Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Performance event support - powerpc architecture code
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/uaccess.h>
#include <asm/reg.h>
#include <asm/pmc.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/ptrace.h>
#include <asm/code-patching.h>
#include <asm/hw_irq.h>
#include <asm/interrupt.h>

#ifdef CONFIG_PPC64
#include "internal.h"
#endif

#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL

struct cpu_hw_events {
	int n_events;
	int n_percpu;
	int disabled;
	int n_added;
	int n_limited;
	u8  pmcs_enabled;
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
	struct mmcr_regs mmcr;
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];

	unsigned int txn_flags;
	int n_txn_start;

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	unsigned int			bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
	u64				ic_init;

	/* Store the PMC values */
	unsigned long pmcs[MAX_HWEVENTS];
};

static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);

static struct power_pmu *ppmu;

/*
 * Normally, to ignore kernel events we set the FCS (freeze counters
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
static unsigned int freeze_events_kernel = MMCR0_FCS;

/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
 * Define them as zero knowing that any code path accessing
 * these registers (via mtspr/mfspr) are done under ppmu flag
 * check for PPMU_ARCH_31 and we will not enter that code path
 * for 32-bit.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
#define MMCR0_FC56		0
#define MMCR0_PMAO		0
#define MMCR0_EBE		0
#define MMCR0_BHRBA		0
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0

#define SPRN_MMCRA		SPRN_MMCR2
#define SPRN_MMCR3		0
#define SPRN_SIER2		0
#define SPRN_SIER3		0
#define MMCRA_SAMPLE_ENABLE	0
#define MMCRA_BHRB_DISABLE     0
#define MMCR0_PMCCEXT		0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}

static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
{
	return cpuhw->mmcr.mmcr0;
}

static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
static void pmao_restore_workaround(bool ebb) { }
#endif /* CONFIG_PPC32 */

bool is_sier_available(void)
{
	if (!ppmu)
		return false;

	if (ppmu->flags & PPMU_HAS_SIER)
		return true;

	return false;
}

/*
 * Return PMC value corresponding to the
 * index passed.
 */
unsigned long get_pmcs_ext_regs(int idx)
{
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);

	return cpuhw->pmcs[idx];
}

static bool regs_use_siar(struct pt_regs *regs)
{
	/*
	 * When we take a performance monitor exception the regs are setup
	 * using perf_read_regs() which overloads some fields, in particular
	 * regs->result to tell us whether to use SIAR.
	 *
	 * However if the regs are from another exception, eg. a syscall, then
	 * they have not been setup using perf_read_regs() and so regs->result
	 * is something random.
	 */
	return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
}

/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}

	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 */
static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
	bool sdar_valid;

	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else if (ppmu->flags & PPMU_NO_SIAR)
			sdsync = MMCRA_SAMPLE_ENABLE;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}

	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
		*addrp = mfspr(SPRN_SDAR);

	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
		*addrp = 0;
}

static bool regs_sihv(struct pt_regs *regs)
{
	unsigned long sihv = MMCRA_SIHV;

	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

	return !!(regs->dsisr & sihv);
}

static bool regs_sipr(struct pt_regs *regs)
{
	unsigned long sipr = MMCRA_SIPR;

	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

	return !!(regs->dsisr & sipr);
}

static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	bool use_siar = regs_use_siar(regs);
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

	if (!use_siar)
		return perf_flags_from_msr(regs);

	/*
	 * Check the address in SIAR to identify the
	 * privilege levels since the SIER[MSR_HV, MSR_PR]
	 * bits are not set for marked events in power10
	 * DD1.
	 */
	if (marked && (ppmu->flags & PPMU_P10_DD1)) {
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar) {
			if (is_kernel_addr(siar))
				return PERF_RECORD_MISC_KERNEL;
			return PERF_RECORD_MISC_USER;
		} else {
			if (is_kernel_addr(regs->nip))
				return PERF_RECORD_MISC_KERNEL;
			return PERF_RECORD_MISC_USER;
		}
	}

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
	if (ppmu->flags & PPMU_NO_SIPR) {
		unsigned long siar = mfspr(SPRN_SIAR);
		if (is_kernel_addr(siar))
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}

	/* PR has priority over HV, so order below is important */
	if (regs_sipr(regs))
		return PERF_RECORD_MISC_USER;

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
		return PERF_RECORD_MISC_HYPERVISOR;

	return PERF_RECORD_MISC_KERNEL;
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
 * Overload regs->dar to store SIER if we have it.
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

	regs->dsisr = mmcra;

	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);

	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
	 * issue with regs_sipr not being in synch with SIAR in interrupt entry
	 * and return sequences, which can result in regs_sipr being true for
	 * kernel interrupts and SIAR, which has the effect of causing samples
	 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
	 * interrupt entry/exit.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
	if (TRAP(regs) != INTERRUPT_PERFMON)
		use_siar = 0;
	else if ((ppmu->flags & PPMU_NO_SIAR))
		use_siar = 0;
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
	else if (!user_mode(regs))
		use_siar = 1;
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
		use_siar = 0;
	else
		use_siar = 1;

	regs->result = use_siar;
}

/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

	if (marked) {
		/*
		 * SIER[SIAR_VALID] is not set for some
		 * marked events on power10 DD1, so drop
		 * the check for SIER[SIAR_VALID] and return true.
		 */
		if (ppmu->flags & PPMU_P10_DD1)
			return 0x1;
		else if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}

	return 1;
}


/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
	perf_sched_cb_inc(event->ctx->pmu);
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	WARN_ON_ONCE(!cpuhw->bhrb_users);
	cpuhw->bhrb_users--;
	perf_sched_cb_dec(event->ctx->pmu);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	if (!ppmu->bhrb_nr)
		return;

	if (sched_in)
		power_pmu_bhrb_reset();
}
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	__u64 target;

	if (is_kernel_addr(addr)) {
		if (copy_from_kernel_nofault(&instr, (void *)addr,
				sizeof(instr)))
			return 0;

		return branch_target(&instr);
	}

	/* Userspace: need copy instruction here then translate it */
	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
			sizeof(instr)))
		return 0;

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}

/* Processing BHRB entries */
static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
{
	u64 val;
	u64 addr;
	int r_index, u_index, pred;

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
			break;
		else {
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

			if (!addr)
				/* invalid entry */
				continue;

			/*
			 * BHRB rolling buffer could very much contain the kernel
			 * addresses at this point. Check the privileges before
			 * exporting it to userspace (avoid exposure of regions
			 * where we could have speculative execution)
			 * Incase of ISA v3.1, BHRB will capture only user-space
			 * addresses, hence include a check before filtering code
			 */
			if (!(ppmu->flags & PPMU_ARCH_31) &&
			    is_kernel_addr(addr) && event->attr.exclude_kernel)
				continue;

			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */

			if (val & BHRB_TARGET) {
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;

				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
			} else {
				/* Branches to immediate field 
				   (ie I or B form) */
				cpuhw->bhrb_entries[u_index].from = addr;
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
			u_index++;

		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	cpuhw->bhrb_stack.hw_idx = -1ULL;
	return;
}

static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
	return (ppmu->flags & PPMU_ARCH_207S) &&
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
	if (ppmu->flags & PPMU_ARCH_31) {
		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
		current->thread.sier2 = mfspr(SPRN_SIER2);
		current->thread.sier3 = mfspr(SPRN_SIER3);
	}
}

static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
{
	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;

	if (!ebb)
		goto out;

	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;

	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
	mmcr0 |= current->thread.mmcr0;

	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);

	/*
	 * Merge the kernel & user values of MMCR2. The semantics we implement
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
	 * but not clear bits. If a task wants to be able to clear bits, ie.
	 * unfreeze counters, it should not set exclude_xxx in its events and
	 * instead manage the MMCR2 entirely by itself.
	 */
	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);

	if (ppmu->flags & PPMU_ARCH_31) {
		mtspr(SPRN_MMCR3, current->thread.mmcr3);
		mtspr(SPRN_SIER2, current->thread.sier2);
		mtspr(SPRN_SIER3, current->thread.sier3);
	}
out:
	return mmcr0;
}

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
	 * disable to actually prevent the PMU exception from firing.
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}

/*
 * If the perf subsystem wants performance monitor interrupts as soon as
 * possible (e.g., to sample the instruction address and stack chain),
 * this should return true. The IRQ masking code can then enable MSR[EE]
 * in some places (e.g., interrupt handlers) that allows PMI interrupts
 * through to improve accuracy of profiles, at the cost of some performance.
 *
 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
 * access), but in that case there is no need for prompt PMI handling.
 *
 * This currently returns true if any perf counter is being used. It
 * could possibly return false if only events are being counted rather than
 * samples being taken, but for now this is good enough.
 */
bool power_pmu_wants_prompt_pmi(void)
{
	struct cpu_hw_events *cpuhw;

	/*
	 * This could simply test local_paca->pmcregs_in_use if that were not
	 * under ifdef KVM.
	 */
	if (!ppmu)
		return false;

	cpuhw = this_cpu_ptr(&cpu_hw_events);
	return cpuhw->n_events;
}
#endif /* CONFIG_PPC64 */

static void perf_event_interrupt(struct pt_regs *regs);

/*
 * Read one performance monitor counter (PMC).
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
#ifdef CONFIG_PPC64
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
#endif /* CONFIG_PPC64 */
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
#ifdef CONFIG_PPC64
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
#endif /* CONFIG_PPC64 */
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
{
	int i, idx;

	for (i = 0; i < cpuhw->n_events; i++) {
		idx = cpuhw->event[i]->hw.idx;
		if ((idx) && ((int)read_pmc(idx) < 0))
			return idx;
	}

	return 0;
}

/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu) {
		pr_info("Performance monitor hardware not registered.\n");
		return;
	}

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

	if (ppmu->flags & PPMU_ARCH_207S) {
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}

	if (ppmu->flags & PPMU_ARCH_31) {
		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
 * The feasible set is returned in event_id[].
 */
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
				   int n_ev, struct perf_event **event)
{
	unsigned long mask, value, nv;
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
	int i, j;
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
	unsigned long grp_mask = ppmu->group_constraint_mask;
	unsigned long grp_val = ppmu->group_constraint_val;

	if (n_ev > ppmu->n_counter)
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
					       cpuhw->alternatives[i]);
			event_id[i] = cpuhw->alternatives[i][0];
		}
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
					 &cpuhw->avalues[i][0], event[i]->attr.config1))
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);

		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
			break;

		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
			& (~grp_mask)) != 0)
			break;

		value = nv;
		mask |= cpuhw->amasks[i][0];
	}
	if (i == n_ev) {
		if ((value & mask & grp_mask) != (mask & grp_val))
			return -1;
		else
			return 0;	/* all OK */
	}

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
		choice[i] = 0;
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
						  cpuhw->alternatives[i]);
		for (j = 1; j < n_alt[i]; ++j)
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j],
					     event[i]->attr.config1);
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
		 * See if any alternative k for event_id i,
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
			if ((((nv + tadd) ^ value) & mask) == 0 &&
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
			 * to event_id i-1 and continue enumerating its
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
			mask |= cpuhw->amasks[i][j];
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
		event_id[i] = cpuhw->alternatives[i][choice[i]];
	return 0;
}

/*
 * Check if newly-added events have consistent settings for
 * exclude_{user,kernel,hv} with each other and any previously
 * added events.
 */
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
			  int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
	struct perf_event *event;

	/*
	 * If the PMU we're on supports per event exclude settings then we
	 * don't need to do any of this logic. NB. This assumes no PMU has both
	 * per event exclude and limited PMCs.
	 */
	if (ppmu->flags & PPMU_ARCH_207S)
		return 0;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
		event = ctrs[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

	return 0;
}

static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a counter is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we detect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

static void power_pmu_read(struct perf_event *event)
{
	s64 val, delta, prev;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

	if (!event->hw.idx)
		return;

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
		prev = local64_read(&event->hw.prev_count);
		barrier();
		val = read_pmc(event->hw.idx);
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);

	local64_add(delta, &event->count);

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
}

/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
 * us if `event' is using such a PMC.
 */
static int is_limited_pmc(int pmcnum)
{
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
}

static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
				    unsigned long pmc5, unsigned long pmc6)
{
	struct perf_event *event;
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
		event = cpuhw->limited_counter[i];
		if (!event->hw.idx)
			continue;
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
		prev = local64_read(&event->hw.prev_count);
		event->hw.idx = 0;
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
	}
}

static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
				  unsigned long pmc5, unsigned long pmc6)
{
	struct perf_event *event;
	u64 val, prev;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
		event = cpuhw->limited_counter[i];
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
		perf_event_update_userpage(event);
	}
}

/*
 * Since limited events don't respect the freeze conditions, we
 * have to read them immediately after freezing or unfreezing the
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
 * cycles and instructions) between freezing/unfreezing and reading
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
	 * events, we first write MMCR0 with the event overflow
	 * interrupt enable bits turned off.
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
		freeze_limited_counters(cpuhw, pmc5, pmc6);
	else
		thaw_limited_counters(cpuhw, pmc5, pmc6);

	/*
	 * Write the full MMCR0 including the event overflow interrupt
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
}

/*
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
 */
static void power_pmu_disable(struct pmu *pmu)
{
	struct cpu_hw_events *cpuhw;
	unsigned long flags, mmcr0, val, mmcra;

	if (!ppmu)
		return;
	local_irq_save(flags);
	cpuhw = this_cpu_ptr(&cpu_hw_events);

	if (!cpuhw->disabled) {
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
			ppc_enable_pmcs();
			cpuhw->pmcs_enabled = 1;
		}

		/*
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
		 * Also clear PMXE to disable PMI's getting triggered in some
		 * corner cases during PMU disable.
		 */
		val  = mmcr0 = mfspr(SPRN_MMCR0);
		val |= MMCR0_FC;
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_PMXE | MMCR0_FC56);
		/* Set mmcr0 PMCCEXT for p10 */
		if (ppmu->flags & PPMU_ARCH_31)
			val |= MMCR0_PMCCEXT;

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();
		isync();

		/*
		 * Some corner cases could clear the PMU counter overflow
		 * while a masked PMI is pending. One such case is when
		 * a PMI happens during interrupt replay and perf counter
		 * values are cleared by PMU callbacks before replay.
		 *
		 * Disable the interrupt by clearing the paca bit for PMI
		 * since we are disabling the PMU now. Otherwise provide a
		 * warning if there is PMI pending, but no counter is found
		 * overflown.
		 *
		 * Since power_pmu_disable runs under local_irq_save, it
		 * could happen that code hits a PMC overflow without PMI
		 * pending in paca. Hence only clear PMI pending if it was
		 * set.
		 *
		 * If a PMI is pending, then MSR[EE] must be disabled (because
		 * the masked PMI handler disabling EE). So it is safe to
		 * call clear_pmi_irq_pending().
		 */
		if (pmi_irq_pending())
			clear_pmi_irq_pending();

		val = mmcra = cpuhw->mmcr.mmcra;

		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
			val &= ~MMCRA_SAMPLE_ENABLE;

		/* Disable BHRB via mmcra (BHRBRD) for p10 */
		if (ppmu->flags & PPMU_ARCH_31)
			val |= MMCRA_BHRB_DISABLE;

		/*
		 * Write SPRN_MMCRA if mmcra has either disabled
		 * instruction sampling or BHRB.
		 */
		if (val != mmcra) {
			mtspr(SPRN_MMCRA, mmcra);
			mb();
			isync();
		}

		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

		ebb_switch_out(mmcr0);

#ifdef CONFIG_PPC64
		/*
		 * These are readable by userspace, may contain kernel
		 * addresses and are not switched by context switch, so clear
		 * them now to avoid leaking anything to userspace in general
		 * including to another process.
		 */
		if (ppmu->flags & PPMU_ARCH_207S) {
			mtspr(SPRN_SDAR, 0);
			mtspr(SPRN_SIAR, 0);
		}
#endif
	}

	local_irq_restore(flags);
}

/*
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
 * put the new config on the PMU.
 */
static void power_pmu_enable(struct pmu *pmu)
{
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
	unsigned long flags;
	long i;
	unsigned long val, mmcr0;
	s64 left;
	unsigned int hwc_index[MAX_HWEVENTS];
	int n_lim;
	int idx;
	bool ebb;

	if (!ppmu)
		return;
	local_irq_save(flags);

	cpuhw = this_cpu_ptr(&cpu_hw_events);
	if (!cpuhw->disabled)
		goto out;

	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

	cpuhw->disabled = 0;

	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

	/*
	 * If we didn't change anything, or only removed events,
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
	 * (possibly updated for removal of events).
	 */
	if (!cpuhw->n_added) {
		/*
		 * If there is any active event with an overflown PMC
		 * value, set back PACA_IRQ_PMI which would have been
		 * cleared in power_pmu_disable().
		 */
		hard_irq_disable();
		if (any_pmc_overflown(cpuhw))
			set_pmi_irq_pending();

		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
		if (ppmu->flags & PPMU_ARCH_31)
			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
		goto out_enable;
	}

	/*
	 * Clear all MMCR settings and recompute them for the new set of events.
	 */
	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

	if (!(ppmu->flags & PPMU_ARCH_207S)) {
		/*
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
		 * bits for the first event. We have already checked that all
		 * events have the same value for these bits as the first event.
		 */
		event = cpuhw->event[0];
		if (event->attr.exclude_user)
			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
		if (event->attr.exclude_kernel)
			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
		if (event->attr.exclude_hv)
			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
	}

	/*
	 * Write the new configuration to MMCR* with the freeze
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
	 */
	ppc_set_pmu_inuse(1);
	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);

	if (ppmu->flags & PPMU_ARCH_31)
		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);

	/*
	 * Read off any pre-existing events that need to move
	 * to another PMC.
	 */
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
		}
	}

	/*
	 * Initialize the PMCs for all the new and moved events.
	 */
	cpuhw->n_limited = n_lim = 0;
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
			continue;
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
			cpuhw->limited_counter[n_lim] = event;
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
		}

		event->hw.idx = idx;
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
		write_pmc(idx, val);

		perf_event_update_userpage(event);
	}
	cpuhw->n_limited = n_lim;
	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;

 out_enable:
	pmao_restore_workaround(ebb);

	mmcr0 = ebb_switch_in(ebb, cpuhw);

	mb();
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

	write_mmcr0(cpuhw, mmcr0);

	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
	}

 out:

	local_irq_restore(flags);
}

static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
			  unsigned int *flags)
{
	int n = 0;
	struct perf_event *event;

	if (group->pmu->task_ctx_nr == perf_hw_context) {
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
		flags[n] = group->hw.event_base;
		events[n++] = group->hw.config;
	}
	for_each_sibling_event(event, group) {
		if (event->pmu->task_ctx_nr == perf_hw_context &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
		}
	}
	return n;
}

/*
 * Add an event to the PMU.
 * If all events are not already frozen, then we disable and
 * re-enable the PMU in order to get hw_perf_enable to do the
 * actual work of reconfiguring the PMU.
 */
static int power_pmu_add(struct perf_event *event, int ef_flags)
{
	struct cpu_hw_events *cpuhw;
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	/*
	 * Add the event to the list (if there is room)
	 * and check whether the total set is still feasible.
	 */
	cpuhw = this_cpu_ptr(&cpu_hw_events);
	n0 = cpuhw->n_events;
	if (n0 >= ppmu->n_counter)
		goto out;
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;

	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	else
		event->hw.state = 0;

	/*
	 * If group events scheduling transaction was started,
	 * skip the schedulability test here, it will be performed
	 * at commit time(->commit_txn) as a whole
	 */
	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
		goto nocheck;

	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
		goto out;
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
		goto out;
	event->hw.config = cpuhw->events[n0];

nocheck:
	ebb_event_add(event);

	++cpuhw->n_events;
	++cpuhw->n_added;

	ret = 0;
 out:
	if (has_branch_stack(event)) {
		u64 bhrb_filter = -1;

		if (ppmu->bhrb_filter_map)
			bhrb_filter = ppmu->bhrb_filter_map(
				event->attr.branch_sample_type);

		if (bhrb_filter != -1) {
			cpuhw->bhrb_filter = bhrb_filter;
			power_pmu_bhrb_enable(event);
		}
	}

	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
	return ret;
}

/*
 * Remove an event from the PMU.
 */
static void power_pmu_del(struct perf_event *event, int ef_flags)
{
	struct cpu_hw_events *cpuhw;
	long i;
	unsigned long flags;

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	power_pmu_read(event);

	cpuhw = this_cpu_ptr(&cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
			while (++i < cpuhw->n_events) {
				cpuhw->event[i-1] = cpuhw->event[i];
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
			}
			perf_event_update_userpage(event);
			break;
		}
	}
	for (i = 0; i < cpuhw->n_limited; ++i)
		if (event == cpuhw->limited_counter[i])
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

/*
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
 */

static void power_pmu_start(struct perf_event *event, int ef_flags)
{
	unsigned long flags;
	s64 left;
	unsigned long val;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	power_pmu_read(event);
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 *
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 * transactions.
 */
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
{
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);

	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */

	cpuhw->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

	perf_pmu_disable(pmu);
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
static void power_pmu_cancel_txn(struct pmu *pmu)
{
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
	unsigned int txn_flags;

	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	txn_flags = cpuhw->txn_flags;
	cpuhw->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

	perf_pmu_enable(pmu);
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
static int power_pmu_commit_txn(struct pmu *pmu)
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;

	cpuhw = this_cpu_ptr(&cpu_hw_events);
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuhw->txn_flags = 0;
		return 0;
	}

	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

	cpuhw->txn_flags = 0;
	perf_pmu_enable(pmu);
	return 0;
}

/*
 * Return 1 if we might be able to put event on a limited PMC,
 * or 0 if not.
 * An event can only go on a limited PMC if it counts something
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
				 unsigned int flags)
{
	int n;
	u64 alt[MAX_EVENT_ALTERNATIVES];

	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
	 * The requested event_id isn't on a limited PMC already;
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

	return n > 0;
}

/*
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
 */
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
{
	u64 alt[MAX_EVENT_ALTERNATIVES];
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

/* Number of perf_events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
 * Release the PMU if this is the last perf_event.
 */
static void hw_perf_event_destroy(struct perf_event *event)
{
	if (!atomic_add_unless(&num_events, -1, 1)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_dec_return(&num_events) == 0)
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

/*
 * Translate a generic cache event_id config to a raw event_id code.
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	u64 ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

static bool is_event_blacklisted(u64 ev)
{
	int i;

	for (i=0; i < ppmu->n_blacklist_ev; i++) {
		if (ppmu->blacklist_ev[i] == ev)
			return true;
	}

	return false;
}

static int power_pmu_event_init(struct perf_event *event)
{
	u64 ev;
	unsigned long flags, irq_flags;
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
	int n;
	int err;
	struct cpu_hw_events *cpuhw;

	if (!ppmu)
		return -ENOENT;

	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
		if (!(ppmu->flags & PPMU_ARCH_207S))
			return -EOPNOTSUPP;
	}

	switch (event->attr.type) {
	case PERF_TYPE_HARDWARE:
		ev = event->attr.config;
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
			return -EOPNOTSUPP;

		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
			return -EINVAL;
		ev = ppmu->generic_events[ev];
		break;
	case PERF_TYPE_HW_CACHE:
		err = hw_perf_cache_event(event->attr.config, &ev);
		if (err)
			return err;

		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
			return -EINVAL;
		break;
	case PERF_TYPE_RAW:
		ev = event->attr.config;

		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
			return -EINVAL;
		break;
	default:
		return -ENOENT;
	}

	/*
	 * PMU config registers have fields that are
	 * reserved and some specific values for bit fields are reserved.
	 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
	 * and value of 0b11 to this field is reserved.
	 * Check for invalid values in attr.config.
	 */
	if (ppmu->check_attr_config &&
	    ppmu->check_attr_config(event))
		return -EINVAL;

	event->hw.config_base = ev;
	event->hw.idx = 0;

	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
	 * the user set it to.
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
		event->attr.exclude_hv = 0;

	/*
	 * If this is a per-task event, then we can use
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
	if (event->attach_state & PERF_ATTACH_TASK)
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
	 */
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
		if (can_go_on_limited_pmc(event, ev, flags)) {
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
			 * The requested event_id is on a limited PMC,
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
				return -EINVAL;
		}
	}

	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

	/*
	 * If this is in a group, check if it can go on with all the
	 * other hardware events in the group.  We assume the event
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
				   ctrs, events, cflags);
		if (n < 0)
			return -EINVAL;
	}
	events[n] = ev;
	ctrs[n] = event;
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
		return -EINVAL;

	local_irq_save(irq_flags);
	cpuhw = this_cpu_ptr(&cpu_hw_events);

	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);

	if (has_branch_stack(event)) {
		u64 bhrb_filter = -1;

		/*
		 * Currently no PMU supports having multiple branch filters
		 * at the same time. Branch filters are set via MMCRA IFM[32:33]
		 * bits for Power8 and above. Return EOPNOTSUPP when multiple
		 * branch filters are requested in the event attr.
		 *
		 * When opening event via perf_event_open(), branch_sample_type
		 * gets adjusted in perf_copy_attr(). Kernel will automatically
		 * adjust the branch_sample_type based on the event modifier
		 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
		 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
		 */
		if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
			local_irq_restore(irq_flags);
			return -EOPNOTSUPP;
		}

		if (ppmu->bhrb_filter_map)
			bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if (bhrb_filter == -1) {
			local_irq_restore(irq_flags);
			return -EOPNOTSUPP;
		}
		cpuhw->bhrb_filter = bhrb_filter;
	}

	local_irq_restore(irq_flags);
	if (err)
		return -EINVAL;

	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
	local64_set(&event->hw.period_left, event->hw.last_period);

	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

	/*
	 * See if we need to reserve the PMU.
	 * If no events are currently in use, then we have to take a
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
	if (!atomic_inc_not_zero(&num_events)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
			err = -EBUSY;
		else
			atomic_inc(&num_events);
		mutex_unlock(&pmc_reserve_mutex);
	}
	event->destroy = hw_perf_event_destroy;

	return err;
}

static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

static struct pmu power_pmu = {
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
	.event_init	= power_pmu_event_init,
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
	.event_idx	= power_pmu_event_idx,
	.sched_task	= power_pmu_sched_task,
};

#define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
				PERF_SAMPLE_PHYS_ADDR |		\
				PERF_SAMPLE_DATA_PAGE_SIZE)
/*
 * A counter has overflowed; update its count and record
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
static void record_and_restart(struct perf_event *event, unsigned long val,
			       struct pt_regs *regs)
{
	u64 period = event->hw.sample_period;
	s64 prev, delta, left;
	int record = 0;

	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

	/* we don't have to worry about interrupts here */
	prev = local64_read(&event->hw.prev_count);
	delta = check_and_compute_delta(prev, val);
	local64_add(delta, &event->count);

	/*
	 * See if the total period for this event has expired,
	 * and update for the next period.
	 */
	val = 0;
	left = local64_read(&event->hw.period_left) - delta;
	if (delta == 0)
		left++;
	if (period) {
		if (left <= 0) {
			left += period;
			if (left <= 0)
				left = period;

			/*
			 * If address is not requested in the sample via
			 * PERF_SAMPLE_IP, just record that sample irrespective
			 * of SIAR valid check.
			 */
			if (event->attr.sample_type & PERF_SAMPLE_IP)
				record = siar_valid(regs);
			else
				record = 1;

			event->hw.last_period = event->hw.sample_period;
		}
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
	}

	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

	/*
	 * Due to hardware limitation, sometimes SIAR could sample a kernel
	 * address even when freeze on supervisor state (kernel) is set in
	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
	 * these cases.
	 */
	if (event->attr.exclude_kernel &&
	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
	    is_kernel_addr(mfspr(SPRN_SIAR)))
		record = 0;

	/*
	 * Finally record data if requested.
	 */
	if (record) {
		struct perf_sample_data data;

		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);

		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
			perf_get_data_addr(event, regs, &data.addr);

		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = this_cpu_ptr(&cpu_hw_events);
			power_pmu_bhrb_read(event, cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
			data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
		}

		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
						ppmu->get_mem_data_src) {
			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
			data.sample_flags |= PERF_SAMPLE_DATA_SRC;
		}

		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
						ppmu->get_mem_weight) {
			ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
			data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
		}
		if (perf_event_overflow(event, &data, regs))
			power_pmu_stop(event, 0);
	} else if (period) {
		/* Account for interrupt in case of invalid SIAR */
		if (perf_event_account_interrupt(event))
			power_pmu_stop(event, 0);
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
 * for an event_id.
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
	u32 flags = perf_get_misc_flags(regs);

	if (flags)
		return flags;
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
}

/*
 * Called from generic code to get the instruction pointer
 * for an event_id.
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
	unsigned long siar = mfspr(SPRN_SIAR);

	if (regs_use_siar(regs) && siar_valid(regs) && siar)
		return siar + perf_ip_adjust(regs);
	else
		return regs->nip;
}

static bool pmc_overflow_power7(unsigned long val)
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
		return true;

	return false;
}

/*
 * Performance monitor interrupt stuff
 */
static void __perf_event_interrupt(struct pt_regs *regs)
{
	int i, j;
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *event;
	int found, active;

	if (cpuhw->n_limited)
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
					mfspr(SPRN_PMC6));

	perf_read_regs(regs);

	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		cpuhw->pmcs[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(cpuhw->pmcs[i]))
			continue;
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, cpuhw->pmcs[i], regs);
				break;
			}
		}

		/*
		 * Clear PACA_IRQ_PMI in case it was set by
		 * set_pmi_irq_pending() when PMU was enabled
		 * after accounting for interrupts.
		 */
		clear_pmi_irq_pending();

		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
	}
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
				continue;
			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   cpuhw->pmcs[event->hw.idx - 1],
						   regs);
			}
		}
	}

	/*
	 * During system wide profiling or while specific CPU is monitored for an
	 * event, some corner cases could cause PMC to overflow in idle path. This
	 * will trigger a PMI after waking up from idle. Since counter values are _not_
	 * saved/restored in idle path, can lead to below "Can't find PMC" message.
	 */
	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
	 * and thus allow interrupts to occur again.
	 * XXX might want to use MSR.PM to keep the events frozen until
	 * we get back out of this interrupt.
	 */
	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);

	/* Clear the cpuhw->pmcs */
	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));

}

static void perf_event_interrupt(struct pt_regs *regs)
{
	u64 start_clock = sched_clock();

	__perf_event_interrupt(regs);
	perf_sample_event_took(sched_clock() - start_clock);
}

static int power_pmu_prepare_cpu(unsigned int cpu)
{
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);

	if (ppmu) {
		memset(cpuhw, 0, sizeof(*cpuhw));
		cpuhw->mmcr.mmcr0 = MMCR0_FC;
	}
	return 0;
}

static ssize_t pmu_name_show(struct device *cdev,
		struct device_attribute *attr,
		char *buf)
{
	if (ppmu)
		return sysfs_emit(buf, "%s", ppmu->name);

	return 0;
}

static DEVICE_ATTR_RO(pmu_name);

static struct attribute *pmu_caps_attrs[] = {
	&dev_attr_pmu_name.attr,
	NULL
};

static const struct attribute_group pmu_caps_group = {
	.name  = "caps",
	.attrs = pmu_caps_attrs,
};

static const struct attribute_group *pmu_caps_groups[] = {
	&pmu_caps_group,
	NULL,
};

int __init register_power_pmu(struct power_pmu *pmu)
{
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);

	power_pmu.attr_groups = ppmu->attr_groups;

	if (ppmu->flags & PPMU_ARCH_207S)
		power_pmu.attr_update = pmu_caps_groups;

	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);

#ifdef MSR_HV
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
		freeze_events_kernel = MMCR0_FCHV;
#endif /* CONFIG_PPC64 */

	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
			  power_pmu_prepare_cpu, NULL);
	return 0;
}

#ifdef CONFIG_PPC64
static bool pmu_override = false;
static unsigned long pmu_override_val;
static void do_pmu_override(void *data)
{
	ppc_set_pmu_inuse(1);
	if (pmu_override_val)
		mtspr(SPRN_MMCR1, pmu_override_val);
	mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
}

static int __init init_ppc64_pmu(void)
{
	if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
		pr_warn("disabling perf due to pmu_override= command line option.\n");
		on_each_cpu(do_pmu_override, NULL, 1);
		return 0;
	}

	/* run through all the pmu drivers one at a time */
	if (!init_power5_pmu())
		return 0;
	else if (!init_power5p_pmu())
		return 0;
	else if (!init_power6_pmu())
		return 0;
	else if (!init_power7_pmu())
		return 0;
	else if (!init_power8_pmu())
		return 0;
	else if (!init_power9_pmu())
		return 0;
	else if (!init_power10_pmu())
		return 0;
	else if (!init_ppc970_pmu())
		return 0;
	else
		return init_generic_compat_pmu();
}
early_initcall(init_ppc64_pmu);

static int __init pmu_setup(char *str)
{
	unsigned long val;

	if (!early_cpu_has_feature(CPU_FTR_HVMODE))
		return 0;

	pmu_override = true;

	if (kstrtoul(str, 0, &val))
		val = 0;

	pmu_override_val = val;

	return 1;
}
__setup("pmu_override=", pmu_setup);

#endif