// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include "dpu_core_irq.h"
#include "dpu_kms.h"
#include "dpu_hw_interrupts.h"
#include "dpu_hw_util.h"
#include "dpu_hw_mdss.h"
#include "dpu_trace.h"
/*
* Register offsets in MDSS register file for the interrupt registers
* w.r.t. the MDP base
*/
#define MDP_SSPP_TOP0_OFF 0x0
#define MDP_INTF_0_OFF 0x6A000
#define MDP_INTF_1_OFF 0x6A800
#define MDP_INTF_2_OFF 0x6B000
#define MDP_INTF_3_OFF 0x6B800
#define MDP_INTF_4_OFF 0x6C000
#define MDP_INTF_5_OFF 0x6C800
#define INTF_INTR_EN 0x1c0
#define INTF_INTR_STATUS 0x1c4
#define INTF_INTR_CLEAR 0x1c8
#define MDP_AD4_0_OFF 0x7C000
#define MDP_AD4_1_OFF 0x7D000
#define MDP_AD4_INTR_EN_OFF 0x41c
#define MDP_AD4_INTR_CLEAR_OFF 0x424
#define MDP_AD4_INTR_STATUS_OFF 0x420
#define MDP_INTF_0_OFF_REV_7xxx 0x34000
#define MDP_INTF_1_OFF_REV_7xxx 0x35000
#define MDP_INTF_2_OFF_REV_7xxx 0x36000
#define MDP_INTF_3_OFF_REV_7xxx 0x37000
#define MDP_INTF_4_OFF_REV_7xxx 0x38000
#define MDP_INTF_5_OFF_REV_7xxx 0x39000
/**
* struct dpu_intr_reg - array of DPU register sets
* @clr_off: offset to CLEAR reg
* @en_off: offset to ENABLE reg
* @status_off: offset to STATUS reg
*/
struct dpu_intr_reg {
u32 clr_off;
u32 en_off;
u32 status_off;
};
/*
* struct dpu_intr_reg - List of DPU interrupt registers
*
* When making changes be sure to sync with dpu_hw_intr_reg
*/
static const struct dpu_intr_reg dpu_intr_set[] = {
[MDP_SSPP_TOP0_INTR] = {
MDP_SSPP_TOP0_OFF+INTR_CLEAR,
MDP_SSPP_TOP0_OFF+INTR_EN,
MDP_SSPP_TOP0_OFF+INTR_STATUS
},
[MDP_SSPP_TOP0_INTR2] = {
MDP_SSPP_TOP0_OFF+INTR2_CLEAR,
MDP_SSPP_TOP0_OFF+INTR2_EN,
MDP_SSPP_TOP0_OFF+INTR2_STATUS
},
[MDP_SSPP_TOP0_HIST_INTR] = {
MDP_SSPP_TOP0_OFF+HIST_INTR_CLEAR,
MDP_SSPP_TOP0_OFF+HIST_INTR_EN,
MDP_SSPP_TOP0_OFF+HIST_INTR_STATUS
},
[MDP_INTF0_INTR] = {
MDP_INTF_0_OFF+INTF_INTR_CLEAR,
MDP_INTF_0_OFF+INTF_INTR_EN,
MDP_INTF_0_OFF+INTF_INTR_STATUS
},
[MDP_INTF1_INTR] = {
MDP_INTF_1_OFF+INTF_INTR_CLEAR,
MDP_INTF_1_OFF+INTF_INTR_EN,
MDP_INTF_1_OFF+INTF_INTR_STATUS
},
[MDP_INTF2_INTR] = {
MDP_INTF_2_OFF+INTF_INTR_CLEAR,
MDP_INTF_2_OFF+INTF_INTR_EN,
MDP_INTF_2_OFF+INTF_INTR_STATUS
},
[MDP_INTF3_INTR] = {
MDP_INTF_3_OFF+INTF_INTR_CLEAR,
MDP_INTF_3_OFF+INTF_INTR_EN,
MDP_INTF_3_OFF+INTF_INTR_STATUS
},
[MDP_INTF4_INTR] = {
MDP_INTF_4_OFF+INTF_INTR_CLEAR,
MDP_INTF_4_OFF+INTF_INTR_EN,
MDP_INTF_4_OFF+INTF_INTR_STATUS
},
[MDP_INTF5_INTR] = {
MDP_INTF_5_OFF+INTF_INTR_CLEAR,
MDP_INTF_5_OFF+INTF_INTR_EN,
MDP_INTF_5_OFF+INTF_INTR_STATUS
},
[MDP_AD4_0_INTR] = {
MDP_AD4_0_OFF + MDP_AD4_INTR_CLEAR_OFF,
MDP_AD4_0_OFF + MDP_AD4_INTR_EN_OFF,
MDP_AD4_0_OFF + MDP_AD4_INTR_STATUS_OFF,
},
[MDP_AD4_1_INTR] = {
MDP_AD4_1_OFF + MDP_AD4_INTR_CLEAR_OFF,
MDP_AD4_1_OFF + MDP_AD4_INTR_EN_OFF,
MDP_AD4_1_OFF + MDP_AD4_INTR_STATUS_OFF,
},
[MDP_INTF0_7xxx_INTR] = {
MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_STATUS
},
[MDP_INTF1_7xxx_INTR] = {
MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_STATUS
},
[MDP_INTF2_7xxx_INTR] = {
MDP_INTF_2_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_2_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_2_OFF_REV_7xxx+INTF_INTR_STATUS
},
[MDP_INTF3_7xxx_INTR] = {
MDP_INTF_3_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_3_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_3_OFF_REV_7xxx+INTF_INTR_STATUS
},
[MDP_INTF4_7xxx_INTR] = {
MDP_INTF_4_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_4_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_4_OFF_REV_7xxx+INTF_INTR_STATUS
},
[MDP_INTF5_7xxx_INTR] = {
MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_CLEAR,
MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_EN,
MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_STATUS
},
};
#define DPU_IRQ_REG(irq_idx) (irq_idx / 32)
#define DPU_IRQ_MASK(irq_idx) (BIT(irq_idx % 32))
/**
* dpu_core_irq_callback_handler - dispatch core interrupts
* @dpu_kms: Pointer to DPU's KMS structure
* @irq_idx: interrupt index
*/
static void dpu_core_irq_callback_handler(struct dpu_kms *dpu_kms, int irq_idx)
{
VERB("irq_idx=%d\n", irq_idx);
if (!dpu_kms->hw_intr->irq_tbl[irq_idx].cb)
DRM_ERROR("no registered cb, idx:%d\n", irq_idx);
atomic_inc(&dpu_kms->hw_intr->irq_tbl[irq_idx].count);
/*
* Perform registered function callback
*/
dpu_kms->hw_intr->irq_tbl[irq_idx].cb(dpu_kms->hw_intr->irq_tbl[irq_idx].arg, irq_idx);
}
irqreturn_t dpu_core_irq(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
struct dpu_hw_intr *intr = dpu_kms->hw_intr;
int reg_idx;
int irq_idx;
u32 irq_status;
u32 enable_mask;
int bit;
unsigned long irq_flags;
if (!intr)
return IRQ_NONE;
spin_lock_irqsave(&intr->irq_lock, irq_flags);
for (reg_idx = 0; reg_idx < ARRAY_SIZE(dpu_intr_set); reg_idx++) {
if (!test_bit(reg_idx, &intr->irq_mask))
continue;
/* Read interrupt status */
irq_status = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].status_off);
/* Read enable mask */
enable_mask = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].en_off);
/* and clear the interrupt */
if (irq_status)
DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off,
irq_status);
/* Finally update IRQ status based on enable mask */
irq_status &= enable_mask;
if (!irq_status)
continue;
/*
* Search through matching intr status.
*/
while ((bit = ffs(irq_status)) != 0) {
irq_idx = DPU_IRQ_IDX(reg_idx, bit - 1);
dpu_core_irq_callback_handler(dpu_kms, irq_idx);
/*
* When callback finish, clear the irq_status
* with the matching mask. Once irq_status
* is all cleared, the search can be stopped.
*/
irq_status &= ~BIT(bit - 1);
}
}
/* ensure register writes go through */
wmb();
spin_unlock_irqrestore(&intr->irq_lock, irq_flags);
return IRQ_HANDLED;
}
static int dpu_hw_intr_enable_irq_locked(struct dpu_hw_intr *intr, int irq_idx)
{
int reg_idx;
const struct dpu_intr_reg *reg;
const char *dbgstr = NULL;
uint32_t cache_irq_mask;
if (!intr)
return -EINVAL;
if (irq_idx < 0 || irq_idx >= intr->total_irqs) {
pr_err("invalid IRQ index: [%d]\n", irq_idx);
return -EINVAL;
}
/*
* The cache_irq_mask and hardware RMW operations needs to be done
* under irq_lock and it's the caller's responsibility to ensure that's
* held.
*/
assert_spin_locked(&intr->irq_lock);
reg_idx = DPU_IRQ_REG(irq_idx);
reg = &dpu_intr_set[reg_idx];
cache_irq_mask = intr->cache_irq_mask[reg_idx];
if (cache_irq_mask & DPU_IRQ_MASK(irq_idx)) {
dbgstr = "DPU IRQ already set:";
} else {
dbgstr = "DPU IRQ enabled:";
cache_irq_mask |= DPU_IRQ_MASK(irq_idx);
/* Cleaning any pending interrupt */
DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx));
/* Enabling interrupts with the new mask */
DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask);
/* ensure register write goes through */
wmb();
intr->cache_irq_mask[reg_idx] = cache_irq_mask;
}
pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr,
DPU_IRQ_MASK(irq_idx), cache_irq_mask);
return 0;
}
static int dpu_hw_intr_disable_irq_locked(struct dpu_hw_intr *intr, int irq_idx)
{
int reg_idx;
const struct dpu_intr_reg *reg;
const char *dbgstr = NULL;
uint32_t cache_irq_mask;
if (!intr)
return -EINVAL;
if (irq_idx < 0 || irq_idx >= intr->total_irqs) {
pr_err("invalid IRQ index: [%d]\n", irq_idx);
return -EINVAL;
}
/*
* The cache_irq_mask and hardware RMW operations needs to be done
* under irq_lock and it's the caller's responsibility to ensure that's
* held.
*/
assert_spin_locked(&intr->irq_lock);
reg_idx = DPU_IRQ_REG(irq_idx);
reg = &dpu_intr_set[reg_idx];
cache_irq_mask = intr->cache_irq_mask[reg_idx];
if ((cache_irq_mask & DPU_IRQ_MASK(irq_idx)) == 0) {
dbgstr = "DPU IRQ is already cleared:";
} else {
dbgstr = "DPU IRQ mask disable:";
cache_irq_mask &= ~DPU_IRQ_MASK(irq_idx);
/* Disable interrupts based on the new mask */
DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask);
/* Cleaning any pending interrupt */
DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx));
/* ensure register write goes through */
wmb();
intr->cache_irq_mask[reg_idx] = cache_irq_mask;
}
pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr,
DPU_IRQ_MASK(irq_idx), cache_irq_mask);
return 0;
}
static void dpu_clear_irqs(struct dpu_kms *dpu_kms)
{
struct dpu_hw_intr *intr = dpu_kms->hw_intr;
int i;
if (!intr)
return;
for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) {
if (test_bit(i, &intr->irq_mask))
DPU_REG_WRITE(&intr->hw,
dpu_intr_set[i].clr_off, 0xffffffff);
}
/* ensure register writes go through */
wmb();
}
static void dpu_disable_all_irqs(struct dpu_kms *dpu_kms)
{
struct dpu_hw_intr *intr = dpu_kms->hw_intr;
int i;
if (!intr)
return;
for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) {
if (test_bit(i, &intr->irq_mask))
DPU_REG_WRITE(&intr->hw,
dpu_intr_set[i].en_off, 0x00000000);
}
/* ensure register writes go through */
wmb();
}
u32 dpu_core_irq_read(struct dpu_kms *dpu_kms, int irq_idx)
{
struct dpu_hw_intr *intr = dpu_kms->hw_intr;
int reg_idx;
unsigned long irq_flags;
u32 intr_status;
if (!intr)
return 0;
if (irq_idx < 0) {
DPU_ERROR("[%pS] invalid irq_idx=%d\n",
__builtin_return_address(0), irq_idx);
return 0;
}
if (irq_idx < 0 || irq_idx >= intr->total_irqs) {
pr_err("invalid IRQ index: [%d]\n", irq_idx);
return 0;
}
spin_lock_irqsave(&intr->irq_lock, irq_flags);
reg_idx = DPU_IRQ_REG(irq_idx);
intr_status = DPU_REG_READ(&intr->hw,
dpu_intr_set[reg_idx].status_off) &
DPU_IRQ_MASK(irq_idx);
if (intr_status)
DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off,
intr_status);
/* ensure register writes go through */
wmb();
spin_unlock_irqrestore(&intr->irq_lock, irq_flags);
return intr_status;
}
static void __intr_offset(const struct dpu_mdss_cfg *m,
void __iomem *addr, struct dpu_hw_blk_reg_map *hw)
{
hw->blk_addr = addr + m->mdp[0].base;
}
struct dpu_hw_intr *dpu_hw_intr_init(void __iomem *addr,
const struct dpu_mdss_cfg *m)
{
struct dpu_hw_intr *intr;
int nirq = MDP_INTR_MAX * 32;
if (!addr || !m)
return ERR_PTR(-EINVAL);
intr = kzalloc(struct_size(intr, irq_tbl, nirq), GFP_KERNEL);
if (!intr)
return ERR_PTR(-ENOMEM);
__intr_offset(m, addr, &intr->hw);
intr->total_irqs = nirq;
intr->irq_mask = m->mdss_irqs;
spin_lock_init(&intr->irq_lock);
return intr;
}
void dpu_hw_intr_destroy(struct dpu_hw_intr *intr)
{
kfree(intr);
}
int dpu_core_irq_register_callback(struct dpu_kms *dpu_kms, int irq_idx,
void (*irq_cb)(void *arg, int irq_idx),
void *irq_arg)
{
unsigned long irq_flags;
int ret;
if (!irq_cb) {
DPU_ERROR("invalid ird_idx:%d irq_cb:%ps\n", irq_idx, irq_cb);
return -EINVAL;
}
if (irq_idx < 0 || irq_idx >= dpu_kms->hw_intr->total_irqs) {
DPU_ERROR("invalid IRQ index: [%d]\n", irq_idx);
return -EINVAL;
}
VERB("[%pS] irq_idx=%d\n", __builtin_return_address(0), irq_idx);
spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags);
if (unlikely(WARN_ON(dpu_kms->hw_intr->irq_tbl[irq_idx].cb))) {
spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags);
return -EBUSY;
}
trace_dpu_core_irq_register_callback(irq_idx, irq_cb);
dpu_kms->hw_intr->irq_tbl[irq_idx].arg = irq_arg;
dpu_kms->hw_intr->irq_tbl[irq_idx].cb = irq_cb;
ret = dpu_hw_intr_enable_irq_locked(
dpu_kms->hw_intr,
irq_idx);
if (ret)
DPU_ERROR("Fail to enable IRQ for irq_idx:%d\n",
irq_idx);
spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags);
trace_dpu_irq_register_success(irq_idx);
return 0;
}
int dpu_core_irq_unregister_callback(struct dpu_kms *dpu_kms, int irq_idx)
{
unsigned long irq_flags;
int ret;
if (irq_idx < 0 || irq_idx >= dpu_kms->hw_intr->total_irqs) {
DPU_ERROR("invalid IRQ index: [%d]\n", irq_idx);
return -EINVAL;
}
VERB("[%pS] irq_idx=%d\n", __builtin_return_address(0), irq_idx);
spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags);
trace_dpu_core_irq_unregister_callback(irq_idx);
ret = dpu_hw_intr_disable_irq_locked(dpu_kms->hw_intr, irq_idx);
if (ret)
DPU_ERROR("Fail to disable IRQ for irq_idx:%d: %d\n",
irq_idx, ret);
dpu_kms->hw_intr->irq_tbl[irq_idx].cb = NULL;
dpu_kms->hw_intr->irq_tbl[irq_idx].arg = NULL;
spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags);
trace_dpu_irq_unregister_success(irq_idx);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int dpu_debugfs_core_irq_show(struct seq_file *s, void *v)
{
struct dpu_kms *dpu_kms = s->private;
unsigned long irq_flags;
int i, irq_count;
void *cb;
for (i = 0; i < dpu_kms->hw_intr->total_irqs; i++) {
spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags);
irq_count = atomic_read(&dpu_kms->hw_intr->irq_tbl[i].count);
cb = dpu_kms->hw_intr->irq_tbl[i].cb;
spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags);
if (irq_count || cb)
seq_printf(s, "idx:%d irq:%d cb:%ps\n", i, irq_count, cb);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_core_irq);
void dpu_debugfs_core_irq_init(struct dpu_kms *dpu_kms,
struct dentry *parent)
{
debugfs_create_file("core_irq", 0600, parent, dpu_kms,
&dpu_debugfs_core_irq_fops);
}
#endif
void dpu_core_irq_preinstall(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
int i;
pm_runtime_get_sync(&dpu_kms->pdev->dev);
dpu_clear_irqs(dpu_kms);
dpu_disable_all_irqs(dpu_kms);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
for (i = 0; i < dpu_kms->hw_intr->total_irqs; i++)
atomic_set(&dpu_kms->hw_intr->irq_tbl[i].count, 0);
}
void dpu_core_irq_uninstall(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
int i;
if (!dpu_kms->hw_intr)
return;
pm_runtime_get_sync(&dpu_kms->pdev->dev);
for (i = 0; i < dpu_kms->hw_intr->total_irqs; i++)
if (dpu_kms->hw_intr->irq_tbl[i].cb)
DPU_ERROR("irq_idx=%d still enabled/registered\n", i);
dpu_clear_irqs(dpu_kms);
dpu_disable_all_irqs(dpu_kms);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
}