RESET_HARD (1 << 0) #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) #define HL_DRV_RESET_HEARTBEAT (1 << 2) #define HL_DRV_RESET_TDR (1 << 3) #define HL_DRV_RESET_DEV_RELEASE (1 << 4) #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) #define HL_DRV_RESET_DELAY (1 << 7) /* * Security */ #define HL_PB_SHARED 1 #define HL_PB_NA 0 #define HL_PB_SINGLE_INSTANCE 1 #define HL_BLOCK_SIZE 0x1000 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) enum hl_protection_levels { SECURED_LVL, PRIVILEGED_LVL, NON_SECURED_LVL }; /** * struct iterate_module_ctx - HW module iterator * @fn: function to apply to each HW module instance * @data: optional internal data to the function iterator * @rc: return code for optional use of iterator/iterator-caller */ struct iterate_module_ctx { /* * callback for the HW module iterator * @hdev: pointer to the habanalabs device structure * @block: block (ASIC specific definition can be dcore/hdcore) * @inst: HW module instance within the block * @offset: current HW module instance offset from the 1-st HW module instance * in the 1-st block * @ctx: the iterator context. */ void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, struct iterate_module_ctx *ctx); void *data; int rc; }; struct hl_block_glbl_sec { u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; }; #define HL_MAX_SOBS_PER_MONITOR 8 /** * struct hl_gen_wait_properties - properties for generating a wait CB * @data: command buffer * @q_idx: queue id is used to extract fence register address * @size: offset in command buffer * @sob_base: SOB base to use in this wait CB * @sob_val: SOB value to wait for * @mon_id: monitor to use in this wait CB * @sob_mask: each bit represents a SOB offset from sob_base to be used */ struct hl_gen_wait_properties { void *data; u32 q_idx; u32 size; u16 sob_base; u16 sob_val; u16 mon_id; u8 sob_mask; }; /** * struct pgt_info - MMU hop page info. * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and * actual pgts for host resident MMU). * @phys_addr: physical address of the pgt. * @virt_addr: host virtual address of the pgt (see above device/host resident). * @shadow_addr: shadow hop in the host for device resident MMU. * @ctx: pointer to the owner ctx. * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically * allocated HOPs (all HOPs but HOP0) * * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow * pgts will be stored on host memory) or on host memory (in which case no shadow is required). * * When a new level (hop) is needed during mapping this structure will be used to describe * the newly allocated hop as well as to track number of PTEs in it. * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is * freed with its pgt_info structure. */ struct pgt_info { struct hlist_node node; u64 phys_addr; u64 virt_addr; u64 shadow_addr; struct hl_ctx *ctx; int num_of_ptes; }; /** * enum hl_pci_match_mode - pci match mode per region * @PCI_ADDRESS_MATCH_MODE: address match mode * @PCI_BAR_MATCH_MODE: bar match mode */ enum hl_pci_match_mode { PCI_ADDRESS_MATCH_MODE, PCI_BAR_MATCH_MODE }; /** * enum hl_fw_component - F/W components to read version through registers. * @FW_COMP_BOOT_FIT: boot fit. * @FW_COMP_PREBOOT: preboot. * @FW_COMP_LINUX: linux. */ enum hl_fw_component { FW_COMP_BOOT_FIT, FW_COMP_PREBOOT, FW_COMP_LINUX, }; /** * enum hl_fw_types - F/W types present in the system * @FW_TYPE_NONE: no FW component indication * @FW_TYPE_LINUX: Linux image for device CPU * @FW_TYPE_BOOT_CPU: Boot image for device CPU * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system * (preboot, ppboot etc...) * @FW_TYPE_ALL_TYPES: Mask for all types */ enum hl_fw_types { FW_TYPE_NONE = 0x0, FW_TYPE_LINUX = 0x1, FW_TYPE_BOOT_CPU = 0x2, FW_TYPE_PREBOOT_CPU = 0x4, FW_TYPE_ALL_TYPES = (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) }; /** * enum hl_queue_type - Supported QUEUE types. * @QUEUE_TYPE_NA: queue is not available. * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the * host. * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's * memories and/or operates the compute engines. * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion * notifications are sent by H/W. */ enum hl_queue_type { QUEUE_TYPE_NA, QUEUE_TYPE_EXT, QUEUE_TYPE_INT, QUEUE_TYPE_CPU, QUEUE_TYPE_HW }; enum hl_cs_type { CS_TYPE_DEFAULT, CS_TYPE_SIGNAL, CS_TYPE_WAIT, CS_TYPE_COLLECTIVE_WAIT, CS_RESERVE_SIGNALS, CS_UNRESERVE_SIGNALS, CS_TYPE_ENGINE_CORE }; /* * struct hl_inbound_pci_region - inbound region descriptor * @mode: pci match mode for this region * @addr: region target address * @size: region size in bytes * @offset_in_bar: offset within bar (address match mode) * @bar: bar id */ struct hl_inbound_pci_region { enum hl_pci_match_mode mode; u64 addr; u64 size; u64 offset_in_bar; u8 bar; }; /* * struct hl_outbound_pci_region - outbound region descriptor * @addr: region target address * @size: region size in bytes */ struct hl_outbound_pci_region { u64 addr; u64 size; }; /* * enum queue_cb_alloc_flags - Indicates queue support for CBs that * allocated by Kernel or by User * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel * @CB_ALLOC_USER: support only CBs that allocated by User */ enum queue_cb_alloc_flags { CB_ALLOC_KERNEL = 0x1, CB_ALLOC_USER = 0x2 }; /* * struct hl_hw_sob - H/W SOB info. * @hdev: habanalabs device structure. * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. * @sob_id: id of this SOB. * @sob_addr: the sob offset from the base address. * @q_idx: the H/W queue that uses this SOB. * @need_reset: reset indication set when switching to the other sob. */ struct hl_hw_sob { struct hl_device *hdev; struct kref kref; u32 sob_id; u32 sob_addr; u32 q_idx; bool need_reset; }; enum hl_collective_mode { HL_COLLECTIVE_NOT_SUPPORTED = 0x0, HL_COLLECTIVE_MASTER = 0x1, HL_COLLECTIVE_SLAVE = 0x2 }; /** * struct hw_queue_properties - queue information. * @type: queue type. * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB * that allocated by the Kernel driver and therefore, * a CB handle can be provided for jobs on this queue. * Otherwise, a CB address must be provided. * @collective_mode: collective mode of current queue * @driver_only: true if only the driver is allowed to send a job to this queue, * false otherwise. * @binned: True if the queue is binned out and should not be used * @supports_sync_stream: True if queue supports sync stream */ struct hw_queue_properties { enum hl_queue_type type; enum queue_cb_alloc_flags cb_alloc_flags; enum hl_collective_mode collective_mode; u8 driver_only; u8 binned; u8 supports_sync_stream; }; /** * enum vm_type - virtual memory mapping request information. * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. */ enum vm_type { VM_TYPE_USERPTR = 0x1, VM_TYPE_PHYS_PACK = 0x2 }; /** * enum mmu_op_flags - mmu operation relevant information. * @MMU_OP_USERPTR: operation on user memory (host resident). * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. */ enum mmu_op_flags { MMU_OP_USERPTR = 0x1, MMU_OP_PHYS_PACK = 0x2, MMU_OP_CLEAR_MEMCACHE = 0x4, MMU_OP_SKIP_LOW_CACHE_INV = 0x8, }; /** * enum hl_device_hw_state - H/W device state. use this to understand whether * to do reset before hw_init or not * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute * hw_init */ enum hl_device_hw_state { HL_DEVICE_HW_STATE_CLEAN = 0, HL_DEVICE_HW_STATE_DIRTY }; #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 /** * struct hl_mmu_properties - ASIC specific MMU address translation properties. * @start_addr: virtual start address of the memory region. * @end_addr: virtual end address of the memory region. * @hop_shifts: array holds HOPs shifts. * @hop_masks: array holds HOPs masks. * @last_mask: mask to get the bit indicating this is the last hop. * @pgt_size: size for page tables. * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs * supporting multiple page size). * @page_size: default page size used to allocate memory. * @num_hops: The amount of hops supported by the translation table. * @hop_table_size: HOP table size. * @hop0_tables_total_size: total size for all HOP0 tables. * @host_resident: Should the MMU page table reside in host memory or in the * device DRAM. */ struct hl_mmu_properties { u64 start_addr; u64 end_addr; u64 hop_shifts[MMU_HOP_MAX]; u64 hop_masks[MMU_HOP_MAX]; u64 last_mask; u64 pgt_size; u64 supported_pages_mask; u32 page_size; u32 num_hops; u32 hop_table_size; u32 hop0_tables_total_size; u8 host_resident; }; /** * struct hl_hints_range - hint addresses reserved va range. * @start_addr: start address of the va range. * @end_addr: end address of the va range. */ struct hl_hints_range { u64 start_addr; u64 end_addr; }; /** * struct asic_fixed_properties - ASIC specific immutable properties. * @hw_queues_props: H/W queues properties. * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. * available sensors. * @uboot_ver: F/W U-boot version. * @preboot_ver: F/W Preboot version. * @dmmu: DRAM MMU address translation properties. * @pmmu: PCI (host) MMU address translation properties. * @pmmu_huge: PCI (host) MMU address translation properties for memory * allocated with huge pages. * @hints_dram_reserved_va_range: dram hint addresses reserved range. * @hints_host_reserved_va_range: host hint addresses reserved range. * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved * range. * @sram_base_address: SRAM physical start address. * @sram_end_address: SRAM physical end address. * @sram_user_base_address - SRAM physical start address for user access. * @dram_base_address: DRAM physical start address. * @dram_end_address: DRAM physical end address. * @dram_user_base_address: DRAM physical start address for user access. * @dram_size: DRAM total size. * @dram_pci_bar_size: size of PCI bar towards DRAM. * @max_power_default: max power of the device after reset. * @dc_power_default: power consumed by the device in mode idle. * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page * fault. * @pcie_dbi_base_address: Base address of the PCIE_DBI block. * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. * @mmu_dram_default_page_addr: DRAM default page physical address. * @tpc_enabled_mask: which TPCs are enabled. * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. * @dram_enabled_mask: which DRAMs are enabled. * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. * @dram_hints_align_mask: dram va hint addresses alignment mask which is used * for hints validity check. * @cfg_base_address: config space base address. * @mmu_cache_mng_addr: address of the MMU cache. * @mmu_cache_mng_size: size of the MMU cache. * @device_dma_offset_for_host_access: the offset to add to host DMA addresses * to enable the device to access them. * @host_base_address: host physical start address for host DMA from device * @host_end_address: host physical end address for host DMA from device * @max_freq_value: current max clk frequency. * @clk_pll_index: clock PLL index that specify which PLL determines the clock * we display to the user * @mmu_pgt_size: MMU page tables total size. * @mmu_pte_size: PTE size in MMU page tables. * @mmu_hop_table_size: MMU hop table size. * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. * @dram_page_size: page size for MMU DRAM allocation. * @cfg_size: configuration space size on SRAM. * @sram_size: total size of SRAM. * @max_asid: maximum number of open contexts (ASIDs). * @num_of_events: number of possible internal H/W IRQs. * @psoc_pci_pll_nr: PCI PLL NR value. * @psoc_pci_pll_nf: PCI PLL NF value. * @psoc_pci_pll_od: PCI PLL OD value. * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. * @high_pll: high PLL frequency used by the device. * @cb_pool_cb_cnt: number of CBs in the CB pool. * @cb_pool_cb_size: size of each CB in the CB pool. * @decoder_enabled_mask: which decoders are enabled. * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 * means binned (at most one binned decoder per dcore). * @edma_enabled_mask: which EDMAs are enabled. * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means * binned (at most one binned DMA). * @max_pending_cs: maximum of concurrent pending command submissions * @max_queues: maximum amount of queues in the system * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu * capabilities reported by FW, bit description * can be found in CPU_BOOT_DEV_STS0 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu * capabilities reported by FW, bit description * can be found in CPU_BOOT_DEV_STS1 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS0 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS1 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS0 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security * status reported by FW, bit description can be * found in CPU_BOOT_DEV_STS1 * @max_dec: maximum number of decoders * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) * 1- enabled, 0- isolated. * @faulty_dram_cluster_map: mask of faulty DRAM cluster. * 1- faulty cluster, 0- good cluster. * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) * 1- enabled, 0- isolated. * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for * which the property supports_user_set_page_size is true * (i.e. the DRAM supports multiple page sizes), otherwise * it will shall be equal to dram_page_size. * @num_engine_cores: number of engine cpu cores * @collective_first_sob: first sync object available for collective use * @collective_first_mon: first monitor available for collective use * @sync_stream_first_sob: first sync object available for sync stream use * @sync_stream_first_mon: first monitor available for sync stream use * @first_available_user_sob: first sob available for the user * @first_available_user_mon: first monitor available for the user * @first_available_user_interrupt: first available interrupt reserved for the user * @first_available_cq: first available CQ for the user. * @user_interrupt_count: number of user interrupts. * @user_dec_intr_count: number of decoder interrupts exposed to user. * @cache_line_size: device cache line size. * @server_type: Server type that the ASIC is currently installed in. * The value is according to enum hl_server_type in uapi file. * @completion_queues_count: number of completion queues. * @completion_mode: 0 - job based completion, 1 - cs based completion * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works * in Master/Slave mode * @fw_security_enabled: true if security measures are enabled in firmware, * false otherwise * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from * BOOT_DEV_STS0 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from * BOOT_DEV_STS1 * @dram_supports_virtual_memory: is there an MMU towards the DRAM * @hard_reset_done_by_fw: true if firmware is handling hard reset flow * @num_functional_hbms: number of functional HBMs in each DCORE. * @hints_range_reservation: device support hint addresses range reservation. * @iatu_done_by_fw: true if iATU configuration is being done by FW. * @dynamic_fw_load: is dynamic FW load is supported. * @gic_interrupts_enable: true if FW is not blocking GIC controller, * false otherwise. * @use_get_power_for_reset_history: To support backward compatibility for Goya * and Gaudi * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. * @allow_inference_soft_reset: true if the ASIC supports soft reset that is * initiated by user or TDR. This is only true * in inference ASICs, as there is no real-world * use-case of doing soft-reset in training (due * to the fact that training runs on multiple * devices) * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. * @set_max_power_on_device_init: true if need to set max power in F/W on device init. * @supports_user_set_page_size: true if user can set the allocation page size. * @dma_mask: the dma mask to be set for this device * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. */ struct asic_fixed_properties { struct hw_queue_properties *hw_queues_props; struct cpucp_info cpucp_info; char uboot_ver[VERSION_MAX_LEN]; char preboot_ver[VERSION_MAX_LEN]; struct hl_mmu_properties dmmu; struct hl_mmu_properties pmmu; struct hl_mmu_properties pmmu_huge; struct hl_hints_range hints_dram_reserved_va_range; struct hl_hints_range hints_host_reserved_va_range; struct hl_hints_range hints_host_hpage_reserved_va_range; u64 sram_base_address; u64 sram_end_address; u64 sram_user_base_address; u64 dram_base_address; u64 dram_end_address; u64 dram_user_base_address; u64 dram_size; u64 dram_pci_bar_size; u64 max_power_default; u64 dc_power_default; u64 dram_size_for_default_page_mapping; u64 pcie_dbi_base_address; u64 pcie_aux_dbi_reg_addr; u64 mmu_pgt_addr; u64 mmu_dram_default_page_addr; u64 tpc_enabled_mask; u64 tpc_binning_mask; u64 dram_enabled_mask; u64 dram_binning_mask; u64 dram_hints_align_mask; u64 cfg_base_address; u64 mmu_cache_mng_addr; u64 mmu_cache_mng_size; u64 device_dma_offset_for_host_access; u64 host_base_address; u64 host_end_address; u64 max_freq_value; u32 clk_pll_index; u32 mmu_pgt_size; u32 mmu_pte_size; u32 mmu_hop_table_size; u32 mmu_hop0_tables_total_size; u32 dram_page_size; u32 cfg_size; u32 sram_size; u32 max_asid; u32 num_of_events; u32 psoc_pci_pll_nr; u32 psoc_pci_pll_nf; u32 psoc_pci_pll_od; u32 psoc_pci_pll_div_factor; u32 psoc_timestamp_frequency; u32 high_pll; u32 cb_pool_cb_cnt; u32 cb_pool_cb_size; u32 decoder_enabled_mask; u32 decoder_binning_mask; u32 edma_enabled_mask; u32 edma_binning_mask; u32 max_pending_cs; u32 max_queues; u32 fw_preboot_cpu_boot_dev_sts0; u32 fw_preboot_cpu_boot_dev_sts1; u32 fw_bootfit_cpu_boot_dev_sts0; u32 fw_bootfit_cpu_boot_dev_sts1; u32 fw_app_cpu_boot_dev_sts0; u32 fw_app_cpu_boot_dev_sts1; u32 max_dec; u32 hmmu_hif_enabled_mask; u32 faulty_dram_cluster_map; u32 xbar_edge_enabled_mask; u32 device_mem_alloc_default_page_size; u32 num_engine_cores; u16 collective_first_sob; u16 collective_first_mon; u16 sync_stream_first_sob; u16 sync_stream_first_mon; u16 first_available_user_sob[HL_MAX_DCORES]; u16 first_available_user_mon[HL_MAX_DCORES]; u16 first_available_user_interrupt; u16 first_available_cq[HL_MAX_DCORES]; u16 user_interrupt_count; u16 user_dec_intr_count; u16 cache_line_size; u16 server_type; u8 completion_queues_count; u8 completion_mode; u8 mme_master_slave_mode; u8 fw_security_enabled; u8 fw_cpu_boot_dev_sts0_valid; u8 fw_cpu_boot_dev_sts1_valid; u8 dram_supports_virtual_memory; u8 hard_reset_done_by_fw; u8 num_functional_hbms; u8 hints_range_reservation; u8 iatu_done_by_fw; u8 dynamic_fw_load; u8 gic_interrupts_enable; u8 use_get_power_for_reset_history; u8 supports_compute_reset; u8 allow_inference_soft_reset; u8 configurable_stop_on_err; u8 set_max_power_on_device_init; u8 supports_user_set_page_size; u8 dma_mask; u8 supports_advanced_cpucp_rc; }; /** * struct hl_fence - software synchronization primitive * @completion: fence is implemented using completion * @refcount: refcount for this fence * @cs_sequence: sequence of the corresponding command submission * @stream_master_qid_map: streams masters QID bitmap to represent all streams * masters QIDs that multi cs is waiting on * @error: mark this fence with error * @timestamp: timestamp upon completion * @mcs_handling_done: indicates that corresponding command submission has * finished msc handling, this does not mean it was part * of the mcs */ struct hl_fence { struct completion completion; struct kref refcount; u64 cs_sequence; u32 stream_master_qid_map; int error; ktime_t timestamp; u8 mcs_handling_done; }; /** * struct hl_cs_compl - command submission completion object. * @base_fence: hl fence object. * @lock: spinlock to protect fence. * @hdev: habanalabs device structure. * @hw_sob: the H/W SOB used in this signal/wait CS. * @encaps_sig_hdl: encaps signals handler. * @cs_seq: command submission sequence number. * @type: type of the CS - signal/wait. * @sob_val: the SOB value that is used in this signal/wait CS. * @sob_group: the SOB group that is used in this collective wait CS. * @encaps_signals: indication whether it's a completion object of cs with * encaps signals or not. */ struct hl_cs_compl { struct hl_fence base_fence; spinlock_t lock; struct hl_device *hdev; struct hl_hw_sob *hw_sob; struct hl_cs_encaps_sig_handle *encaps_sig_hdl; u64 cs_seq; enum hl_cs_type type; u16 sob_val; u16 sob_group; bool encaps_signals; }; /* * Command Buffers */ /** * struct hl_ts_buff - describes a timestamp buffer. * @kernel_buff_address: Holds the internal buffer's kernel virtual address. * @user_buff_address: Holds the user buffer's kernel virtual address. * @kernel_buff_size: Holds the internal kernel buffer size. */ struct hl_ts_buff { void *kernel_buff_address; void *user_buff_address; u32 kernel_buff_size; }; struct hl_mmap_mem_buf; /** * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. * @dev: back pointer to the owning device * @lock: protects handles * @handles: an idr holding all active handles to the memory buffers in the system. */ struct hl_mem_mgr { struct device *dev; spinlock_t lock; struct idr handles; }; /** * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior * @topic: string identifier used for logging * @mem_id: memory type identifier, embedded in the handle and used to identify * the memory type by handle. * @alloc: callback executed on buffer allocation, shall allocate the memory, * set it under buffer private, and set mappable size. * @mmap: callback executed on mmap, must map the buffer to vma * @release: callback executed on release, must free the resources used by the buffer */ struct hl_mmap_mem_buf_behavior { const char *topic; u64 mem_id; int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); void (*release)(struct hl_mmap_mem_buf *buf); }; /** * struct hl_mmap_mem_buf - describes a single unified memory buffer * @behavior: buffer behavior * @mmg: back pointer to the unified memory manager * @refcount: reference counter for buffer users * @private: pointer to buffer behavior private data * @mmap: atomic boolean indicating whether or not the buffer is mapped right now * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, * may change at runtime. * @mappable_size: the original mappable size of the buffer, does not change after * the allocation. * @handle: the buffer id in mmg handles store */ struct hl_mmap_mem_buf { struct hl_mmap_mem_buf_behavior *behavior; struct hl_mem_mgr *mmg; struct kref refcount; void *private; atomic_t mmap; u64 real_mapped_size; u64 mappable_size; u64 handle; }; /** * struct hl_cb - describes a Command Buffer. * @hdev: pointer to device this CB belongs to. * @ctx: pointer to the CB owner's context. * @buf: back pointer to the parent mappable memory buffer * @debugfs_list: node in debugfs list of command buffers. * @pool_list: node in pool list of command buffers. * @kernel_address: Holds the CB's kernel virtual address. * @virtual_addr: Holds the CB's virtual address. * @bus_address: Holds the CB's DMA address. * @size: holds the CB's size. * @roundup_size: holds the cb size after roundup to page size. * @cs_cnt: holds number of CS that this CB participates in. * @is_pool: true if CB was acquired from the pool, false otherwise. * @is_internal: internally allocated * @is_mmu_mapped: true if the CB is mapped to the device's MMU. */ struct hl_cb { struct hl_device *hdev; struct hl_ctx *ctx; struct hl_mmap_mem_buf *buf; struct list_head debugfs_list; struct list_head pool_list; void *kernel_address; u64 virtual_addr; dma_addr_t bus_address; u32 size; u32 roundup_size; atomic_t cs_cnt; u8 is_pool; u8 is_internal; u8 is_mmu_mapped; }; /* * QUEUES */ struct hl_cs_job; /* Queue length of external and HW queues */ #define HL_QUEUE_LENGTH 4096 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" #endif /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ #define HL_CQ_LENGTH HL_QUEUE_LENGTH #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) /* Must be power of 2 */ #define HL_EQ_LENGTH 64 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) /* Host <-> CPU-CP shared memory size */ #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M /** * struct hl_sync_stream_properties - * describes a H/W queue sync stream properties * @hw_sob: array of the used H/W SOBs by this H/W queue. * @next_sob_val: the next value to use for the currently used SOB. * @base_sob_id: the base SOB id of the SOBs used by this queue. * @base_mon_id: the base MON id of the MONs used by this queue. * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue * in order to sync with all slave queues. * @collective_slave_mon_id: the MON id used by this slave queue in order to * sync with its master queue. * @collective_sob_id: current SOB id used by this collective slave queue * to signal its collective master queue upon completion. * @curr_sob_offset: the id offset to the currently used SOB from the * HL_RSVD_SOBS that are being used by this queue. */ struct hl_sync_stream_properties { struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; u16 next_sob_val; u16 base_sob_id; u16 base_mon_id; u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; u16 collective_slave_mon_id; u16 collective_sob_id; u8 curr_sob_offset; }; /** * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals * handlers manager * @lock: protects handles. * @handles: an idr to hold all encapsulated signals handles. */ struct hl_encaps_signals_mgr { spinlock_t lock; struct idr handles; }; /** * struct hl_hw_queue - describes a H/W transport queue. * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. * @sync_stream_prop: sync stream queue properties * @queue_type: type of queue. * @collective_mode: collective mode of current queue * @kernel_address: holds the queue's kernel virtual address. * @bus_address: holds the queue's DMA address. * @pi: holds the queue's pi value. * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). * @hw_queue_id: the id of the H/W queue. * @cq_id: the id for the corresponding CQ for this H/W queue. * @msi_vec: the IRQ number of the H/W queue. * @int_queue_len: length of internal queue (number of entries). * @valid: is the queue valid (we have array of 32 queues, not all of them * exist). * @supports_sync_stream: True if queue supports sync stream */ struct hl_hw_queue { struct hl_cs_job **shadow_queue; struct hl_sync_stream_properties sync_stream_prop; enum hl_queue_type queue_type; enum hl_collective_mode collective_mode; void *kernel_address; dma_addr_t bus_address; u32 pi; atomic_t ci; u32 hw_queue_id; u32 cq_id; u32 msi_vec; u16 int_queue_len; u8 valid; u8 supports_sync_stream; }; /** * struct hl_cq - describes a completion queue * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @cq_idx: completion queue index in array * @hw_queue_id: the id of the matching H/W queue * @ci: ci inside the queue * @pi: pi inside the queue * @free_slots_cnt: counter of free slots in queue */ struct hl_cq { struct hl_device *hdev; void *kernel_address; dma_addr_t bus_address; u32 cq_idx; u32 hw_queue_id; u32 ci; u32 pi; atomic_t free_slots_cnt; }; /** * struct hl_user_interrupt - holds user interrupt information * @hdev: pointer to the device structure * @wait_list_head: head to the list of user threads pending on this interrupt * @wait_list_lock: protects wait_list_head * @interrupt_id: msix interrupt id * @is_decoder: whether this entry represents a decoder interrupt */ struct hl_user_interrupt { struct hl_device *hdev; struct list_head wait_list_head; spinlock_t wait_list_lock; u32 interrupt_id; bool is_decoder; }; /** * struct timestamp_reg_free_node - holds the timestamp registration free objects node * @free_objects_node: node in the list free_obj_jobs * @cq_cb: pointer to cq command buffer to be freed * @buf: pointer to timestamp buffer to be freed */ struct timestamp_reg_free_node { struct list_head free_objects_node; struct hl_cb *cq_cb; struct hl_mmap_mem_buf *buf; }; /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job * the job will be to pass over the free_obj_jobs list and put refcount to objects * in each node of the list * @free_obj: workqueue object to free timestamp registration node objects * @hdev: pointer to the device structure * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) */ struct timestamp_reg_work_obj { struct work_struct free_obj; struct hl_device *hdev; struct list_head *free_obj_head; }; /* struct timestamp_reg_info - holds the timestamp registration related data. * @buf: pointer to the timestamp buffer which include both user/kernel buffers. * relevant only when doing timestamps records registration. * @cq_cb: pointer to CQ counter CB. * @timestamp_kernel_addr: timestamp handle address, where to set timestamp * relevant only when doing timestamps records * registration. * @in_use: indicates if the node already in use. relevant only when doing * timestamps records registration, since in this case the driver * will have it's own buffer which serve as a records pool instead of * allocating records dynamically. */ struct timestamp_reg_info { struct hl_mmap_mem_buf *buf; struct hl_cb *cq_cb; u64 *timestamp_kernel_addr; u8 in_use; }; /** * struct hl_user_pending_interrupt - holds a context to a user thread * pending on an interrupt * @ts_reg_info: holds the timestamps registration nodes info * @wait_list_node: node in the list of user threads pending on an interrupt * @fence: hl fence object for interrupt completion * @cq_target_value: CQ target value * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt * handler for target value comparison */ struct hl_user_pending_interrupt { struct timestamp_reg_info ts_reg_info; struct list_head wait_list_node; struct hl_fence fence; u64 cq_target_value; u64 *cq_kernel_addr; }; /** * struct hl_eq - describes the event queue (single one per device) * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @ci: ci inside the queue * @prev_eqe_index: the index of the previous event queue entry. The index of * the current entry's index must be +1 of the previous one. * @check_eqe_index: do we need to check the index of the current entry vs. the * previous one. This is for backward compatibility with older * firmwares */ struct hl_eq { struct hl_device *hdev; void *kernel_address; dma_addr_t bus_address; u32 ci; u32 prev_eqe_index; bool check_eqe_index; }; /** * struct hl_dec - describes a decoder sw instance. * @hdev: pointer to the device structure. * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt * @core_id: ID of the decoder. * @base_addr: base address of the decoder. */ struct hl_dec { struct hl_device *hdev; struct work_struct completion_abnrm_work; u32 core_id; u32 base_addr; }; /** * enum hl_asic_type - supported ASIC types. * @ASIC_INVALID: Invalid ASIC type. * @ASIC_GOYA: Goya device (HL-1000). * @ASIC_GAUDI: Gaudi device (HL-2000). * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). * @ASIC_GAUDI2: Gaudi2 device. * @ASIC_GAUDI2_SEC: Gaudi2 secured device. */ enum hl_asic_type { ASIC_INVALID, ASIC_GOYA, ASIC_GAUDI, ASIC_GAUDI_SEC, ASIC_GAUDI2, ASIC_GAUDI2_SEC, }; struct hl_cs_parser; /** * enum hl_pm_mng_profile - power management profile. * @PM_AUTO: internal clock is set by the Linux driver. * @PM_MANUAL: internal clock is set by the user. * @PM_LAST: last power management type. */ enum hl_pm_mng_profile { PM_AUTO = 1, PM_MANUAL, PM_LAST }; /** * enum hl_pll_frequency - PLL frequency. * @PLL_HIGH: high frequency. * @PLL_LOW: low frequency. * @PLL_LAST: last frequency values that were configured by the user. */ enum hl_pll_frequency { PLL_HIGH = 1, PLL_LOW, PLL_LAST }; #define PLL_REF_CLK 50 enum div_select_defs { DIV_SEL_REF_CLK = 0, DIV_SEL_PLL_CLK = 1, DIV_SEL_DIVIDED_REF = 2, DIV_SEL_DIVIDED_PLL = 3, }; enum debugfs_access_type { DEBUGFS_READ8, DEBUGFS_WRITE8, DEBUGFS_READ32, DEBUGFS_WRITE32, DEBUGFS_READ64, DEBUGFS_WRITE64, }; enum pci_region { PCI_REGION_CFG, PCI_REGION_SRAM, PCI_REGION_DRAM, PCI_REGION_SP_SRAM, PCI_REGION_NUMBER, }; /** * struct pci_mem_region - describe memory region in a PCI bar * @region_base: region base address * @region_size: region size * @bar_size: size of the BAR * @offset_in_bar: region offset into the bar * @bar_id: bar ID of the region * @used: if used 1, otherwise 0 */ struct pci_mem_region { u64 region_base; u64 region_size; u64 bar_size; u64 offset_in_bar; u8 bar_id; u8 used; }; /** * struct static_fw_load_mgr - static FW load manager * @preboot_version_max_off: max offset to preboot version * @boot_fit_version_max_off: max offset to boot fit version * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages * @cpu_cmd_status_to_host_reg: register address for CPU command status response * @cpu_boot_status_reg: boot status register * @cpu_boot_dev_status0_reg: boot device status register 0 * @cpu_boot_dev_status1_reg: boot device status register 1 * @boot_err0_reg: boot error register 0 * @boot_err1_reg: boot error register 1 * @preboot_version_offset_reg: SRAM offset to preboot version register * @boot_fit_version_offset_reg: SRAM offset to boot fit version register * @sram_offset_mask: mask for getting offset into the SRAM * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg */ struct static_fw_load_mgr { u64 preboot_version_max_off; u64 boot_fit_version_max_off; u32 kmd_msg_to_cpu_reg; u32 cpu_cmd_status_to_host_reg; u32 cpu_boot_status_reg; u32 cpu_boot_dev_status0_reg; u32 cpu_boot_dev_status1_reg; u32 boot_err0_reg; u32 boot_err1_reg; u32 preboot_version_offset_reg; u32 boot_fit_version_offset_reg; u32 sram_offset_mask; u32 cpu_reset_wait_msec; }; /** * struct fw_response - FW response to LKD command * @ram_offset: descriptor offset into the RAM * @ram_type: RAM type containing the descriptor (SRAM/DRAM) * @status: command status */ struct fw_response { u32 ram_offset; u8 ram_type; u8 status; }; /** * struct dynamic_fw_load_mgr - dynamic FW load manager * @response: FW to LKD response * @comm_desc: the communication descriptor with FW * @image_region: region to copy the FW image to * @fw_image_size: size of FW image to load * @wait_for_bl_timeout: timeout for waiting for boot loader to respond * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used */ struct dynamic_fw_load_mgr { struct fw_response response; struct lkd_fw_comms_desc comm_desc; struct pci_mem_region *image_region; size_t fw_image_size; u32 wait_for_bl_timeout; bool fw_desc_valid; }; /** * struct pre_fw_load_props - needed properties for pre-FW load * @cpu_boot_status_reg: cpu_boot_status register address * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address * @boot_err0_reg: boot_err0 register address * @boot_err1_reg: boot_err1 register address * @wait_for_preboot_timeout: timeout to poll for preboot ready */ struct pre_fw_load_props { u32 cpu_boot_status_reg; u32 sts_boot_dev_sts0_reg; u32 sts_boot_dev_sts1_reg; u32 boot_err0_reg; u32 boot_err1_reg; u32 wait_for_preboot_timeout; }; /** * struct fw_image_props - properties of FW image * @image_name: name of the image * @src_off: offset in src FW to copy from * @copy_size: amount of bytes to copy (0 to copy the whole binary) */ struct fw_image_props { char *image_name; u32 src_off; u32 copy_size; }; /** * struct fw_load_mgr - manager FW loading process * @dynamic_loader: specific structure for dynamic load * @static_loader: specific structure for static load * @pre_fw_load_props: parameter for pre FW load * @boot_fit_img: boot fit image properties * @linux_img: linux image properties * @cpu_timeout: CPU response timeout in usec * @boot_fit_timeout: Boot fit load timeout in usec * @skip_bmc: should BMC be skipped * @sram_bar_id: SRAM bar ID * @dram_bar_id: DRAM bar ID * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded * component. values are set according to enum hl_fw_types. */ struct fw_load_mgr { union { struct dynamic_fw_load_mgr dynamic_loader; struct static_fw_load_mgr static_loader; }; struct pre_fw_load_props pre_fw_load; struct fw_image_props boot_fit_img; struct fw_image_props linux_img; u32 cpu_timeout; u32 boot_fit_timeout; u8 skip_bmc; u8 sram_bar_id; u8 dram_bar_id; u8 fw_comp_loaded; }; struct hl_cs; /** * struct engines_data - asic engines data * @buf: buffer for engines data in ascii * @actual_size: actual size of data that was written by the driver to the allocated buffer * @allocated_buf_size: total size of allocated buffer */ struct engines_data { char *buf; int actual_size; u32 allocated_buf_size; }; /** * struct hl_asic_funcs - ASIC specific functions that are can be called from * common code. * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. * @early_fini: tears down what was done in early_init. * @late_init: sets up late driver/hw state (post hw_init) - Optional. * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. * @sw_init: sets up driver state, does not configure H/W. * @sw_fini: tears down driver state, does not configure H/W. * @hw_init: sets up the H/W state. * @hw_fini: tears down the H/W state. * @halt_engines: halt engines, needed for reset sequence. This also disables * interrupts from the device. Should be called before * hw_fini and before CS rollback. * @suspend: handles IP specific H/W or SW changes for suspend. * @resume: handles IP specific H/W or SW changes for resume. * @mmap: maps a memory. * @ring_doorbell: increment PI on a given QMAN. * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific * function because the PQs are located in different memory areas * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of * writing the PQE must match the destination memory area * properties. * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling * dma_alloc_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @asic_dma_free_coherent: Free coherent DMA memory by calling * dma_free_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @scrub_device_mem: Scrub the entire SRAM and DRAM. * @scrub_device_dram: Scrub the dram memory of the device. * @get_int_queue_base: get the internal queue base address. * @test_queues: run simple test on all queues for sanity check. * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. * size of allocation is HL_DMA_POOL_BLK_SIZE. * @asic_dma_pool_free: free small DMA allocation from pool. * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. * @asic_dma_unmap_single: unmap a single DMA buffer * @asic_dma_map_single: map a single buffer to a DMA * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. * @cs_parser: parse Command Submission. * @asic_dma_map_sgtable: DMA map scatter-gather table. * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. * @update_eq_ci: update event queue CI. * @context_switch: called upon ASID context switch. * @restore_phase_topology: clear all SOBs amd MONs. * @debugfs_read_dma: debug interface for reading up to 2MB from the device's * internal memory via DMA engine. * @add_device_attr: add ASIC specific device attributes. * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. * @get_events_stat: retrieve event queue entries histogram. * @read_pte: read MMU page table entry from DRAM. * @write_pte: write MMU page table entry to DRAM. * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft * (L1 only) or hard (L0 & L1) flush. * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. * @send_heartbeat: send is-alive packet to CPU-CP and verify response. * @debug_coresight: perform certain actions on Coresight for debugging. * @is_device_idle: return true if device is idle, false otherwise. * @compute_reset_late_init: perform certain actions needed after a compute reset * @hw_queues_lock: acquire H/W queues lock. * @hw_queues_unlock: release H/W queues lock. * @get_pci_id: retrieve PCI ID. * @get_eeprom_data: retrieve EEPROM data from F/W. * @get_monitor_dump: retrieve monitor registers dump from F/W. * @send_cpu_message: send message to F/W. If the message is timedout, the * driver will eventually reset the device. The timeout can * be determined by the calling function or it can be 0 and * then the timeout is the default timeout for the specific * ASIC * @get_hw_state: retrieve the H/W state * @pci_bars_map: Map PCI BARs. * @init_iatu: Initialize the iATU unit inside the PCI controller. * @rreg: Read a register. Needed for simulator support. * @wreg: Write a register. Needed for simulator support. * @halt_coresight: stop the ETF and ETR traces. * @ctx_init: context dependent initialization. * @ctx_fini: context dependent cleanup. * @pre_schedule_cs: Perform pre-CS-scheduling operations. * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. * @load_firmware_to_device: load the firmware to the device's memory * @load_boot_fit_to_device: load boot fit to device's memory * @get_signal_cb_size: Get signal CB size. * @get_wait_cb_size: Get wait CB size. * @gen_signal_cb: Generate a signal CB. * @gen_wait_cb: Generate a wait CB. * @reset_sob: Reset a SOB. * @reset_sob_group: Reset SOB group * @get_device_time: Get the device time. * @pb_print_security_errors: print security errors according block and cause * @collective_wait_init_cs: Generate collective master/slave packets * and place them in the relevant cs jobs * @collective_wait_create_jobs: allocate collective wait cs jobs * @get_dec_base_addr: get the base address of a given decoder. * @scramble_addr: Routine to scramble the address prior of mapping it * in the MMU. * @descramble_addr: Routine to de-scramble the address prior of * showing it to users. * @ack_protection_bits_errors: ack and dump all security violations * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. * also returns the size of the block if caller supplies * a valid pointer for it * @hw_block_mmap: mmap a HW block with a given id. * @enable_events_from_fw: send interrupt to firmware to notify them the * driver is ready to receive asynchronous events. This * function should be called during the first init and * after every hard-reset of the device * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to * generic f/w compatible PLL Indexes * @init_firmware_preload_params: initialize pre FW-load parameters. * @init_firmware_loader: initialize data for FW loader. * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling * @state_dump_init: initialize constants required for state dump * @get_sob_addr: get SOB base address offset. * @set_pci_memory_regions: setting properties of PCI memory regions * @get_stream_master_qid_arr: get pointer to stream masters QID array * @check_if_razwi_happened: check if there was a razwi due to RR violation. * @access_dev_mem: access device memory * @set_dram_bar_base: set the base of the DRAM BAR * @set_engine_cores: set a config command to enigne cores * @send_device_activity: indication to FW about device availability */ struct hl_asic_funcs { int (*early_init)(struct hl_device *hdev); int (*early_fini)(struct hl_device *hdev); int (*late_init)(struct hl_device *hdev); void (*late_fini)(struct hl_device *hdev); int (*sw_init)(struct hl_device *hdev); int (*sw_fini)(struct hl_device *hdev); int (*hw_init)(struct hl_device *hdev); void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); int (*suspend)(struct hl_device *hdev); int (*resume)(struct hl_device *hdev); int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size); void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd); void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag); void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle); int (*scrub_device_mem)(struct hl_device *hdev); int (*scrub_device_dram)(struct hl_device *hdev, u64 val); void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, dma_addr_t *dma_handle, u16 *queue_len); int (*test_queues)(struct hl_device *hdev); void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle); void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr); void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, size_t size, void *vaddr); void (*asic_dma_unmap_single)(struct hl_device *hdev, dma_addr_t dma_addr, int len, enum dma_data_direction dir); dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, void *addr, int len, enum dma_data_direction dir); void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); void (*add_end_of_cb_packets)(struct hl_device *hdev, void *kernel_address, u32 len, u32 original_len, u64 cq_addr, u32 cq_val, u32 msix_num, bool eb); void (*update_eq_ci)(struct hl_device *hdev, u32 val); int (*context_switch)(struct hl_device *hdev, u32 asid); void (*restore_phase_topology)(struct hl_device *hdev); int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr); void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, struct attribute_group *dev_vrm_attr_grp); void (*handle_eqe)(struct hl_device *hdev, struct hl_eq_entry *eq_entry); void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, u32 *size); u64 (*read_pte)(struct hl_device *hdev, u64 addr); void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, u32 flags); int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, u32 flags, u32 asid, u64 va, u64 size); int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); int (*send_heartbeat)(struct hl_device *hdev); int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, struct engines_data *e); int (*compute_reset_late_init)(struct hl_device *hdev); void (*hw_queues_lock)(struct hl_device *hdev); void (*hw_queues_unlock)(struct hl_device *hdev); u32 (*get_pci_id)(struct hl_device *hdev); int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); int (*get_monitor_dump)(struct hl_device *hdev, void *data); int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, u16 len, u32 timeout, u64 *result); int (*pci_bars_map)(struct hl_device *hdev); int (*init_iatu)(struct hl_device *hdev); u32 (*rreg)(struct hl_device *hdev, u32 reg); void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); int (*ctx_init)(struct hl_ctx *ctx); void (*ctx_fini)(struct hl_ctx *ctx); int (*pre_schedule_cs)(struct hl_cs *cs); u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); int (*load_firmware_to_device)(struct hl_device *hdev); int (*load_boot_fit_to_device)(struct hl_device *hdev); u32 (*get_signal_cb_size)(struct hl_device *hdev); u32 (*get_wait_cb_size)(struct hl_device *hdev); u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb); u32 (*gen_wait_cb)(struct hl_device *hdev, struct hl_gen_wait_properties *prop); void (*reset_sob)(struct hl_device *hdev, void *data); void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); u64 (*get_device_time)(struct hl_device *hdev); void (*pb_print_security_errors)(struct hl_device *hdev, u32 block_addr, u32 cause, u32 offended_addr); int (*collective_wait_init_cs)(struct hl_cs *cs); int (*collective_wait_create_jobs)(struct hl_device *hdev, struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id, u32 collective_engine_id, u32 encaps_signal_offset); u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); void (*ack_protection_bits_errors)(struct hl_device *hdev); int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, u32 *block_size, u32 *block_id); int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, u32 block_id, u32 block_size); void (*enable_events_from_fw)(struct hl_device *hdev); int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); void (*get_msi_info)(__le32 *table); int (*map_pll_idx_to_fw_idx)(u32 pll_idx); void (*init_firmware_preload_params)(struct hl_device *hdev); void (*init_firmware_loader)(struct hl_device *hdev); void (*init_cpu_scrambler_dram)(struct hl_device *hdev); void (*state_dump_init)(struct hl_device *hdev); u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); void (*set_pci_memory_regions)(struct hl_device *hdev); u32* (*get_stream_master_qid_arr)(void); void (*check_if_razwi_happened)(struct hl_device *hdev); int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, u32 page_size, u32 *real_page_size, bool is_dram_addr); int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type); u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, u32 num_cores, u32 core_command); int (*send_device_activity)(struct hl_device *hdev, bool open); }; /* * CONTEXTS */ #define HL_KERNEL_ASID_ID 0 /** * enum hl_va_range_type - virtual address range type. * @HL_VA_RANGE_TYPE_HOST: range type of host pages * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages */ enum hl_va_range_type { HL_VA_RANGE_TYPE_HOST, HL_VA_RANGE_TYPE_HOST_HUGE, HL_VA_RANGE_TYPE_DRAM, HL_VA_RANGE_TYPE_MAX }; /** * struct hl_va_range - virtual addresses range. * @lock: protects the virtual addresses list. * @list: list of virtual addresses blocks available for mappings. * @start_addr: range start address. * @end_addr: range end address. * @page_size: page size of this va range. */ struct hl_va_range { struct mutex lock; struct list_head list; u64 start_addr; u64 end_addr; u32 page_size; }; /** * struct hl_cs_counters_atomic - command submission counters * @out_of_mem_drop_cnt: dropped due to memory allocation issue * @parsing_drop_cnt: dropped due to error in packet parsing * @queue_full_drop_cnt: dropped due to queue full * @device_in_reset_drop_cnt: dropped due to device in reset * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight * @validation_drop_cnt: dropped due to error in validation */ struct hl_cs_counters_atomic { atomic64_t out_of_mem_drop_cnt; atomic64_t parsing_drop_cnt; atomic64_t queue_full_drop_cnt; atomic64_t device_in_reset_drop_cnt; atomic64_t max_cs_in_flight_drop_cnt; atomic64_t validation_drop_cnt; }; /** * struct hl_dmabuf_priv - a dma-buf private object. * @dmabuf: pointer to dma-buf object. * @ctx: pointer to the dma-buf owner's context. * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for * memory allocation handle. * @device_address: physical address of the device's memory. Relevant only * if phys_pg_pack is NULL (dma-buf was exported from address). * The total size can be taken from the dmabuf object. */ struct hl_dmabuf_priv { struct dma_buf *dmabuf; struct hl_ctx *ctx; struct hl_vm_phys_pg_pack *phys_pg_pack; uint64_t device_address; }; #define HL_CS_OUTCOME_HISTORY_LEN 256 /** * struct hl_cs_outcome - represents a single completed CS outcome * @list_link: link to either container's used list or free list * @map_link: list to the container hash map * @ts: completion ts * @seq: the original cs sequence * @error: error code cs completed with, if any */ struct hl_cs_outcome { struct list_head list_link; struct hlist_node map_link; ktime_t ts; u64 seq; int error; }; /** * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes * @outcome_map: index of completed CS searchable by sequence number * @used_list: list of outcome objects currently in use * @free_list: list of outcome objects currently not in use * @nodes_pool: a static pool of pre-allocated outcome objects * @db_lock: any operation on the store must take this lock */ struct hl_cs_outcome_store { DECLARE_HASHTABLE(outcome_map, 8); struct list_head used_list; struct list_head free_list; struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; spinlock_t db_lock; }; /** * struct hl_ctx - user/kernel context. * @mem_hash: holds mapping from virtual address to virtual memory area * descriptor (hl_vm_phys_pg_list or hl_userptr). * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from * MMU-hop-page physical address to its host-resident * pgt_info structure. * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). * @hdev: pointer to the device structure. * @refcount: reference counter for the context. Context is released only when * this hits 0l. It is incremented on CS and CS_WAIT. * @cs_pending: array of hl fence objects representing pending CS. * @outcome_store: storage data structure used to remember outcomes of completed * command submissions for a long time after CS id wraparound. * @va_range: holds available virtual addresses for host and dram mappings. * @mem_hash_lock: protects the mem_hash. * @hw_block_list_lock: protects the HW block memory list. * @debugfs_list: node in debugfs list of contexts. * @hw_block_mem_list: list of HW block virtual mapped addresses. * @cs_counters: context command submission counters. * @cb_va_pool: device VA pool for command buffers which are mapped to the * device's MMU. * @sig_mgr: encaps signals handle manager. * @cb_va_pool_base: the base address for the device VA pool * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed * to user so user could inquire about CS. It is used as * index to cs_pending array. * @dram_default_hops: array that holds all hops addresses needed for default * DRAM mapping. * @cs_lock: spinlock to protect cs_sequence. * @dram_phys_mem: amount of used physical DRAM memory by this context. * @thread_ctx_switch_token: token to prevent multiple threads of the same * context from running the context switch phase. * Only a single thread should run it. * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run * the context switch phase from moving to their * execution phase before the context switch phase * has finished. * @asid: context's unique address space ID in the device's MMU. * @handle: context's opaque handle for user */ struct hl_ctx { DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); struct hl_fpriv *hpriv; struct hl_device *hdev; struct kref refcount; struct hl_fence **cs_pending; struct hl_cs_outcome_store outcome_store; struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; struct mutex mem_hash_lock; struct mutex hw_block_list_lock; struct list_head debugfs_list; struct list_head hw_block_mem_list; struct hl_cs_counters_atomic cs_counters; struct gen_pool *cb_va_pool; struct hl_encaps_signals_mgr sig_mgr; u64 cb_va_pool_base; u64 cs_sequence; u64 *dram_default_hops; spinlock_t cs_lock; atomic64_t dram_phys_mem; atomic_t thread_ctx_switch_token; u32 thread_ctx_switch_wait_token; u32 asid; u32 handle; }; /** * struct hl_ctx_mgr - for handling multiple contexts. * @lock: protects ctx_handles. * @handles: idr to hold all ctx handles. */ struct hl_ctx_mgr { struct mutex lock; struct idr handles; }; /* * COMMAND SUBMISSIONS */ /** * struct hl_userptr - memory mapping chunk information * @vm_type: type of the VM. * @job_node: linked-list node for hanging the object on the Job's list. * @pages: pointer to struct page array * @npages: size of @pages array * @sgt: pointer to the scatter-gather table that holds the pages. * @dir: for DMA unmapping, the direction must be supplied, so save it. * @debugfs_list: node in debugfs list of command submissions. * @pid: the pid of the user process owning the memory * @addr: user-space virtual address of the start of the memory area. * @size: size of the memory area to pin & map. * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. */ struct hl_userptr { enum vm_type vm_type; /* must be first */ struct list_head job_node; struct page **pages; unsigned int npages; struct sg_table *sgt; enum dma_data_direction dir; struct list_head debugfs_list; pid_t pid; u64 addr; u64 size; u8 dma_mapped; }; /** * struct hl_cs - command submission. * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. * @ctx: the context this CS belongs to. * @job_list: list of the CS's jobs in the various queues. * @job_lock: spinlock for the CS's jobs list. Needed for free_job. * @refcount: reference counter for usage of the CS. * @fence: pointer to the fence object of this CS. * @signal_fence: pointer to the fence object of the signal CS (used by wait * CS only). * @finish_work: workqueue object to run when CS is completed by H/W. * @work_tdr: delayed work node for TDR. * @mirror_node : node in device mirror list of command submissions. * @staged_cs_node: node in the staged cs list. * @debugfs_list: node in debugfs list of command submissions. * @encaps_sig_hdl: holds the encaps signals handle. * @sequence: the sequence number of this CS. * @staged_sequence: the sequence of the staged submission this CS is part of, * relevant only if staged_cs is set. * @timeout_jiffies: cs timeout in jiffies. * @submission_time_jiffies: submission time of the cs * @type: CS_TYPE_*. * @jobs_cnt: counter of submitted jobs on all queues. * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. * @sob_addr_offset: sob offset from the configuration base address. * @initial_sob_count: count of completed signals in SOB before current submission of signal or * cs with encaps signals. * @submitted: true if CS was submitted to H/W. * @completed: true if CS was completed by device. * @timedout : true if CS was timedout. * @tdr_active: true if TDR was activated for this CS (to prevent * double TDR activation). * @aborted: true if CS was aborted due to some device error. * @timestamp: true if a timestamp must be captured upon completion. * @staged_last: true if this is the last staged CS and needs completion. * @staged_first: true if this is the first staged CS and we need to receive * timeout for this CS. * @staged_cs: true if this CS is part of a staged submission. * @skip_reset_on_timeout: true if we shall not reset the device in case * timeout occurs (debug scenario). * @encaps_signals: true if this CS has encaps reserved signals. */ struct hl_cs { u16 *jobs_in_queue_cnt; struct hl_ctx *ctx; struct list_head job_list; spinlock_t job_lock; struct kref refcount; struct hl_fence *fence; struct hl_fence *signal_fence; struct work_struct finish_work; struct delayed_work work_tdr; struct list_head mirror_node; struct list_head staged_cs_node; struct list_head debugfs_list; struct hl_cs_encaps_sig_handle *encaps_sig_hdl; u64 sequence; u64 staged_sequence; u64 timeout_jiffies; u64 submission_time_jiffies; enum hl_cs_type type; u32 jobs_cnt; u32 encaps_sig_hdl_id; u32 sob_addr_offset; u16 initial_sob_count; u8 submitted; u8 completed; u8 timedout; u8 tdr_active; u8 aborted; u8 timestamp; u8 staged_last; u8 staged_first; u8 staged_cs; u8 skip_reset_on_timeout; u8 encaps_signals; }; /** * struct hl_cs_job - command submission job. * @cs_node: the node to hang on the CS jobs list. * @cs: the CS this job belongs to. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @finish_work: workqueue object to run when job is completed. * @userptr_list: linked-list of userptr mappings that belong to this job and * wait for completion. * @debugfs_list: node in debugfs list of command submission jobs. * @refcount: reference counter for usage of the CS job. * @queue_type: the type of the H/W queue this job is submitted to. * @id: the id of this job inside a CS. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @job_cb_size: the actual size of the CB that we put on the queue. * @encaps_sig_wait_offset: encapsulated signals offset, which allow user * to wait on part of the reserved signals. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This * info is needed later, when adding the 2xMSG_PROT at the * end of the JOB, to know which barriers to put in the * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't * have streams so the engine can't be busy by another * stream. */ struct hl_cs_job { struct list_head cs_node; struct hl_cs *cs; struct hl_cb *user_cb; struct hl_cb *patched_cb; struct work_struct finish_work; struct list_head userptr_list; struct list_head debugfs_list; struct kref refcount; enum hl_queue_type queue_type; u32 id; u32 hw_queue_id; u32 user_cb_size; u32 job_cb_size; u32 encaps_sig_wait_offset; u8 is_kernel_allocated_cb; u8 contains_dma_pkt; }; /** * struct hl_cs_parser - command submission parser properties. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @job_userptr_list: linked-list of userptr mappings that belong to the related * job and wait for completion. * @cs_sequence: the sequence number of the related CS. * @queue_type: the type of the H/W queue this job is submitted to. * @ctx_id: the ID of the context the related CS belongs to. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @patched_cb_size: the size of the CB after parsing. * @job_id: the id of the related job inside the related CS. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This * info is needed later, when adding the 2xMSG_PROT at the * end of the JOB, to know which barriers to put in the * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't * have streams so the engine can't be busy by another * stream. * @completion: true if we need completion for this CS. */ struct hl_cs_parser { struct hl_cb *user_cb; struct hl_cb *patched_cb; struct list_head *job_userptr_list; u64 cs_sequence; enum hl_queue_type queue_type; u32 ctx_id; u32 hw_queue_id; u32 user_cb_size; u32 patched_cb_size; u8 job_id; u8 is_kernel_allocated_cb; u8 contains_dma_pkt; u8 completion; }; /* * MEMORY STRUCTURE */ /** * struct hl_vm_hash_node - hash element from virtual address to virtual * memory area descriptor (hl_vm_phys_pg_list or * hl_userptr). * @node: node to hang on the hash table in context object. * @vaddr: key virtual address. * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). */ struct hl_vm_hash_node { struct hlist_node node; u64 vaddr; void *ptr; }; /** * struct hl_vm_hw_block_list_node - list element from user virtual address to * HW block id. * @node: node to hang on the list in context object. * @ctx: the context this node belongs to. * @vaddr: virtual address of the HW block. * @block_size: size of the block. * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. * @id: HW block id (handle). */ struct hl_vm_hw_block_list_node { struct list_head node; struct hl_ctx *ctx; unsigned long vaddr; u32 block_size; u32 mapped_size; u32 id; }; /** * struct hl_vm_phys_pg_pack - physical page pack. * @vm_type: describes the type of the virtual area descriptor. * @pages: the physical page array. * @npages: num physical pages in the pack. * @total_size: total size of all the pages in this list. * @node: used to attach to deletion list that is used when all the allocations are cleared * at the teardown of the context. * @mapping_cnt: number of shared mappings. * @exporting_cnt: number of dma-buf exporting. * @asid: the context related to this list. * @page_size: size of each page in the pack. * @flags: HL_MEM_* flags related to this list. * @handle: the provided handle related to this list. * @offset: offset from the first page. * @contiguous: is contiguous physical memory. * @created_from_userptr: is product of host virtual address. */ struct hl_vm_phys_pg_pack { enum vm_type vm_type; /* must be first */ u64 *pages; u64 npages; u64 total_size; struct list_head node; atomic_t mapping_cnt; u32 exporting_cnt; u32 asid; u32 page_size; u32 flags; u32 handle; u32 offset; u8 contiguous; u8 created_from_userptr; }; /** * struct hl_vm_va_block - virtual range block information. * @node: node to hang on the virtual range list in context object. * @start: virtual range start address. * @end: virtual range end address. * @size: virtual range size. */ struct hl_vm_va_block { struct list_head node; u64 start; u64 end; u64 size; }; /** * struct hl_vm - virtual memory manager for MMU. * @dram_pg_pool: pool for DRAM physical pages of 2MB. * @dram_pg_pool_refcount: reference counter for the pool usage. * @idr_lock: protects the phys_pg_list_handles. * @phys_pg_pack_handles: idr to hold all device allocations handles. * @init_done: whether initialization was done. We need this because VM * initialization might be skipped during device initialization. */ struct hl_vm { struct gen_pool *dram_pg_pool; struct kref dram_pg_pool_refcount; spinlock_t idr_lock; struct idr phys_pg_pack_handles; u8 init_done; }; /* * DEBUG, PROFILING STRUCTURE */ /** * struct hl_debug_params - Coresight debug parameters. * @input: pointer to component specific input parameters. * @output: pointer to component specific output parameters. * @output_size: size of output buffer. * @reg_idx: relevant register ID. * @op: component operation to execute. * @enable: true if to enable component debugging, false otherwise. */ struct hl_debug_params { void *input; void *output; u32 output_size; u32 reg_idx; u32 op; bool enable; }; /** * struct hl_notifier_event - holds the notifier data structure * @eventfd: the event file descriptor to raise the notifications * @lock: mutex lock to protect the notifier data flows * @events_mask: indicates the bitmap events */ struct hl_notifier_event { struct eventfd_ctx *eventfd; struct mutex lock; u64 events_mask; }; /* * FILE PRIVATE STRUCTURE */ /** * struct hl_fpriv - process information stored in FD private data. * @hdev: habanalabs device structure. * @filp: pointer to the given file structure. * @taskpid: current process ID. * @ctx: current executing context. TODO: remove for multiple ctx per process * @ctx_mgr: context manager to handle multiple context for this FD. * @mem_mgr: manager descriptor for memory exportable via mmap * @notifier_event: notifier eventfd towards user process * @debugfs_list: list of relevant ASIC debugfs. * @dev_node: node in the device list of file private data * @refcount: number of related contexts. * @restore_phase_mutex: lock for context switch and restore phase. * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple * ctx per process. */ struct hl_fpriv { struct hl_device *hdev; struct file *filp; struct pid *taskpid; struct hl_ctx *ctx; struct hl_ctx_mgr ctx_mgr; struct hl_mem_mgr mem_mgr; struct hl_notifier_event notifier_event; struct list_head debugfs_list; struct list_head dev_node; struct kref refcount; struct mutex restore_phase_mutex; struct mutex ctx_lock; }; /* * DebugFS */ /** * struct hl_info_list - debugfs file ops. * @name: file name. * @show: function to output information. * @write: function to write to the file. */ struct hl_info_list { const char *name; int (*show)(struct seq_file *s, void *data); ssize_t (*write)(struct file *file, const char __user *buf, size_t count, loff_t *f_pos); }; /** * struct hl_debugfs_entry - debugfs dentry wrapper. * @info_ent: dentry related ops. * @dev_entry: ASIC specific debugfs manager. */ struct hl_debugfs_entry { const struct hl_info_list *info_ent; struct hl_dbg_device_entry *dev_entry; }; /** * struct hl_dbg_device_entry - ASIC specific debugfs manager. * @root: root dentry. * @hdev: habanalabs device structure. * @entry_arr: array of available hl_debugfs_entry. * @file_list: list of available debugfs files. * @file_mutex: protects file_list. * @cb_list: list of available CBs. * @cb_spinlock: protects cb_list. * @cs_list: list of available CSs. * @cs_spinlock: protects cs_list. * @cs_job_list: list of available CB jobs. * @cs_job_spinlock: protects cs_job_list. * @userptr_list: list of available userptrs (virtual memory chunk descriptor). * @userptr_spinlock: protects userptr_list. * @ctx_mem_hash_list: list of available contexts with MMU mappings. * @ctx_mem_hash_spinlock: protects cb_list. * @data_dma_blob_desc: data DMA descriptor of blob. * @mon_dump_blob_desc: monitor dump descriptor of blob. * @state_dump: data of the system states in case of a bad cs. * @state_dump_sem: protects state_dump. * @addr: next address to read/write from/to in read/write32. * @mmu_addr: next virtual address to translate to physical address in mmu_show. * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. * @userptr_lookup: the target user ptr to look up for on demand. * @mmu_asid: ASID to use while translating in mmu_show. * @state_dump_head: index of the latest state dump * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. */ struct hl_dbg_device_entry { struct dentry *root; struct hl_device *hdev; struct hl_debugfs_entry *entry_arr; struct list_head file_list; struct mutex file_mutex; struct list_head cb_list; spinlock_t cb_spinlock; struct list_head cs_list; spinlock_t cs_spinlock; struct list_head cs_job_list; spinlock_t cs_job_spinlock; struct list_head userptr_list; spinlock_t userptr_spinlock; struct list_head ctx_mem_hash_list; spinlock_t ctx_mem_hash_spinlock; struct debugfs_blob_wrapper data_dma_blob_desc; struct debugfs_blob_wrapper mon_dump_blob_desc; char *state_dump[HL_STATE_DUMP_HIST_LEN]; struct rw_semaphore state_dump_sem; u64 addr; u64 mmu_addr; u64 mmu_cap_mask; u64 userptr_lookup; u32 mmu_asid; u32 state_dump_head; u8 i2c_bus; u8 i2c_addr; u8 i2c_reg; u8 i2c_len; }; /** * struct hl_hw_obj_name_entry - single hw object name, member of * hl_state_dump_specs * @node: link to the containing hash table * @name: hw object name * @id: object identifier */ struct hl_hw_obj_name_entry { struct hlist_node node; const char *name; u32 id; }; enum hl_state_dump_specs_props { SP_SYNC_OBJ_BASE_ADDR, SP_NEXT_SYNC_OBJ_ADDR, SP_SYNC_OBJ_AMOUNT, SP_MON_OBJ_WR_ADDR_LOW, SP_MON_OBJ_WR_ADDR_HIGH, SP_MON_OBJ_WR_DATA, SP_MON_OBJ_ARM_DATA, SP_MON_OBJ_STATUS, SP_MONITORS_AMOUNT, SP_TPC0_CMDQ, SP_TPC0_CFG_SO, SP_NEXT_TPC, SP_MME_CMDQ, SP_MME_CFG_SO, SP_NEXT_MME, SP_DMA_CMDQ, SP_DMA_CFG_SO, SP_DMA_QUEUES_OFFSET, SP_NUM_OF_MME_ENGINES, SP_SUB_MME_ENG_NUM, SP_NUM_OF_DMA_ENGINES, SP_NUM_OF_TPC_ENGINES, SP_ENGINE_NUM_OF_QUEUES, SP_ENGINE_NUM_OF_STREAMS, SP_ENGINE_NUM_OF_FENCES, SP_FENCE0_CNT_OFFSET, SP_FENCE0_RDATA_OFFSET, SP_CP_STS_OFFSET, SP_NUM_CORES, SP_MAX }; enum hl_sync_engine_type { ENGINE_TPC, ENGINE_DMA, ENGINE_MME, }; /** * struct hl_mon_state_dump - represents a state dump of a single monitor * @id: monitor id * @wr_addr_low: address monitor will write to, low bits * @wr_addr_high: address monitor will write to, high bits * @wr_data: data monitor will write * @arm_data: register value containing monitor configuration * @status: monitor status */ struct hl_mon_state_dump { u32 id; u32 wr_addr_low; u32 wr_addr_high; u32 wr_data; u32 arm_data; u32 status; }; /** * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry * @engine_type: type of the engine * @engine_id: id of the engine * @sync_id: id of the sync object */ struct hl_sync_to_engine_map_entry { struct hlist_node node; enum hl_sync_engine_type engine_type; u32 engine_id; u32 sync_id; }; /** * struct hl_sync_to_engine_map - maps sync object id to associated engine id * @tb: hash table containing the mapping, each element is of type * struct hl_sync_to_engine_map_entry */ struct hl_sync_to_engine_map { DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); }; /** * struct hl_state_dump_specs_funcs - virtual functions used by the state dump * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine * @print_single_monitor: format monitor data as string * @monitor_valid: return true if given monitor dump is valid * @print_fences_single_engine: format fences data as string */ struct hl_state_dump_specs_funcs { int (*gen_sync_to_engine_map)(struct hl_device *hdev, struct hl_sync_to_engine_map *map); int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, struct hl_device *hdev, struct hl_mon_state_dump *mon); int (*monitor_valid)(struct hl_mon_state_dump *mon); int (*print_fences_single_engine)(struct hl_device *hdev, u64 base_offset, u64 status_base_offset, enum hl_sync_engine_type engine_type, u32 engine_id, char **buf, size_t *size, size_t *offset); }; /** * struct hl_state_dump_specs - defines ASIC known hw objects names * @so_id_to_str_tb: sync objects names index table * @monitor_id_to_str_tb: monitors names index table * @funcs: virtual functions used for state dump * @sync_namager_names: readable names for sync manager if available (ex: N_E) * @props: pointer to a per asic const props array required for state dump */ struct hl_state_dump_specs { DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); struct hl_state_dump_specs_funcs funcs; const char * const *sync_namager_names; s64 *props; }; /* * DEVICES */ #define HL_STR_MAX 32 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. */ #define HL_MAX_MINORS 256 /* * Registers read & write functions. */ u32 hl_rreg(struct hl_device *hdev, u32 reg); void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ hdev->asic_funcs->rreg(hdev, (reg))) #define WREG32_P(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= (mask); \ tmp_ |= ((val) & ~(mask)); \ WREG32(reg, tmp_); \ } while (0) #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) #define RMWREG32(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= ~(mask); \ tmp_ |= ((val) << __ffs(mask)); \ WREG32(reg, tmp_); \ } while (0) #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK #define WREG32_FIELD(reg, offset, field, val) \ WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ ~REG_FIELD_MASK(reg, field)) | \ (val) << REG_FIELD_SHIFT(reg, field)) /* Timeout should be longer when working with simulator but cap the * increased timeout to some maximum */ #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ ({ \ ktime_t __timeout; \ u32 __elbi_read; \ int __rc = 0; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ if (elbi) { \ __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ if (__rc) \ break; \ (val) = __elbi_read; \ } else {\ (val) = RREG32((u32)(addr)); \ } \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ if (elbi) { \ __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ if (__rc) \ break; \ (val) = __elbi_read; \ } else {\ (val) = RREG32((u32)(addr)); \ } \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ }) #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) /* * poll array of register addresses. * condition is satisfied if all registers values match the expected value. * once some register in the array satisfies the condition it will not be polled again, * this is done both for efficiency and due to some registers are "clear on read". * TODO: use read from PCI bar in other places in the code (SW-91406) */ #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us, elbi) \ ({ \ ktime_t __timeout; \ u64 __elem_bitmask; \ u32 __read_val; \ u8 __arr_idx; \ int __rc = 0; \ \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min(((u64)timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ \ might_sleep_if(sleep_us); \ if (arr_size >= 64) \ __rc = -EINVAL; \ else \ __elem_bitmask = BIT_ULL(arr_size) - 1; \ for (;;) { \ if (__rc) \ break; \ for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ continue; \ if (elbi) { \ __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ if (__rc) \ break; \ } else { \ __read_val = RREG32((u32)(addr_arr)[__arr_idx]); \ } \ if (__read_val == (expected_val)) \ __elem_bitmask &= ~BIT_ULL(__arr_idx); \ } \ if (__rc || (__elem_bitmask == 0)) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ break; \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ }) #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us) \ hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us, false) #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us) \ hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ timeout_us, true) /* * address in this macro points always to a memory location in the * host's (server's) memory. That location is updated asynchronously * either by the direct access of the device or by another core. * * To work both in LE and BE architectures, we need to distinguish between the * two states (device or another core updates the memory location). Therefore, * if mem_written_by_device is true, the host memory being polled will be * updated directly by the device. If false, the host memory being polled will * be updated by host CPU. Required so host knows whether or not the memory * might need to be byte-swapped before returning value to caller. */ #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ mem_written_by_device) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 100), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ /* Verify we read updates done by other cores or by device */ \ mb(); \ (val) = *((u32 *)(addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = *((u32 *)(addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ ({ \ struct user_mapped_block *p = blk; \ \ p->address = base; \ p->size = sz; \ }) #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \ ({ \ usr_intr.hdev = hdev; \ usr_intr.interrupt_id = intr_id; \ usr_intr.is_decoder = decoder; \ INIT_LIST_HEAD(&usr_intr.wait_list_head); \ spin_lock_init(&usr_intr.wait_list_lock); \ }) struct hwmon_chip_info; /** * struct hl_device_reset_work - reset workqueue task wrapper. * @wq: work queue for device reset procedure. * @reset_work: reset work to be done. * @hdev: habanalabs device structure. * @flags: reset flags. */ struct hl_device_reset_work { struct workqueue_struct *wq; struct delayed_work reset_work; struct hl_device *hdev; u32 flags; }; /** * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident * page-table internal information. * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for * allocating hops. * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. */ struct hl_mmu_hr_priv { struct gen_pool *mmu_pgt_pool; struct pgt_info *mmu_asid_hop0; }; /** * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident * page-table internal information. * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. * @mmu_shadow_hop0: shadow array of hop0 tables. */ struct hl_mmu_dr_priv { struct gen_pool *mmu_pgt_pool; void *mmu_shadow_hop0; }; /** * struct hl_mmu_priv - used for holding per-device mmu internal information. * @dr: information on the device-resident MMU, when exists. * @hr: information on the host-resident MMU, when exists. */ struct hl_mmu_priv { struct hl_mmu_dr_priv dr; struct hl_mmu_hr_priv hr; }; /** * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry * that was created in order to translate a virtual address to a * physical one. * @hop_addr: The address of the hop. * @hop_pte_addr: The address of the hop entry. * @hop_pte_val: The value in the hop entry. */ struct hl_mmu_per_hop_info { u64 hop_addr; u64 hop_pte_addr; u64 hop_pte_val; }; /** * struct hl_mmu_hop_info - A structure describing the TLB hops and their * hop-entries that were created in order to translate a virtual address to a * physical one. * @scrambled_vaddr: The value of the virtual address after scrambling. This * address replaces the original virtual-address when mapped * in the MMU tables. * @unscrambled_paddr: The un-scrambled physical address. * @hop_info: Array holding the per-hop information used for the translation. * @used_hops: The number of hops used for the translation. * @range_type: virtual address range type. */ struct hl_mmu_hop_info { u64 scrambled_vaddr; u64 unscrambled_paddr; struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; u32 used_hops; enum hl_va_range_type range_type; }; /** * struct hl_hr_mmu_funcs - Device related host resident MMU functions. * @get_hop0_pgt_info: get page table info structure for HOP0. * @get_pgt_info: get page table info structure for HOP other than HOP0. * @add_pgt_info: add page table info structure to hash. * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. */ struct hl_hr_mmu_funcs { struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, struct hl_mmu_hop_info *hops, u64 virt_addr, bool *is_huge); }; /** * struct hl_mmu_funcs - Device related MMU functions. * @init: initialize the MMU module. * @fini: release the MMU module. * @ctx_init: Initialize a context for using the MMU module. * @ctx_fini: disable a ctx from using the mmu module. * @map: maps a virtual address to physical address for a context. * @unmap: unmap a virtual address of a context. * @flush: flush all writes from all cores to reach device MMU. * @swap_out: marks all mapping of the given context as swapped out. * @swap_in: marks all mapping of the given context as swapped in. * @get_tlb_info: returns the list of hops and hop-entries used that were * created in order to translate the giver virtual address to a * physical one. * @hr_funcs: functions specific to host resident MMU. */ struct hl_mmu_funcs { int (*init)(struct hl_device *hdev); void (*fini)(struct hl_device *hdev); int (*ctx_init)(struct hl_ctx *ctx); void (*ctx_fini)(struct hl_ctx *ctx); int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr); int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); void (*flush)(struct hl_ctx *ctx); void (*swap_out)(struct hl_ctx *ctx); void (*swap_in)(struct hl_ctx *ctx); int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); struct hl_hr_mmu_funcs hr_funcs; }; /** * struct hl_prefetch_work - prefetch work structure handler * @pf_work: actual work struct. * @ctx: compute context. * @va: virtual address to pre-fetch. * @size: pre-fetch size. * @flags: operation flags. * @asid: ASID for maintenance operation. */ struct hl_prefetch_work { struct work_struct pf_work; struct hl_ctx *ctx; u64 va; u64 size; u32 flags; u32 asid; }; /* * number of user contexts allowed to call wait_for_multi_cs ioctl in * parallel */ #define MULTI_CS_MAX_USER_CTX 2 /** * struct multi_cs_completion - multi CS wait completion. * @completion: completion of any of the CS in the list * @lock: spinlock for the completion structure * @timestamp: timestamp for the multi-CS completion * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS * is waiting * @used: 1 if in use, otherwise 0 */ struct multi_cs_completion { struct completion completion; spinlock_t lock; s64 timestamp; u32 stream_master_qid_map; u8 used; }; /** * struct multi_cs_data - internal data for multi CS call * @ctx: pointer to the context structure * @fence_arr: array of fences of all CSs * @seq_arr: array of CS sequence numbers * @timeout_jiffies: timeout in jiffies for waiting for CS to complete * @timestamp: timestamp of first completed CS * @wait_status: wait for CS status * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) * @arr_len: fence_arr and seq_arr array length * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. */ struct multi_cs_data { struct hl_ctx *ctx; struct hl_fence **fence_arr; u64 *seq_arr; s64 timeout_jiffies; s64 timestamp; long wait_status; u32 completion_bitmap; u8 arr_len; u8 gone_cs; u8 update_ts; }; /** * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp * @start: timestamp taken when 'start' event is received in driver * @end: timestamp taken when 'end' event is received in driver */ struct hl_clk_throttle_timestamp { ktime_t start; ktime_t end; }; /** * struct hl_clk_throttle - keeps current/last clock throttling timestamps * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER * index 1 refers to THERMAL * @lock: protects this structure as it can be accessed from both event queue * context and info_ioctl context * @current_reason: bitmask represents the current clk throttling reasons * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load */ struct hl_clk_throttle { struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; struct mutex lock; u32 current_reason; u32 aggregated_reason; }; /** * struct user_mapped_block - describes a hw block allowed to be mmapped by user * @address: physical HW block address * @size: allowed size for mmap */ struct user_mapped_block { u32 address; u32 size; }; /** * struct cs_timeout_info - info of last CS timeout occurred. * @timestamp: CS timeout timestamp. * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, * so the first (root cause) CS timeout will not be overwritten. * @seq: CS timeout sequence number. */ struct cs_timeout_info { ktime_t timestamp; atomic_t write_enable; u64 seq; }; /** * struct razwi_info - info about last razwi error occurred. * @timestamp: razwi timestamp. * @write_enable: if set writing to razwi parameters in the structure is enabled. * otherwise - disabled, so the first (root cause) razwi will not be overwritten. * @addr: address that caused razwi. * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does * not have engine id it will be set to U16_MAX. * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible * engines which one them caused the razwi. In that case, it will contain the * second possible engine id, otherwise it will be set to U16_MAX. * @non_engine_initiator: in case the initiator of the razwi does not have engine id. * @type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX. */ struct razwi_info { ktime_t timestamp; atomic_t write_enable; u64 addr; u16 engine_id_1; u16 engine_id_2; u8 non_engine_initiator; u8 type; }; #define MAX_QMAN_STREAMS_INFO 4 #define OPCODE_INFO_MAX_ADDR_SIZE 8 /** * struct undefined_opcode_info - info about last undefined opcode error * @timestamp: timestamp of the undefined opcode error * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ * entries. In case all streams array entries are * filled with values, it means the execution was in Lower-CP. * @cq_addr: the address of the current handled command buffer * @cq_size: the size of the current handled command buffer * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. * should be equal to 1 incase of undefined opcode * in Upper-CP (specific stream) and equal to 4 incase * of undefined opcode in Lower-CP. * @engine_id: engine-id that the error occurred on * @stream_id: the stream id the error occurred on. In case the stream equals to * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. * @write_enable: if set, writing to undefined opcode parameters in the structure * is enable so the first (root cause) undefined opcode will not be * overwritten. */ struct undefined_opcode_info { ktime_t timestamp; u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; u64 cq_addr; u32 cq_size; u32 cb_addr_streams_len; u32 engine_id; u32 stream_id; bool write_enable; }; /** * struct hl_error_info - holds information collected during an error. * @cs_timeout: CS timeout error information. * @razwi: razwi information. * @undef_opcode: undefined opcode information */ struct hl_error_info { struct cs_timeout_info cs_timeout; struct razwi_info razwi; struct undefined_opcode_info undef_opcode; }; /** * struct hl_reset_info - holds current device reset information. * @lock: lock to protect critical reset flows. * @compute_reset_cnt: number of compute resets since the driver was loaded. * @hard_reset_cnt: number of hard resets since the driver was loaded. * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, * here we hold the hard reset flags. * @in_reset: is device in reset flow. * @in_compute_reset: Device is currently in reset but not in hard-reset. * @needs_reset: true if reset_on_lockup is false and device should be reset * due to lockup. * @hard_reset_pending: is there a hard reset work pending. * @curr_reset_cause: saves an enumerated reset cause when a hard reset is * triggered, and cleared after it is shared with preboot. * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden * with a new value on next reset * @reset_trigger_repeated: set if device reset is triggered more than once with * same cause. * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to * complete instead. */ struct hl_reset_info { spinlock_t lock; u32 compute_reset_cnt; u32 hard_reset_cnt; u32 hard_reset_schedule_flags; u8 in_reset; u8 in_compute_reset; u8 needs_reset; u8 hard_reset_pending; u8 curr_reset_cause; u8 prev_reset_trigger; u8 reset_trigger_repeated; u8 skip_reset_on_timeout; }; /** * struct hl_device - habanalabs device structure. * @pdev: pointer to PCI device, can be NULL in case of simulator device. * @pcie_bar_phys: array of available PCIe bars physical addresses. * (required only for PCI address match mode) * @pcie_bar: array of available PCIe bars virtual addresses. * @rmmio: configuration area address on SRAM. * @cdev: related char device. * @cdev_ctrl: char device for control operations only (INFO IOCTL) * @dev: related kernel basic device structure. * @dev_ctrl: related kernel device structure for the control device * @work_heartbeat: delayed work for CPU-CP is-alive check. * @device_reset_work: delayed work which performs hard reset * @asic_name: ASIC specific name. * @asic_type: ASIC specific type. * @completion_queue: array of hl_cq. * @user_interrupt: array of hl_user_interrupt. upon the corresponding user * interrupt, driver will monitor the list of fences * registered to this interrupt. * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. * upon any user CQ interrupt, driver will monitor the * list of fences registered to this common structure. * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. * @shadow_cs_queue: pointer to a shadow queue that holds pointers to * outstanding command submissions. * @cq_wq: work queues of completion queues for executing work in process * context. * @eq_wq: work queue of event queue for executing work in process context. * @cs_cmplt_wq: work queue of CS completions for executing work in process * context. * @ts_free_obj_wq: work queue for timestamp registration objects release. * @pf_wq: work queue for MMU pre-fetch operations. * @kernel_ctx: Kernel driver context structure. * @kernel_queues: array of hl_hw_queue. * @cs_mirror_list: CS mirror list for TDR. * @cs_mirror_lock: protects cs_mirror_list. * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. * @event_queue: event queue for IRQ from CPU-CP. * @dma_pool: DMA pool for small allocations. * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. * @asid_bitmap: holds used/available ASIDs. * @asid_mutex: protects asid_bitmap. * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. * @debug_lock: protects critical section of setting debug mode for device * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the * page tables are per context, the invalidation h/w is per MMU. * Therefore, we can't allow multiple contexts (we only have two, * user and kernel) to access the invalidation h/w at the same time. * In addition, any change to the PGT, modifying the MMU hash or * walking the PGT requires talking this lock. * @asic_prop: ASIC specific immutable properties. * @asic_funcs: ASIC specific functions. * @asic_specific: ASIC specific information to use only from ASIC files. * @vm: virtual memory manager for MMU. * @hwmon_dev: H/W monitor device. * @hl_chip_info: ASIC's sensors information. * @device_status_description: device status description. * @hl_debugfs: device's debugfs manager. * @cb_pool: list of pre allocated CBs. * @cb_pool_lock: protects the CB pool. * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. * @internal_cb_pool_dma_addr: internal command buffer pool dma address. * @internal_cb_pool: internal command buffer memory pool. * @internal_cb_va_base: internal cb pool mmu virtual address base * @fpriv_list: list of file private data structures. Each structure is created * when a user opens the device * @fpriv_ctrl_list: list of file private data structures. Each structure is created * when a user opens the control device * @fpriv_list_lock: protects the fpriv_list * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list * @aggregated_cs_counters: aggregated cs counters among all contexts * @mmu_priv: device-specific MMU data. * @mmu_func: device-related MMU functions. * @dec: list of decoder sw instance * @fw_loader: FW loader manager. * @pci_mem_region: array of memory regions in the PCI * @state_dump_specs: constants and dictionaries needed to dump system state. * @multi_cs_completion: array of multi-CS completion. * @clk_throttling: holds information about current/previous clock throttling events * @captured_err_info: holds information about errors. * @reset_info: holds current device reset information. * @stream_master_qid_arr: pointer to array with QIDs of master streams. * @fw_major_version: major version of current loaded preboot. * @fw_minor_version: minor version of current loaded preboot. * @dram_used_mem: current DRAM memory consumption. * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram * @timeout_jiffies: device CS timeout value. * @max_power: the max power of the device, as configured by the sysadmin. This * value is saved so in case of hard-reset, the driver will restore * this value and update the F/W after the re-initialization * @boot_error_status_mask: contains a mask of the device boot error status. * Each bit represents a different error, according to * the defines in hl_boot_if.h. If the bit is cleared, * the error will be ignored by the driver during * device initialization. Mainly used to debug and * workaround firmware bugs * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. * @last_successful_open_jif: timestamp (jiffies) of the last successful * device open. * @last_open_session_duration_jif: duration (jiffies) of the last device open * session. * @open_counter: number of successful device open operations. * @fw_poll_interval_usec: FW status poll interval in usec. * used for CPU boot status * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. * used for COMMs protocols cmds(COMMS_STS_*) * @dram_binning: contains mask of drams that is received from the f/w which indicates which * drams are binned-out * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which * tpc engines are binned-out * @card_type: Various ASICs have several card types. This indicates the card * type of the current device. * @major: habanalabs kernel driver major. * @high_pll: high PLL profile frequency. * @decoder_binning: contains mask of decoder engines that is received from the f/w which * indicates which decoder engines are binned-out * @edma_binning: contains mask of edma engines that is received from the f/w which * indicates which edma engines are binned-out * @id: device minor. * @id_control: minor of the control device. * @cdev_idx: char device index. Used for setting its name. * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit * addresses. * @is_in_dram_scrub: true if dram scrub operation is on going. * @disabled: is device disabled. * @late_init_done: is late init stage was done during initialization. * @hwmon_initialized: is H/W monitor sensors was initialized. * @reset_on_lockup: true if a reset should be done in case of stuck CS, false * otherwise. * @dram_default_page_mapping: is DRAM default page mapping enabled. * @memory_scrub: true to perform device memory scrub in various locations, * such as context-switch, context close, page free, etc. * @pmmu_huge_range: is a different virtual addresses range used for PMMU with * huge pages. * @init_done: is the initialization of the device done. * @device_cpu_disabled: is the device CPU disabled (due to timeouts) * @in_debug: whether the device is in a state where the profiling/tracing infrastructure * can be used. This indication is needed because in some ASICs we need to do * specific operations to enable that infrastructure. * @cdev_sysfs_created: were char devices and sysfs nodes created. * @stop_on_err: true if engines should stop on error. * @supports_sync_stream: is sync stream supported. * @sync_stream_queue_idx: helper index for sync stream queues initialization. * @collective_mon_idx: helper index for collective initialization * @supports_coresight: is CoreSight supported. * @supports_cb_mapping: is mapping a CB to the device's MMU supported. * @process_kill_trial_cnt: number of trials reset thread tried killing * user processes * @device_fini_pending: true if device_fini was called and might be * waiting for the reset thread to finish * @supports_staged_submission: true if staged submissions are supported * @device_cpu_is_halted: Flag to indicate whether the device CPU was already * halted. We can't halt it again because the COMMS * protocol will throw an error. Relevant only for * cases where Linux was not loaded to device CPU * @supports_wait_for_multi_cs: true if wait for multi CS is supported * @is_compute_ctx_active: Whether there is an active compute context executing. * @compute_ctx_in_release: true if the current compute context is being released. * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. * @reset_upon_device_release: reset the device when the user closes the file descriptor of the * device. * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. * @fw_components: Controls which f/w components to load to the device. There are multiple f/w * stages and sometimes we want to stop at a certain stage. Used only for testing. * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing. * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. * @pldm: Whether we are running in Palladium environment. Used only for testing. * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from * the f/w. Used only for testing. * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. * Used only for testing. * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies * that the f/w is always alive. Used only for testing. * @supports_ctx_switch: true if a ctx switch is required upon first submission. */ struct hl_device { struct pci_dev *pdev; u64 pcie_bar_phys[HL_PCI_NUM_BARS]; void __iomem *pcie_bar[HL_PCI_NUM_BARS]; void __iomem *rmmio; struct cdev cdev; struct cdev cdev_ctrl; struct device *dev; struct device *dev_ctrl; struct delayed_work work_heartbeat; struct hl_device_reset_work device_reset_work; char asic_name[HL_STR_MAX]; char status[HL_DEV_STS_MAX][HL_STR_MAX]; enum hl_asic_type asic_type; struct hl_cq *completion_queue; struct hl_user_interrupt *user_interrupt; struct hl_user_interrupt common_user_cq_interrupt; struct hl_user_interrupt common_decoder_interrupt; struct hl_cs **shadow_cs_queue; struct workqueue_struct **cq_wq; struct workqueue_struct *eq_wq; struct workqueue_struct *cs_cmplt_wq; struct workqueue_struct *ts_free_obj_wq; struct workqueue_struct *pf_wq; struct hl_ctx *kernel_ctx; struct hl_hw_queue *kernel_queues; struct list_head cs_mirror_list; spinlock_t cs_mirror_lock; struct hl_mem_mgr kernel_mem_mgr; struct hl_eq event_queue; struct dma_pool *dma_pool; void *cpu_accessible_dma_mem; dma_addr_t cpu_accessible_dma_address; struct gen_pool *cpu_accessible_dma_pool; unsigned long *asid_bitmap; struct mutex asid_mutex; struct mutex send_cpu_message_lock; struct mutex debug_lock; struct mutex mmu_lock; struct asic_fixed_properties asic_prop; const struct hl_asic_funcs *asic_funcs; void *asic_specific; struct hl_vm vm; struct device *hwmon_dev; struct hwmon_chip_info *hl_chip_info; struct hl_dbg_device_entry hl_debugfs; struct list_head cb_pool; spinlock_t cb_pool_lock; void *internal_cb_pool_virt_addr; dma_addr_t internal_cb_pool_dma_addr; struct gen_pool *internal_cb_pool; u64 internal_cb_va_base; struct list_head fpriv_list; struct list_head fpriv_ctrl_list; struct mutex fpriv_list_lock; struct mutex fpriv_ctrl_list_lock; struct hl_cs_counters_atomic aggregated_cs_counters; struct hl_mmu_priv mmu_priv; struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; struct hl_dec *dec; struct fw_load_mgr fw_loader; struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; struct hl_state_dump_specs state_dump_specs; struct multi_cs_completion multi_cs_completion[ MULTI_CS_MAX_USER_CTX]; struct hl_clk_throttle clk_throttling; struct hl_error_info captured_err_info; struct hl_reset_info reset_info; u32 *stream_master_qid_arr; u32 fw_major_version; u32 fw_minor_version; atomic64_t dram_used_mem; u64 memory_scrub_val; u64 timeout_jiffies; u64 max_power; u64 boot_error_status_mask; u64 dram_pci_bar_start; u64 last_successful_open_jif; u64 last_open_session_duration_jif; u64 open_counter; u64 fw_poll_interval_usec; ktime_t last_successful_open_ktime; u64 fw_comms_poll_interval_usec; u64 dram_binning; u64 tpc_binning; enum cpucp_card_types card_type; u32 major; u32 high_pll; u32 decoder_binning; u32 edma_binning; u16 id; u16 id_control; u16 cdev_idx; u16 cpu_pci_msb_addr; u8 is_in_dram_scrub; u8 disabled; u8 late_init_done; u8 hwmon_initialized; u8 reset_on_lockup; u8 dram_default_page_mapping; u8 memory_scrub; u8 pmmu_huge_range; u8 init_done; u8 device_cpu_disabled; u8 in_debug; u8 cdev_sysfs_created; u8 stop_on_err; u8 supports_sync_stream; u8 sync_stream_queue_idx; u8 collective_mon_idx; u8 supports_coresight; u8 supports_cb_mapping; u8 process_kill_trial_cnt; u8 device_fini_pending; u8 supports_staged_submission; u8 device_cpu_is_halted; u8 supports_wait_for_multi_cs; u8 stream_master_qid_arr_size; u8 is_compute_ctx_active; u8 compute_ctx_in_release; u8 supports_mmu_prefetch; u8 reset_upon_device_release; u8 supports_ctx_switch; /* Parameters for bring-up */ u64 nic_ports_mask; u64 fw_components; u8 mmu_enable; u8 cpu_queues_enable; u8 pldm; u8 hard_reset_on_fw_events; u8 bmc_enable; u8 reset_on_preboot_fail; u8 heartbeat; }; /** * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure * @refcount: refcount used to protect removing this id when several * wait cs are used to wait of the reserved encaps signals. * @hdev: pointer to habanalabs device structure. * @hw_sob: pointer to H/W SOB used in the reservation. * @ctx: pointer to the user's context data structure * @cs_seq: staged cs sequence which contains encapsulated signals * @id: idr handler id to be used to fetch the handler info * @q_idx: stream queue index * @pre_sob_val: current SOB value before reservation * @count: signals number */ struct hl_cs_encaps_sig_handle { struct kref refcount; struct hl_device *hdev; struct hl_hw_sob *hw_sob; struct hl_ctx *ctx; u64 cs_seq; u32 id; u32 q_idx; u32 pre_sob_val; u32 count; }; /* * IOCTLs */ /** * typedef hl_ioctl_t - typedef for ioctl function in the driver * @hpriv: pointer to the FD's private data, which contains state of * user process * @data: pointer to the input/output arguments structure of the IOCTL * * Return: 0 for success, negative value for error */ typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); /** * struct hl_ioctl_desc - describes an IOCTL entry of the driver. * @cmd: the IOCTL code as created by the kernel macros. * @func: pointer to the driver's function that should be called for this IOCTL. */ struct hl_ioctl_desc { unsigned int cmd; hl_ioctl_t *func; }; /* * Kernel module functions that can be accessed by entire module */ /** * hl_get_sg_info() - get number of pages and the DMA address from SG list. * @sg: the SG list. * @dma_addr: pointer to DMA address to return. * * Calculate the number of consecutive pages described by the SG list. Take the * offset of the address in the first page, add to it the length and round it up * to the number of needed pages. */ static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) { *dma_addr = sg_dma_address(sg); return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + (PAGE_SIZE - 1)) >> PAGE_SHIFT; } /** * hl_mem_area_inside_range() - Checks whether address+size are inside a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area is inside the valid range, false otherwise. */ static inline bool hl_mem_area_inside_range(u64 address, u64 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size; if ((address >= range_start_address) && (end_address <= range_end_address) && (end_address > address)) return true; return false; } /** * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area overlaps part or all of the valid range, * false otherwise. */ static inline bool hl_mem_area_crosses_range(u64 address, u32 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size - 1; return ((address <= range_end_address) && (range_start_address <= end_address)); } uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag, const char *caller); void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle, const char *caller); void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, const char *caller); void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr, const char *caller); void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle, const char *caller); void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, const char *caller); int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type); int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type); int hl_device_open(struct inode *inode, struct file *filp); int hl_device_open_ctrl(struct inode *inode, struct file *filp); bool hl_device_operational(struct hl_device *hdev, enum hl_device_status *status); enum hl_device_status hl_device_status(struct hl_device *hdev); int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); int hl_hw_queues_create(struct hl_device *hdev); void hl_hw_queues_destroy(struct hl_device *hdev); int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, u32 cb_size, u64 cb_ptr); void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr); int hl_hw_queue_schedule_cs(struct hl_cs *cs); u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); void hl_hw_queue_update_ci(struct hl_cs *cs); void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); irqreturn_t hl_irq_handler_cq(int irq, void *arg); irqreturn_t hl_irq_handler_eq(int irq, void *arg); irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); irqreturn_t hl_irq_handler_default(int irq, void *arg); u32 hl_cq_inc_ptr(u32 ptr); int hl_asid_init(struct hl_device *hdev); void hl_asid_fini(struct hl_device *hdev); unsigned long hl_asid_alloc(struct hl_device *hdev); void hl_asid_free(struct hl_device *hdev, unsigned long asid); int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); void hl_ctx_do_release(struct kref *ref); void hl_ctx_get(struct hl_ctx *ctx); int hl_ctx_put(struct hl_ctx *ctx); struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, struct hl_fence **fence, u32 arr_len); void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); int hl_device_init(struct hl_device *hdev, struct class *hclass); void hl_device_fini(struct hl_device *hdev); int hl_device_suspend(struct hl_device *hdev); int hl_device_resume(struct hl_device *hdev); int hl_device_reset(struct hl_device *hdev, u32 flags); void hl_hpriv_get(struct hl_fpriv *hpriv); int hl_hpriv_put(struct hl_fpriv *hpriv); int hl_device_utilization(struct hl_device *hdev, u32 *utilization); int hl_build_hwmon_channel_info(struct hl_device *hdev, struct cpucp_sensor *sensors_arr); void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); int hl_sysfs_init(struct hl_device *hdev); void hl_sysfs_fini(struct hl_device *hdev); int hl_hwmon_init(struct hl_device *hdev); void hl_hwmon_fini(struct hl_device *hdev); void hl_hwmon_release_resources(struct hl_device *hdev); int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, struct hl_ctx *ctx, u32 cb_size, bool internal_cb, bool map_cb, u64 *handle); int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); void hl_cb_put(struct hl_cb *cb); struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, bool internal_cb); int hl_cb_pool_init(struct hl_device *hdev); int hl_cb_pool_fini(struct hl_device *hdev); int hl_cb_va_pool_init(struct hl_ctx *ctx); void hl_cb_va_pool_fini(struct hl_ctx *ctx); void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, enum hl_queue_type queue_type, bool is_kernel_allocated_cb); void hl_sob_reset_error(struct kref *ref); int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); void hl_fence_put(struct hl_fence *fence); void hl_fences_put(struct hl_fence **fence, int len); void hl_fence_get(struct hl_fence *fence); void cs_get(struct hl_cs *cs); bool cs_needs_completion(struct hl_cs *cs); bool cs_needs_timeout(struct hl_cs *cs); bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); void hl_multi_cs_completion_init(struct hl_device *hdev); void goya_set_asic_funcs(struct hl_device *hdev); void gaudi_set_asic_funcs(struct hl_device *hdev); void gaudi2_set_asic_funcs(struct hl_device *hdev); int hl_vm_ctx_init(struct hl_ctx *ctx); void hl_vm_ctx_fini(struct hl_ctx *ctx); int hl_vm_init(struct hl_device *hdev); void hl_vm_fini(struct hl_device *hdev); void hl_hw_block_mem_init(struct hl_ctx *ctx); void hl_hw_block_mem_fini(struct hl_ctx *ctx); u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, enum hl_va_range_type type, u64 size, u32 alignment); int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, u64 start_addr, u64 size); int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, struct hl_userptr *userptr); void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); void hl_userptr_delete_list(struct hl_device *hdev, struct list_head *userptr_list); bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, struct list_head *userptr_list, struct hl_userptr **userptr); int hl_mmu_init(struct hl_device *hdev); void hl_mmu_fini(struct hl_device *hdev); int hl_mmu_ctx_init(struct hl_ctx *ctx); void hl_mmu_ctx_fini(struct hl_ctx *ctx); int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte); int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, u32 page_size, u32 *real_page_size, bool is_dram_addr); int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte); int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 size); int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, u32 flags, u32 asid, u64 va, u64 size); int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u8 hop_idx, u64 hop_addr, u64 virt_addr); void hl_mmu_hr_flush(struct hl_ctx *ctx); int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, u64 pgt_size); void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, u32 hop_table_size); void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u64 val, u32 hop_table_size); void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u32 hop_table_size); int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 curr_pte); struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop); struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop, u64 curr_pte, bool *is_new_hop); int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, struct hl_hr_mmu_funcs *hr_func); void hl_mmu_swap_out(struct hl_ctx *ctx); void hl_mmu_swap_in(struct hl_ctx *ctx); int hl_mmu_if_set_funcs(struct hl_device *hdev); void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, void __iomem *dst, u32 src_offset, u32 size); int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, u16 len, u32 timeout, u64 *result); int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, size_t irq_arr_size); int hl_fw_test_cpu_queue(struct hl_device *hdev); void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); int hl_fw_send_heartbeat(struct hl_device *hdev); int hl_fw_cpucp_info_get(struct hl_device *hdev, u32 sts_boot_dev_sts0_reg, u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, u32 boot_err1_reg); int hl_fw_cpucp_handshake(struct hl_device *hdev, u32 sts_boot_dev_sts0_reg, u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, u32 boot_err1_reg); int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, struct hl_info_pci_counters *counters); int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy); int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, enum pll_index *pll_index); int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, u16 *pll_freq_arr); int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); int hl_fw_init_cpu(struct hl_device *hdev); int hl_fw_read_preboot_status(struct hl_device *hdev); int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, struct fw_load_mgr *fw_loader, enum comms_cmd cmd, unsigned int size, bool wait_ok, u32 timeout); int hl_fw_dram_replaced_row_get(struct hl_device *hdev, struct cpucp_hbm_row_info *info); int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); int hl_fw_send_device_activity(struct hl_device *hdev, bool open); int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], bool is_wc[3]); int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, struct hl_inbound_pci_region *pci_region); int hl_pci_set_outbound_region(struct hl_device *hdev, struct hl_outbound_pci_region *pci_region); enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); int hl_pci_init(struct hl_device *hdev); void hl_pci_fini(struct hl_device *hdev); long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); long hl_fw_get_max_power(struct hl_device *hdev); void hl_fw_set_max_power(struct hl_device *hdev); int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, u32 nonce); int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); void hl_fw_set_pll_profile(struct hl_device *hdev); void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); void hw_sob_get(struct hl_hw_sob *hw_sob); void hw_sob_put(struct hl_hw_sob *hw_sob); void hl_encaps_handle_do_release(struct kref *ref); void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, struct hl_cs *cs, struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl); int hl_dec_init(struct hl_device *hdev); void hl_dec_fini(struct hl_device *hdev); void hl_dec_ctx_fini(struct hl_ctx *ctx); void hl_release_pending_user_interrupts(struct hl_device *hdev); int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); int hl_state_dump(struct hl_device *hdev); const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, struct hl_mon_state_dump *mon); void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, const char *format, ...); char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, void *args); struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, u64 handle); int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); struct hl_mmap_mem_buf * hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, void *args); __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); #ifdef CONFIG_DEBUG_FS void hl_debugfs_init(void); void hl_debugfs_fini(void); void hl_debugfs_add_device(struct hl_device *hdev); void hl_debugfs_remove_device(struct hl_device *hdev); void hl_debugfs_add_file(struct hl_fpriv *hpriv); void hl_debugfs_remove_file(struct hl_fpriv *hpriv); void hl_debugfs_add_cb(struct hl_cb *cb); void hl_debugfs_remove_cb(struct hl_cb *cb); void hl_debugfs_add_cs(struct hl_cs *cs); void hl_debugfs_remove_cs(struct hl_cs *cs); void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, unsigned long length); #else static inline void __init hl_debugfs_init(void) { } static inline void hl_debugfs_fini(void) { } static inline void hl_debugfs_add_device(struct hl_device *hdev) { } static inline void hl_debugfs_remove_device(struct hl_device *hdev) { } static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_add_cb(struct hl_cb *cb) { } static inline void hl_debugfs_remove_cb(struct hl_cb *cb) { } static inline void hl_debugfs_add_cs(struct hl_cs *cs) { } static inline void hl_debugfs_remove_cs(struct hl_cs *cs) { } static inline void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, unsigned long length) { } #endif /* Security */ int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], int array_size); int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], int mm_array_size, int offset, const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], int blocks_array_size); void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], u32 block_offset, int array_size); void hl_secure_block(struct hl_device *hdev, struct hl_block_glbl_sec sgs_array[], int array_size); int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const u32 *regs_array, u32 regs_array_size, u64 mask); int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const u32 *regs_array, u32 regs_array_size); int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const struct range *regs_range_array, u32 regs_range_array_size, u64 mask); int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const struct range *regs_range_array, u32 regs_range_array_size); int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const u32 *regs_array, u32 regs_array_size); int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, const struct range *regs_range_array, u32 regs_range_array_size); void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size); void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size, u64 mask); void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, u32 num_instances, u32 instance_offset, const u32 pb_blocks[], u32 blocks_array_size); /* IOCTLs */ long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); #endif /* HABANALABSP_H_ */ |