Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | // SPDX-License-Identifier: GPL-2.0-only /* * OMAP2/3 PRM module functions * * Copyright (C) 2010-2011 Texas Instruments, Inc. * Copyright (C) 2010 Nokia Corporation * BenoƮt Cousson * Paul Walmsley */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/io.h> #include "powerdomain.h" #include "prm2xxx_3xxx.h" #include "prm-regbits-24xx.h" #include "clockdomain.h" /** * omap2_prm_is_hardreset_asserted - read the HW reset line state of * submodules contained in the hwmod module * @shift: register bit shift corresponding to the reset line to check * @part: PRM partition, ignored for OMAP2 * @prm_mod: PRM submodule base (e.g. CORE_MOD) * @offset: register offset, ignored for OMAP2 * * Returns 1 if the (sub)module hardreset line is currently asserted, * 0 if the (sub)module hardreset line is not currently asserted, or * -EINVAL if called while running on a non-OMAP2/3 chip. */ int omap2_prm_is_hardreset_asserted(u8 shift, u8 part, s16 prm_mod, u16 offset) { return omap2_prm_read_mod_bits_shift(prm_mod, OMAP2_RM_RSTCTRL, (1 << shift)); } /** * omap2_prm_assert_hardreset - assert the HW reset line of a submodule * @shift: register bit shift corresponding to the reset line to assert * @part: PRM partition, ignored for OMAP2 * @prm_mod: PRM submodule base (e.g. CORE_MOD) * @offset: register offset, ignored for OMAP2 * * Some IPs like dsp or iva contain processors that require an HW * reset line to be asserted / deasserted in order to fully enable the * IP. These modules may have multiple hard-reset lines that reset * different 'submodules' inside the IP block. This function will * place the submodule into reset. Returns 0 upon success or -EINVAL * upon an argument error. */ int omap2_prm_assert_hardreset(u8 shift, u8 part, s16 prm_mod, u16 offset) { u32 mask; mask = 1 << shift; omap2_prm_rmw_mod_reg_bits(mask, mask, prm_mod, OMAP2_RM_RSTCTRL); return 0; } /** * omap2_prm_deassert_hardreset - deassert a submodule hardreset line and wait * @prm_mod: PRM submodule base (e.g. CORE_MOD) * @rst_shift: register bit shift corresponding to the reset line to deassert * @st_shift: register bit shift for the status of the deasserted submodule * @part: PRM partition, not used for OMAP2 * @prm_mod: PRM submodule base (e.g. CORE_MOD) * @rst_offset: reset register offset, not used for OMAP2 * @st_offset: reset status register offset, not used for OMAP2 * * Some IPs like dsp or iva contain processors that require an HW * reset line to be asserted / deasserted in order to fully enable the * IP. These modules may have multiple hard-reset lines that reset * different 'submodules' inside the IP block. This function will * take the submodule out of reset and wait until the PRCM indicates * that the reset has completed before returning. Returns 0 upon success or * -EINVAL upon an argument error, -EEXIST if the submodule was already out * of reset, or -EBUSY if the submodule did not exit reset promptly. */ int omap2_prm_deassert_hardreset(u8 rst_shift, u8 st_shift, u8 part, s16 prm_mod, u16 rst_offset, u16 st_offset) { u32 rst, st; int c; rst = 1 << rst_shift; st = 1 << st_shift; /* Check the current status to avoid de-asserting the line twice */ if (omap2_prm_read_mod_bits_shift(prm_mod, OMAP2_RM_RSTCTRL, rst) == 0) return -EEXIST; /* Clear the reset status by writing 1 to the status bit */ omap2_prm_rmw_mod_reg_bits(0xffffffff, st, prm_mod, OMAP2_RM_RSTST); /* de-assert the reset control line */ omap2_prm_rmw_mod_reg_bits(rst, 0, prm_mod, OMAP2_RM_RSTCTRL); /* wait the status to be set */ omap_test_timeout(omap2_prm_read_mod_bits_shift(prm_mod, OMAP2_RM_RSTST, st), MAX_MODULE_HARDRESET_WAIT, c); return (c == MAX_MODULE_HARDRESET_WAIT) ? -EBUSY : 0; } /* Powerdomain low-level functions */ /* Common functions across OMAP2 and OMAP3 */ int omap2_pwrdm_set_mem_onst(struct powerdomain *pwrdm, u8 bank, u8 pwrst) { u32 m; m = omap2_pwrdm_get_mem_bank_onstate_mask(bank); omap2_prm_rmw_mod_reg_bits(m, (pwrst << __ffs(m)), pwrdm->prcm_offs, OMAP2_PM_PWSTCTRL); return 0; } int omap2_pwrdm_set_mem_retst(struct powerdomain *pwrdm, u8 bank, u8 pwrst) { u32 m; m = omap2_pwrdm_get_mem_bank_retst_mask(bank); omap2_prm_rmw_mod_reg_bits(m, (pwrst << __ffs(m)), pwrdm->prcm_offs, OMAP2_PM_PWSTCTRL); return 0; } int omap2_pwrdm_read_mem_pwrst(struct powerdomain *pwrdm, u8 bank) { u32 m; m = omap2_pwrdm_get_mem_bank_stst_mask(bank); return omap2_prm_read_mod_bits_shift(pwrdm->prcm_offs, OMAP2_PM_PWSTST, m); } int omap2_pwrdm_read_mem_retst(struct powerdomain *pwrdm, u8 bank) { u32 m; m = omap2_pwrdm_get_mem_bank_retst_mask(bank); return omap2_prm_read_mod_bits_shift(pwrdm->prcm_offs, OMAP2_PM_PWSTCTRL, m); } int omap2_pwrdm_set_logic_retst(struct powerdomain *pwrdm, u8 pwrst) { u32 v; v = pwrst << __ffs(OMAP_LOGICRETSTATE_MASK); omap2_prm_rmw_mod_reg_bits(OMAP_LOGICRETSTATE_MASK, v, pwrdm->prcm_offs, OMAP2_PM_PWSTCTRL); return 0; } int omap2_pwrdm_wait_transition(struct powerdomain *pwrdm) { u32 c = 0; /* * REVISIT: pwrdm_wait_transition() may be better implemented * via a callback and a periodic timer check -- how long do we expect * powerdomain transitions to take? */ /* XXX Is this udelay() value meaningful? */ while ((omap2_prm_read_mod_reg(pwrdm->prcm_offs, OMAP2_PM_PWSTST) & OMAP_INTRANSITION_MASK) && (c++ < PWRDM_TRANSITION_BAILOUT)) udelay(1); if (c > PWRDM_TRANSITION_BAILOUT) { pr_err("powerdomain: %s: waited too long to complete transition\n", pwrdm->name); return -EAGAIN; } pr_debug("powerdomain: completed transition in %d loops\n", c); return 0; } int omap2_clkdm_add_wkdep(struct clockdomain *clkdm1, struct clockdomain *clkdm2) { omap2_prm_set_mod_reg_bits((1 << clkdm2->dep_bit), clkdm1->pwrdm.ptr->prcm_offs, PM_WKDEP); return 0; } int omap2_clkdm_del_wkdep(struct clockdomain *clkdm1, struct clockdomain *clkdm2) { omap2_prm_clear_mod_reg_bits((1 << clkdm2->dep_bit), clkdm1->pwrdm.ptr->prcm_offs, PM_WKDEP); return 0; } int omap2_clkdm_read_wkdep(struct clockdomain *clkdm1, struct clockdomain *clkdm2) { return omap2_prm_read_mod_bits_shift(clkdm1->pwrdm.ptr->prcm_offs, PM_WKDEP, (1 << clkdm2->dep_bit)); } /* XXX Caller must hold the clkdm's powerdomain lock */ int omap2_clkdm_clear_all_wkdeps(struct clockdomain *clkdm) { struct clkdm_dep *cd; u32 mask = 0; for (cd = clkdm->wkdep_srcs; cd && cd->clkdm_name; cd++) { if (!cd->clkdm) continue; /* only happens if data is erroneous */ /* PRM accesses are slow, so minimize them */ mask |= 1 << cd->clkdm->dep_bit; cd->wkdep_usecount = 0; } omap2_prm_clear_mod_reg_bits(mask, clkdm->pwrdm.ptr->prcm_offs, PM_WKDEP); return 0; } |