Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | // SPDX-License-Identifier: GPL-2.0 /* * Per Entity Load Tracking * * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * * Interactivity improvements by Mike Galbraith * (C) 2007 Mike Galbraith <efault@gmx.de> * * Various enhancements by Dmitry Adamushko. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> * * Group scheduling enhancements by Srivatsa Vaddagiri * Copyright IBM Corporation, 2007 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> * * Scaled math optimizations by Thomas Gleixner * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> * * Adaptive scheduling granularity, math enhancements by Peter Zijlstra * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra * * Move PELT related code from fair.c into this pelt.c file * Author: Vincent Guittot <vincent.guittot@linaro.org> */ /* * Approximate: * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) */ static u64 decay_load(u64 val, u64 n) { unsigned int local_n; if (unlikely(n > LOAD_AVG_PERIOD * 63)) return 0; /* after bounds checking we can collapse to 32-bit */ local_n = n; /* * As y^PERIOD = 1/2, we can combine * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) * With a look-up table which covers y^n (n<PERIOD) * * To achieve constant time decay_load. */ if (unlikely(local_n >= LOAD_AVG_PERIOD)) { val >>= local_n / LOAD_AVG_PERIOD; local_n %= LOAD_AVG_PERIOD; } val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); return val; } static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) { u32 c1, c2, c3 = d3; /* y^0 == 1 */ /* * c1 = d1 y^p */ c1 = decay_load((u64)d1, periods); /* * p-1 * c2 = 1024 \Sum y^n * n=1 * * inf inf * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) * n=0 n=p */ c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; return c1 + c2 + c3; } /* * Accumulate the three separate parts of the sum; d1 the remainder * of the last (incomplete) period, d2 the span of full periods and d3 * the remainder of the (incomplete) current period. * * d1 d2 d3 * ^ ^ ^ * | | | * |<->|<----------------->|<--->| * ... |---x---|------| ... |------|-----x (now) * * p-1 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 * n=1 * * = u y^p + (Step 1) * * p-1 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) * n=1 */ static __always_inline u32 accumulate_sum(u64 delta, struct sched_avg *sa, unsigned long load, unsigned long runnable, int running) { u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ u64 periods; delta += sa->period_contrib; periods = delta / 1024; /* A period is 1024us (~1ms) */ /* * Step 1: decay old *_sum if we crossed period boundaries. */ if (periods) { sa->load_sum = decay_load(sa->load_sum, periods); sa->runnable_sum = decay_load(sa->runnable_sum, periods); sa->util_sum = decay_load((u64)(sa->util_sum), periods); /* * Step 2 */ delta %= 1024; if (load) { /* * This relies on the: * * if (!load) * runnable = running = 0; * * clause from ___update_load_sum(); this results in * the below usage of @contrib to disappear entirely, * so no point in calculating it. */ contrib = __accumulate_pelt_segments(periods, 1024 - sa->period_contrib, delta); } } sa->period_contrib = delta; if (load) sa->load_sum += load * contrib; if (runnable) sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT; if (running) sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; return periods; } /* * We can represent the historical contribution to runnable average as the * coefficients of a geometric series. To do this we sub-divide our runnable * history into segments of approximately 1ms (1024us); label the segment that * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. * * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... * p0 p1 p2 * (now) (~1ms ago) (~2ms ago) * * Let u_i denote the fraction of p_i that the entity was runnable. * * We then designate the fractions u_i as our co-efficients, yielding the * following representation of historical load: * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... * * We choose y based on the with of a reasonably scheduling period, fixing: * y^32 = 0.5 * * This means that the contribution to load ~32ms ago (u_32) will be weighted * approximately half as much as the contribution to load within the last ms * (u_0). * * When a period "rolls over" and we have new u_0`, multiplying the previous * sum again by y is sufficient to update: * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] */ static __always_inline int ___update_load_sum(u64 now, struct sched_avg *sa, unsigned long load, unsigned long runnable, int running) { u64 delta; delta = now - sa->last_update_time; /* * This should only happen when time goes backwards, which it * unfortunately does during sched clock init when we swap over to TSC. */ if ((s64)delta < 0) { sa->last_update_time = now; return 0; } /* * Use 1024ns as the unit of measurement since it's a reasonable * approximation of 1us and fast to compute. */ delta >>= 10; if (!delta) return 0; sa->last_update_time += delta << 10; /* * running is a subset of runnable (weight) so running can't be set if * runnable is clear. But there are some corner cases where the current * se has been already dequeued but cfs_rq->curr still points to it. * This means that weight will be 0 but not running for a sched_entity * but also for a cfs_rq if the latter becomes idle. As an example, * this happens during idle_balance() which calls * update_blocked_averages(). * * Also see the comment in accumulate_sum(). */ if (!load) runnable = running = 0; /* * Now we know we crossed measurement unit boundaries. The *_avg * accrues by two steps: * * Step 1: accumulate *_sum since last_update_time. If we haven't * crossed period boundaries, finish. */ if (!accumulate_sum(delta, sa, load, runnable, running)) return 0; return 1; } /* * When syncing *_avg with *_sum, we must take into account the current * position in the PELT segment otherwise the remaining part of the segment * will be considered as idle time whereas it's not yet elapsed and this will * generate unwanted oscillation in the range [1002..1024[. * * The max value of *_sum varies with the position in the time segment and is * equals to : * * LOAD_AVG_MAX*y + sa->period_contrib * * which can be simplified into: * * LOAD_AVG_MAX - 1024 + sa->period_contrib * * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024 * * The same care must be taken when a sched entity is added, updated or * removed from a cfs_rq and we need to update sched_avg. Scheduler entities * and the cfs rq, to which they are attached, have the same position in the * time segment because they use the same clock. This means that we can use * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity * if it's more convenient. */ static __always_inline void ___update_load_avg(struct sched_avg *sa, unsigned long load) { u32 divider = get_pelt_divider(sa); /* * Step 2: update *_avg. */ sa->load_avg = div_u64(load * sa->load_sum, divider); sa->runnable_avg = div_u64(sa->runnable_sum, divider); WRITE_ONCE(sa->util_avg, sa->util_sum / divider); } /* * sched_entity: * * task: * se_weight() = se->load.weight * se_runnable() = !!on_rq * * group: [ see update_cfs_group() ] * se_weight() = tg->weight * grq->load_avg / tg->load_avg * se_runnable() = grq->h_nr_running * * runnable_sum = se_runnable() * runnable = grq->runnable_sum * runnable_avg = runnable_sum * * load_sum := runnable * load_avg = se_weight(se) * load_sum * * cfq_rq: * * runnable_sum = \Sum se->avg.runnable_sum * runnable_avg = \Sum se->avg.runnable_avg * * load_sum = \Sum se_weight(se) * se->avg.load_sum * load_avg = \Sum se->avg.load_avg */ int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) { if (___update_load_sum(now, &se->avg, 0, 0, 0)) { ___update_load_avg(&se->avg, se_weight(se)); trace_pelt_se_tp(se); return 1; } return 0; } int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) { if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se), cfs_rq->curr == se)) { ___update_load_avg(&se->avg, se_weight(se)); cfs_se_util_change(&se->avg); trace_pelt_se_tp(se); return 1; } return 0; } int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) { if (___update_load_sum(now, &cfs_rq->avg, scale_load_down(cfs_rq->load.weight), cfs_rq->h_nr_running, cfs_rq->curr != NULL)) { ___update_load_avg(&cfs_rq->avg, 1); trace_pelt_cfs_tp(cfs_rq); return 1; } return 0; } /* * rt_rq: * * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked * util_sum = cpu_scale * load_sum * runnable_sum = util_sum * * load_avg and runnable_avg are not supported and meaningless. * */ int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) { if (___update_load_sum(now, &rq->avg_rt, running, running, running)) { ___update_load_avg(&rq->avg_rt, 1); trace_pelt_rt_tp(rq); return 1; } return 0; } /* * dl_rq: * * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked * util_sum = cpu_scale * load_sum * runnable_sum = util_sum * * load_avg and runnable_avg are not supported and meaningless. * */ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) { if (___update_load_sum(now, &rq->avg_dl, running, running, running)) { ___update_load_avg(&rq->avg_dl, 1); trace_pelt_dl_tp(rq); return 1; } return 0; } #ifdef CONFIG_SCHED_THERMAL_PRESSURE /* * thermal: * * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked * * util_avg and runnable_load_avg are not supported and meaningless. * * Unlike rt/dl utilization tracking that track time spent by a cpu * running a rt/dl task through util_avg, the average thermal pressure is * tracked through load_avg. This is because thermal pressure signal is * time weighted "delta" capacity unlike util_avg which is binary. * "delta capacity" = actual capacity - * capped capacity a cpu due to a thermal event. */ int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) { if (___update_load_sum(now, &rq->avg_thermal, capacity, capacity, capacity)) { ___update_load_avg(&rq->avg_thermal, 1); trace_pelt_thermal_tp(rq); return 1; } return 0; } #endif #ifdef CONFIG_HAVE_SCHED_AVG_IRQ /* * irq: * * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked * util_sum = cpu_scale * load_sum * runnable_sum = util_sum * * load_avg and runnable_avg are not supported and meaningless. * */ int update_irq_load_avg(struct rq *rq, u64 running) { int ret = 0; /* * We can't use clock_pelt because irq time is not accounted in * clock_task. Instead we directly scale the running time to * reflect the real amount of computation */ running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); /* * We know the time that has been used by interrupt since last update * but we don't when. Let be pessimistic and assume that interrupt has * happened just before the update. This is not so far from reality * because interrupt will most probably wake up task and trig an update * of rq clock during which the metric is updated. * We start to decay with normal context time and then we add the * interrupt context time. * We can safely remove running from rq->clock because * rq->clock += delta with delta >= running */ ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 0, 0, 0); ret += ___update_load_sum(rq->clock, &rq->avg_irq, 1, 1, 1); if (ret) { ___update_load_avg(&rq->avg_irq, 1); trace_pelt_irq_tp(rq); } return ret; } #endif |