// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2015-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include "kfd_crat.h"
#include "kfd_priv.h"
#include "kfd_topology.h"
#include "kfd_iommu.h"
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
* GPU processor ID are expressed with Bit[31]=1.
* The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
* used in the CRAT.
*/
static uint32_t gpu_processor_id_low = 0x80001000;
/* Return the next available gpu_processor_id and increment it for next GPU
* @total_cu_count - Total CUs present in the GPU including ones
* masked off
*/
static inline unsigned int get_and_inc_gpu_processor_id(
unsigned int total_cu_count)
{
int current_id = gpu_processor_id_low;
gpu_processor_id_low += total_cu_count;
return current_id;
}
static struct kfd_gpu_cache_info kaveri_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
/* TODO: Add L2 Cache information */
};
static struct kfd_gpu_cache_info carrizo_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank. */
.cache_size = 4,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
/* TODO: Add L2 Cache information */
};
#define hawaii_cache_info kaveri_cache_info
#define tonga_cache_info carrizo_cache_info
#define fiji_cache_info carrizo_cache_info
#define polaris10_cache_info carrizo_cache_info
#define polaris11_cache_info carrizo_cache_info
#define polaris12_cache_info carrizo_cache_info
#define vegam_cache_info carrizo_cache_info
/* NOTE: L1 cache information has been updated and L2/L3
* cache information has been added for Vega10 and
* newer ASICs. The unit for cache_size is KiB.
* In future, check & update cache details
* for every new ASIC is required.
*/
static struct kfd_gpu_cache_info vega10_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 4096,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 16,
},
};
static struct kfd_gpu_cache_info raven_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 1024,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 11,
},
};
static struct kfd_gpu_cache_info renoir_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 1024,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
};
static struct kfd_gpu_cache_info vega12_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 2048,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 5,
},
};
static struct kfd_gpu_cache_info vega20_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 3,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 8192,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 16,
},
};
static struct kfd_gpu_cache_info aldebaran_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 8192,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 14,
},
};
static struct kfd_gpu_cache_info navi10_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 4096,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
};
static struct kfd_gpu_cache_info vangogh_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 1024,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
};
static struct kfd_gpu_cache_info navi14_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 12,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 2048,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 12,
},
};
static struct kfd_gpu_cache_info sienna_cichlid_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 4096,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
{
/* L3 Data Cache per GPU */
.cache_size = 128*1024,
.cache_level = 3,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
};
static struct kfd_gpu_cache_info navy_flounder_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 3072,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
{
/* L3 Data Cache per GPU */
.cache_size = 96*1024,
.cache_level = 3,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 10,
},
};
static struct kfd_gpu_cache_info dimgrey_cavefish_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 2048,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
{
/* L3 Data Cache per GPU */
.cache_size = 32*1024,
.cache_level = 3,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
};
static struct kfd_gpu_cache_info beige_goby_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 1024,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
{
/* L3 Data Cache per GPU */
.cache_size = 16*1024,
.cache_level = 3,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 8,
},
};
static struct kfd_gpu_cache_info yellow_carp_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 6,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 2048,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 6,
},
};
static struct kfd_gpu_cache_info gfx1037_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 256,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
};
static struct kfd_gpu_cache_info gc_10_3_6_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 256,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
};
static struct kfd_gpu_cache_info dummy_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache per SQC */
.cache_size = 32,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache per SQC */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* GL1 Data Cache per SA */
.cache_size = 128,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 6,
},
{
/* L2 Data Cache per GPU (Total Tex Cache) */
.cache_size = 2048,
.cache_level = 2,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 6,
},
};
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.array_count = cu->array_count;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
}
/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
struct list_head *device_list)
{
struct kfd_topology_device *dev;
pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, device_list, list) {
if (cu->proximity_domain == dev->proximity_domain) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
}
return 0;
}
static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
struct kfd_topology_device *dev)
{
struct kfd_mem_properties *props;
list_for_each_entry(props, &dev->mem_props, list) {
if (props->heap_type == heap_type
&& props->flags == flags
&& props->width == width)
return props;
}
return NULL;
}
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
struct list_head *device_list)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
uint32_t heap_type;
uint64_t size_in_bytes;
uint32_t flags = 0;
uint32_t width;
pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->proximity_domain);
list_for_each_entry(dev, device_list, list) {
if (mem->proximity_domain == dev->proximity_domain) {
/* We're on GPU node */
if (dev->node_props.cpu_cores_count == 0) {
/* APU */
if (mem->visibility_type == 0)
heap_type =
HSA_MEM_HEAP_TYPE_FB_PRIVATE;
/* dGPU */
else
heap_type = mem->visibility_type;
} else
heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
flags |= HSA_MEM_FLAGS_NON_VOLATILE;
size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
width = mem->width;
/* Multiple banks of the same type are aggregated into
* one. User mode doesn't care about multiple physical
* memory segments. It's managed as a single virtual
* heap for user mode.
*/
props = find_subtype_mem(heap_type, flags, width, dev);
if (props) {
props->size_in_bytes += size_in_bytes;
break;
}
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->heap_type = heap_type;
props->flags = flags;
props->size_in_bytes = size_in_bytes;
props->width = width;
dev->node_props.mem_banks_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
struct list_head *device_list)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
uint32_t total_num_of_cu;
id = cache->processor_id_low;
pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, device_list, list) {
total_num_of_cu = (dev->node_props.array_count *
dev->node_props.cu_per_simd_array);
/* Cache infomration in CRAT doesn't have proximity_domain
* information as it is associated with a CPU core or GPU
* Compute Unit. So map the cache using CPU core Id or SIMD
* (GPU) ID.
* TODO: This works because currently we can safely assume that
* Compute Units are parsed before caches are parsed. In
* future, remove this dependency
*/
if ((id >= dev->node_props.cpu_core_id_base &&
id <= dev->node_props.cpu_core_id_base +
dev->node_props.cpu_cores_count) ||
(id >= dev->node_props.simd_id_base &&
id < dev->node_props.simd_id_base +
total_num_of_cu)) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
memcpy(props->sibling_map, cache->sibling_map,
CRAT_SIBLINGMAP_SIZE);
/* set the sibling_map_size as 32 for CRAT from ACPI */
props->sibling_map_size = CRAT_SIBLINGMAP_SIZE;
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
struct list_head *device_list)
{
struct kfd_iolink_properties *props = NULL, *props2;
struct kfd_topology_device *dev, *to_dev;
uint32_t id_from;
uint32_t id_to;
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
id_from, id_to);
list_for_each_entry(dev, device_list, list) {
if (id_from == dev->proximity_domain) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
props->iolink_type = iolink->io_interface_type;
if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
props->weight = 20;
else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
props->weight = 15 * iolink->num_hops_xgmi;
else
props->weight = node_distance(id_from, id_to);
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
break;
}
}
/* CPU topology is created before GPUs are detected, so CPU->GPU
* links are not built at that time. If a PCIe type is discovered, it
* means a GPU is detected and we are adding GPU->CPU to the topology.
* At this time, also add the corresponded CPU->GPU link if GPU
* is large bar.
* For xGMI, we only added the link with one direction in the crat
* table, add corresponded reversed direction link now.
*/
if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
to_dev = kfd_topology_device_by_proximity_domain_no_lock(id_to);
if (!to_dev)
return -ENODEV;
/* same everything but the other direction */
props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
if (!props2)
return -ENOMEM;
props2->node_from = id_to;
props2->node_to = id_from;
props2->kobj = NULL;
to_dev->node_props.io_links_count++;
list_add_tail(&props2->list, &to_dev->io_link_props);
}
return 0;
}
/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
* present in the device_list
* @sub_type_hdr - subtype section of crat_image
* @device_list - list of topology devices present in this crat_image
*/
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
struct list_head *device_list)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu, device_list);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem, device_list);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache, device_list);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink, device_list);
break;
default:
pr_warn("Unknown subtype %d in CRAT\n",
sub_type_hdr->type);
}
return ret;
}
/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
* create a kfd_topology_device and add in to device_list. Also parse
* CRAT subtypes and attach it to appropriate kfd_topology_device
* @crat_image - input image containing CRAT
* @device_list - [OUT] list of kfd_topology_device generated after
* parsing crat_image
* @proximity_domain - Proximity domain of the first device in the table
*
* Return - 0 if successful else -ve value
*/
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
uint32_t proximity_domain)
{
struct kfd_topology_device *top_dev = NULL;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret = 0;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
if (!list_empty(device_list)) {
pr_warn("Error device list should be empty\n");
return -EINVAL;
}
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device(device_list);
if (!top_dev)
break;
top_dev->proximity_domain = proximity_domain++;
}
if (!top_dev) {
ret = -ENOMEM;
goto err;
}
memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
top_dev->oem_revision = crat_table->oem_revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr, device_list);
if (ret)
break;
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
err:
if (ret)
kfd_release_topology_device_list(device_list);
return ret;
}
static int kfd_fill_gpu_cache_info_from_gfx_config(struct kfd_dev *kdev,
struct kfd_gpu_cache_info *pcache_info)
{
struct amdgpu_device *adev = kdev->adev;
int i = 0;
/* TCP L1 Cache per CU */
if (adev->gfx.config.gc_tcp_l1_size) {
pcache_info[i].cache_size = adev->gfx.config.gc_tcp_l1_size;
pcache_info[i].cache_level = 1;
pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE);
pcache_info[0].num_cu_shared = adev->gfx.config.gc_num_tcp_per_wpg / 2;
i++;
}
/* Scalar L1 Instruction Cache per SQC */
if (adev->gfx.config.gc_l1_instruction_cache_size_per_sqc) {
pcache_info[i].cache_size =
adev->gfx.config.gc_l1_instruction_cache_size_per_sqc;
pcache_info[i].cache_level = 1;
pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE);
pcache_info[i].num_cu_shared = adev->gfx.config.gc_num_sqc_per_wgp * 2;
i++;
}
/* Scalar L1 Data Cache per SQC */
if (adev->gfx.config.gc_l1_data_cache_size_per_sqc) {
pcache_info[i].cache_size = adev->gfx.config.gc_l1_data_cache_size_per_sqc;
pcache_info[i].cache_level = 1;
pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE);
pcache_info[i].num_cu_shared = adev->gfx.config.gc_num_sqc_per_wgp * 2;
i++;
}
/* GL1 Data Cache per SA */
if (adev->gfx.config.gc_gl1c_per_sa &&
adev->gfx.config.gc_gl1c_size_per_instance) {
pcache_info[i].cache_size = adev->gfx.config.gc_gl1c_per_sa *
adev->gfx.config.gc_gl1c_size_per_instance;
pcache_info[i].cache_level = 1;
pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE);
pcache_info[i].num_cu_shared = adev->gfx.config.max_cu_per_sh;
i++;
}
/* L2 Data Cache per GPU (Total Tex Cache) */
if (adev->gfx.config.gc_gl2c_per_gpu) {
pcache_info[i].cache_size = adev->gfx.config.gc_gl2c_per_gpu;
pcache_info[i].cache_level = 2;
pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE);
pcache_info[i].num_cu_shared = adev->gfx.config.max_cu_per_sh;
i++;
}
/* L3 Data Cache per GPU */
if (adev->gmc.mall_size) {
pcache_info[i].cache_size = adev->gmc.mall_size / 1024;
pcache_info[i].cache_level = 3;
pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE);
pcache_info[i].num_cu_shared = adev->gfx.config.max_cu_per_sh;
i++;
}
return i;
}
int kfd_get_gpu_cache_info(struct kfd_dev *kdev, struct kfd_gpu_cache_info **pcache_info)
{
int num_of_cache_types = 0;
switch (kdev->adev->asic_type) {
case CHIP_KAVERI:
*pcache_info = kaveri_cache_info;
num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
break;
case CHIP_HAWAII:
*pcache_info = hawaii_cache_info;
num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
break;
case CHIP_CARRIZO:
*pcache_info = carrizo_cache_info;
num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
break;
case CHIP_TONGA:
*pcache_info = tonga_cache_info;
num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
break;
case CHIP_FIJI:
*pcache_info = fiji_cache_info;
num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
break;
case CHIP_POLARIS10:
*pcache_info = polaris10_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
break;
case CHIP_POLARIS11:
*pcache_info = polaris11_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
break;
case CHIP_POLARIS12:
*pcache_info = polaris12_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
break;
case CHIP_VEGAM:
*pcache_info = vegam_cache_info;
num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
break;
default:
switch (KFD_GC_VERSION(kdev)) {
case IP_VERSION(9, 0, 1):
*pcache_info = vega10_cache_info;
num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
break;
case IP_VERSION(9, 2, 1):
*pcache_info = vega12_cache_info;
num_of_cache_types = ARRAY_SIZE(vega12_cache_info);
break;
case IP_VERSION(9, 4, 0):
case IP_VERSION(9, 4, 1):
*pcache_info = vega20_cache_info;
num_of_cache_types = ARRAY_SIZE(vega20_cache_info);
break;
case IP_VERSION(9, 4, 2):
*pcache_info = aldebaran_cache_info;
num_of_cache_types = ARRAY_SIZE(aldebaran_cache_info);
break;
case IP_VERSION(9, 1, 0):
case IP_VERSION(9, 2, 2):
*pcache_info = raven_cache_info;
num_of_cache_types = ARRAY_SIZE(raven_cache_info);
break;
case IP_VERSION(9, 3, 0):
*pcache_info = renoir_cache_info;
num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
break;
case IP_VERSION(10, 1, 10):
case IP_VERSION(10, 1, 2):
case IP_VERSION(10, 1, 3):
case IP_VERSION(10, 1, 4):
*pcache_info = navi10_cache_info;
num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
break;
case IP_VERSION(10, 1, 1):
*pcache_info = navi14_cache_info;
num_of_cache_types = ARRAY_SIZE(navi14_cache_info);
break;
case IP_VERSION(10, 3, 0):
*pcache_info = sienna_cichlid_cache_info;
num_of_cache_types = ARRAY_SIZE(sienna_cichlid_cache_info);
break;
case IP_VERSION(10, 3, 2):
*pcache_info = navy_flounder_cache_info;
num_of_cache_types = ARRAY_SIZE(navy_flounder_cache_info);
break;
case IP_VERSION(10, 3, 4):
*pcache_info = dimgrey_cavefish_cache_info;
num_of_cache_types = ARRAY_SIZE(dimgrey_cavefish_cache_info);
break;
case IP_VERSION(10, 3, 1):
*pcache_info = vangogh_cache_info;
num_of_cache_types = ARRAY_SIZE(vangogh_cache_info);
break;
case IP_VERSION(10, 3, 5):
*pcache_info = beige_goby_cache_info;
num_of_cache_types = ARRAY_SIZE(beige_goby_cache_info);
break;
case IP_VERSION(10, 3, 3):
*pcache_info = yellow_carp_cache_info;
num_of_cache_types = ARRAY_SIZE(yellow_carp_cache_info);
break;
case IP_VERSION(10, 3, 6):
*pcache_info = gc_10_3_6_cache_info;
num_of_cache_types = ARRAY_SIZE(gc_10_3_6_cache_info);
break;
case IP_VERSION(10, 3, 7):
*pcache_info = gfx1037_cache_info;
num_of_cache_types = ARRAY_SIZE(gfx1037_cache_info);
break;
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
case IP_VERSION(11, 0, 4):
num_of_cache_types =
kfd_fill_gpu_cache_info_from_gfx_config(kdev, *pcache_info);
break;
default:
*pcache_info = dummy_cache_info;
num_of_cache_types = ARRAY_SIZE(dummy_cache_info);
pr_warn("dummy cache info is used temporarily and real cache info need update later.\n");
break;
}
}
return num_of_cache_types;
}
static bool kfd_ignore_crat(void)
{
bool ret;
if (ignore_crat)
return true;
#ifndef KFD_SUPPORT_IOMMU_V2
ret = true;
#else
ret = false;
#endif
return ret;
}
/*
* kfd_create_crat_image_acpi - Allocates memory for CRAT image and
* copies CRAT from ACPI (if available).
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
* crat_image will be NULL
* @size: [OUT] size of crat_image
*
* Return 0 if successful else return error code
*/
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
{
struct acpi_table_header *crat_table;
acpi_status status;
void *pcrat_image;
int rc = 0;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
if (kfd_ignore_crat()) {
pr_info("CRAT table disabled by module option\n");
return -ENODATA;
}
/* Fetch the CRAT table from ACPI */
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_info("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL);
if (!pcrat_image) {
rc = -ENOMEM;
goto out;
}
memcpy(pcrat_image, crat_table, crat_table->length);
*crat_image = pcrat_image;
*size = crat_table->length;
out:
acpi_put_table(crat_table);
return rc;
}
/* Memory required to create Virtual CRAT.
* Since there is no easy way to predict the amount of memory required, the
* following amount is allocated for GPU Virtual CRAT. This is
* expected to cover all known conditions. But to be safe additional check
* is put in the code to ensure we don't overwrite.
*/
#define VCRAT_SIZE_FOR_GPU (4 * PAGE_SIZE)
/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_computeunit *sub_type_hdr)
{
const struct cpumask *cpumask;
*avail_size -= sizeof(struct crat_subtype_computeunit);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
cpumask = cpumask_of_node(numa_node_id);
/* Fill in CU data */
sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
sub_type_hdr->proximity_domain = proximity_domain;
sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
if (sub_type_hdr->processor_id_low == -1)
return -EINVAL;
sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
return 0;
}
/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_memory *sub_type_hdr)
{
uint64_t mem_in_bytes = 0;
pg_data_t *pgdat;
int zone_type;
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in Memory Subunit data */
/* Unlike si_meminfo, si_meminfo_node is not exported. So
* the following lines are duplicated from si_meminfo_node
* function
*/
pgdat = NODE_DATA(numa_node_id);
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
mem_in_bytes <<= PAGE_SHIFT;
sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
sub_type_hdr->proximity_domain = proximity_domain;
return 0;
}
#ifdef CONFIG_X86_64
static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
uint32_t *num_entries,
struct crat_subtype_iolink *sub_type_hdr)
{
int nid;
struct cpuinfo_x86 *c = &cpu_data(0);
uint8_t link_type;
if (c->x86_vendor == X86_VENDOR_AMD)
link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
else
link_type = CRAT_IOLINK_TYPE_QPI_1_1;
*num_entries = 0;
/* Create IO links from this node to other CPU nodes */
for_each_online_node(nid) {
if (nid == numa_node_id) /* node itself */
continue;
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in IO link data */
sub_type_hdr->proximity_domain_from = numa_node_id;
sub_type_hdr->proximity_domain_to = nid;
sub_type_hdr->io_interface_type = link_type;
(*num_entries)++;
sub_type_hdr++;
}
return 0;
}
#endif
/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for CPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct acpi_table_header *acpi_table;
acpi_status status;
struct crat_subtype_generic *sub_type_hdr;
int avail_size = *size;
int numa_node_id;
#ifdef CONFIG_X86_64
uint32_t entries = 0;
#endif
int ret = 0;
if (!pcrat_image)
return -EINVAL;
/* Fill in CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
crat_table->length = sizeof(struct crat_header);
status = acpi_get_table("DSDT", 0, &acpi_table);
if (status != AE_OK)
pr_warn("DSDT table not found for OEM information\n");
else {
crat_table->oem_revision = acpi_table->revision;
memcpy(crat_table->oem_id, acpi_table->oem_id,
CRAT_OEMID_LENGTH);
memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
acpi_put_table(acpi_table);
}
crat_table->total_entries = 0;
crat_table->num_domains = 0;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
for_each_online_node(numa_node_id) {
if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
continue;
/* Fill in Subtype: Compute Unit */
ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_computeunit *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: Memory */
ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_memory *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: IO Link */
#ifdef CONFIG_X86_64
ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
&entries,
(struct crat_subtype_iolink *)sub_type_hdr);
if (ret < 0)
return ret;
if (entries) {
crat_table->length += (sub_type_hdr->length * entries);
crat_table->total_entries += entries;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length * entries);
}
#else
pr_info("IO link not available for non x86 platforms\n");
#endif
crat_table->num_domains++;
}
/* TODO: Add cache Subtype for CPU.
* Currently, CPU cache information is available in function
* detect_cache_attributes(cpu) defined in the file
* ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
* exported and to get the same information the code needs to be
* duplicated.
*/
*size = crat_table->length;
pr_info("Virtual CRAT table created for CPU\n");
return 0;
}
static int kfd_fill_gpu_memory_affinity(int *avail_size,
struct kfd_dev *kdev, uint8_t type, uint64_t size,
struct crat_subtype_memory *sub_type_hdr,
uint32_t proximity_domain,
const struct kfd_local_mem_info *local_mem_info)
{
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
sub_type_hdr->proximity_domain = proximity_domain;
pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
type, size);
sub_type_hdr->length_low = lower_32_bits(size);
sub_type_hdr->length_high = upper_32_bits(size);
sub_type_hdr->width = local_mem_info->vram_width;
sub_type_hdr->visibility_type = type;
return 0;
}
#ifdef CONFIG_ACPI_NUMA
static void kfd_find_numa_node_in_srat(struct kfd_dev *kdev)
{
struct acpi_table_header *table_header = NULL;
struct acpi_subtable_header *sub_header = NULL;
unsigned long table_end, subtable_len;
u32 pci_id = pci_domain_nr(kdev->pdev->bus) << 16 |
pci_dev_id(kdev->pdev);
u32 bdf;
acpi_status status;
struct acpi_srat_cpu_affinity *cpu;
struct acpi_srat_generic_affinity *gpu;
int pxm = 0, max_pxm = 0;
int numa_node = NUMA_NO_NODE;
bool found = false;
/* Fetch the SRAT table from ACPI */
status = acpi_get_table(ACPI_SIG_SRAT, 0, &table_header);
if (status == AE_NOT_FOUND) {
pr_warn("SRAT table not found\n");
return;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("SRAT table error: %s\n", err);
return;
}
table_end = (unsigned long)table_header + table_header->length;
/* Parse all entries looking for a match. */
sub_header = (struct acpi_subtable_header *)
((unsigned long)table_header +
sizeof(struct acpi_table_srat));
subtable_len = sub_header->length;
while (((unsigned long)sub_header) + subtable_len < table_end) {
/*
* If length is 0, break from this loop to avoid
* infinite loop.
*/
if (subtable_len == 0) {
pr_err("SRAT invalid zero length\n");
break;
}
switch (sub_header->type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
cpu = (struct acpi_srat_cpu_affinity *)sub_header;
pxm = *((u32 *)cpu->proximity_domain_hi) << 8 |
cpu->proximity_domain_lo;
if (pxm > max_pxm)
max_pxm = pxm;
break;
case ACPI_SRAT_TYPE_GENERIC_AFFINITY:
gpu = (struct acpi_srat_generic_affinity *)sub_header;
bdf = *((u16 *)(&gpu->device_handle[0])) << 16 |
*((u16 *)(&gpu->device_handle[2]));
if (bdf == pci_id) {
found = true;
numa_node = pxm_to_node(gpu->proximity_domain);
}
break;
default:
break;
}
if (found)
break;
sub_header = (struct acpi_subtable_header *)
((unsigned long)sub_header + subtable_len);
subtable_len = sub_header->length;
}
acpi_put_table(table_header);
/* Workaround bad cpu-gpu binding case */
if (found && (numa_node < 0 ||
numa_node > pxm_to_node(max_pxm)))
numa_node = 0;
if (numa_node != NUMA_NO_NODE)
set_dev_node(&kdev->pdev->dev, numa_node);
}
#endif
/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
* to its NUMA node
* @avail_size: Available size in the memory
* @kdev - [IN] GPU device
* @sub_type_hdr: Memory into which io link info will be filled in
* @proximity_domain - proximity domain of the GPU node
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
struct kfd_dev *kdev,
struct crat_subtype_iolink *sub_type_hdr,
uint32_t proximity_domain)
{
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
if (kfd_dev_is_large_bar(kdev))
sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
/* Fill in IOLINK subtype.
* TODO: Fill-in other fields of iolink subtype
*/
if (kdev->adev->gmc.xgmi.connected_to_cpu) {
/*
* with host gpu xgmi link, host can access gpu memory whether
* or not pcie bar type is large, so always create bidirectional
* io link.
*/
sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
sub_type_hdr->num_hops_xgmi = 1;
if (KFD_GC_VERSION(kdev) == IP_VERSION(9, 4, 2)) {
sub_type_hdr->minimum_bandwidth_mbs =
amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(
kdev->adev, NULL, true);
sub_type_hdr->maximum_bandwidth_mbs =
sub_type_hdr->minimum_bandwidth_mbs;
}
} else {
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
sub_type_hdr->minimum_bandwidth_mbs =
amdgpu_amdkfd_get_pcie_bandwidth_mbytes(kdev->adev, true);
sub_type_hdr->maximum_bandwidth_mbs =
amdgpu_amdkfd_get_pcie_bandwidth_mbytes(kdev->adev, false);
}
sub_type_hdr->proximity_domain_from = proximity_domain;
#ifdef CONFIG_ACPI_NUMA
if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
kfd_find_numa_node_in_srat(kdev);
#endif
#ifdef CONFIG_NUMA
if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
sub_type_hdr->proximity_domain_to = 0;
else
sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
#else
sub_type_hdr->proximity_domain_to = 0;
#endif
return 0;
}
static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
struct kfd_dev *kdev,
struct kfd_dev *peer_kdev,
struct crat_subtype_iolink *sub_type_hdr,
uint32_t proximity_domain_from,
uint32_t proximity_domain_to)
{
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
sub_type_hdr->proximity_domain_from = proximity_domain_from;
sub_type_hdr->proximity_domain_to = proximity_domain_to;
sub_type_hdr->num_hops_xgmi =
amdgpu_amdkfd_get_xgmi_hops_count(kdev->adev, peer_kdev->adev);
sub_type_hdr->maximum_bandwidth_mbs =
amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(kdev->adev, peer_kdev->adev, false);
sub_type_hdr->minimum_bandwidth_mbs = sub_type_hdr->maximum_bandwidth_mbs ?
amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(kdev->adev, NULL, true) : 0;
return 0;
}
/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for GPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
size_t *size, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct crat_subtype_generic *sub_type_hdr;
struct kfd_local_mem_info local_mem_info;
struct kfd_topology_device *peer_dev;
struct crat_subtype_computeunit *cu;
struct kfd_cu_info cu_info;
int avail_size = *size;
uint32_t total_num_of_cu;
uint32_t nid = 0;
int ret = 0;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
return -EINVAL;
/* Fill the CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
/* Change length as we add more subtypes*/
crat_table->length = sizeof(struct crat_header);
crat_table->num_domains = 1;
crat_table->total_entries = 0;
/* Fill in Subtype: Compute Unit
* First fill in the sub type header and then sub type data
*/
avail_size -= sizeof(struct crat_subtype_computeunit);
if (avail_size < 0)
return -ENOMEM;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill CU subtype data */
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
cu->proximity_domain = proximity_domain;
amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
cu->num_simd_per_cu = cu_info.simd_per_cu;
cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
cu->max_waves_simd = cu_info.max_waves_per_simd;
cu->wave_front_size = cu_info.wave_front_size;
cu->array_count = cu_info.num_shader_arrays_per_engine *
cu_info.num_shader_engines;
total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
cu->num_cu_per_array = cu_info.num_cu_per_sh;
cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
cu->num_banks = cu_info.num_shader_engines;
cu->lds_size_in_kb = cu_info.lds_size;
cu->hsa_capability = 0;
/* Check if this node supports IOMMU. During parsing this flag will
* translate to HSA_CAP_ATS_PRESENT
*/
if (!kfd_iommu_check_device(kdev))
cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
/* Fill in Subtype: Memory. Only on systems with large BAR (no
* private FB), report memory as public. On other systems
* report the total FB size (public+private) as a single
* private heap.
*/
local_mem_info = kdev->local_mem_info;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
if (debug_largebar)
local_mem_info.local_mem_size_private = 0;
if (local_mem_info.local_mem_size_private == 0)
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
local_mem_info.local_mem_size_public,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
else
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
local_mem_info.local_mem_size_public +
local_mem_info.local_mem_size_private,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
if (ret < 0)
return ret;
crat_table->length += sizeof(struct crat_subtype_memory);
crat_table->total_entries++;
/* Fill in Subtype: IO_LINKS
* Only direct links are added here which is Link from GPU to
* its NUMA node. Indirect links are added by userspace.
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
/* Fill in Subtype: IO_LINKS
* Direct links from GPU to other GPUs through xGMI.
* We will loop GPUs that already be processed (with lower value
* of proximity_domain), add the link for the GPUs with same
* hive id (from this GPU to other GPU) . The reversed iolink
* (from other GPU to this GPU) will be added
* in kfd_parse_subtype_iolink.
*/
if (kdev->hive_id) {
for (nid = 0; nid < proximity_domain; ++nid) {
peer_dev = kfd_topology_device_by_proximity_domain_no_lock(nid);
if (!peer_dev->gpu)
continue;
if (peer_dev->gpu->hive_id != kdev->hive_id)
continue;
sub_type_hdr = (typeof(sub_type_hdr))(
(char *)sub_type_hdr +
sizeof(struct crat_subtype_iolink));
ret = kfd_fill_gpu_xgmi_link_to_gpu(
&avail_size, kdev, peer_dev->gpu,
(struct crat_subtype_iolink *)sub_type_hdr,
proximity_domain, nid);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
}
}
*size = crat_table->length;
pr_info("Virtual CRAT table created for GPU\n");
return ret;
}
/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
* creates a Virtual CRAT (VCRAT) image
*
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: VCRAT image created because ACPI does not have a
* CRAT for this device
* @size: [OUT] size of virtual crat_image
* @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
* COMPUTE_UNIT_GPU - Create VCRAT for GPU
* (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
* -- this option is not currently implemented.
* The assumption is that all AMD APUs will have CRAT
* @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
*
* Return 0 if successful else return -ve value
*/
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
int flags, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
void *pcrat_image = NULL;
int ret = 0, num_nodes;
size_t dyn_size;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Allocate the CPU Virtual CRAT size based on the number of online
* nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image.
* This should cover all the current conditions. A check is put not
* to overwrite beyond allocated size for GPUs
*/
switch (flags) {
case COMPUTE_UNIT_CPU:
num_nodes = num_online_nodes();
dyn_size = sizeof(struct crat_header) +
num_nodes * (sizeof(struct crat_subtype_computeunit) +
sizeof(struct crat_subtype_memory) +
(num_nodes - 1) * sizeof(struct crat_subtype_iolink));
pcrat_image = kvmalloc(dyn_size, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = dyn_size;
pr_debug("CRAT size is %ld", dyn_size);
ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
break;
case COMPUTE_UNIT_GPU:
if (!kdev)
return -EINVAL;
pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_GPU;
ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
proximity_domain);
break;
case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
/* TODO: */
ret = -EINVAL;
pr_err("VCRAT not implemented for APU\n");
break;
default:
ret = -EINVAL;
}
if (!ret)
*crat_image = pcrat_image;
else
kvfree(pcrat_image);
return ret;
}
/* kfd_destroy_crat_image
*
* @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
*
*/
void kfd_destroy_crat_image(void *crat_image)
{
kvfree(crat_image);
}