Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Copyright © 2006, Intel Corporation.
 */
#ifndef _ADMA_H
#define _ADMA_H
#include <linux/types.h>
#include <linux/io.h>
#include <linux/platform_data/dma-iop32x.h>

/* Memory copy units */
#define DMA_CCR(chan)		(chan->mmr_base + 0x0)
#define DMA_CSR(chan)		(chan->mmr_base + 0x4)
#define DMA_DAR(chan)		(chan->mmr_base + 0xc)
#define DMA_NDAR(chan)		(chan->mmr_base + 0x10)
#define DMA_PADR(chan)		(chan->mmr_base + 0x14)
#define DMA_PUADR(chan)	(chan->mmr_base + 0x18)
#define DMA_LADR(chan)		(chan->mmr_base + 0x1c)
#define DMA_BCR(chan)		(chan->mmr_base + 0x20)
#define DMA_DCR(chan)		(chan->mmr_base + 0x24)

/* Application accelerator unit  */
#define AAU_ACR(chan)		(chan->mmr_base + 0x0)
#define AAU_ASR(chan)		(chan->mmr_base + 0x4)
#define AAU_ADAR(chan)		(chan->mmr_base + 0x8)
#define AAU_ANDAR(chan)	(chan->mmr_base + 0xc)
#define AAU_SAR(src, chan)	(chan->mmr_base + (0x10 + ((src) << 2)))
#define AAU_DAR(chan)		(chan->mmr_base + 0x20)
#define AAU_ABCR(chan)		(chan->mmr_base + 0x24)
#define AAU_ADCR(chan)		(chan->mmr_base + 0x28)
#define AAU_SAR_EDCR(src_edc)	(chan->mmr_base + (0x02c + ((src_edc-4) << 2)))
#define AAU_EDCR0_IDX	8
#define AAU_EDCR1_IDX	17
#define AAU_EDCR2_IDX	26

struct iop3xx_aau_desc_ctrl {
	unsigned int int_en:1;
	unsigned int blk1_cmd_ctrl:3;
	unsigned int blk2_cmd_ctrl:3;
	unsigned int blk3_cmd_ctrl:3;
	unsigned int blk4_cmd_ctrl:3;
	unsigned int blk5_cmd_ctrl:3;
	unsigned int blk6_cmd_ctrl:3;
	unsigned int blk7_cmd_ctrl:3;
	unsigned int blk8_cmd_ctrl:3;
	unsigned int blk_ctrl:2;
	unsigned int dual_xor_en:1;
	unsigned int tx_complete:1;
	unsigned int zero_result_err:1;
	unsigned int zero_result_en:1;
	unsigned int dest_write_en:1;
};

struct iop3xx_aau_e_desc_ctrl {
	unsigned int reserved:1;
	unsigned int blk1_cmd_ctrl:3;
	unsigned int blk2_cmd_ctrl:3;
	unsigned int blk3_cmd_ctrl:3;
	unsigned int blk4_cmd_ctrl:3;
	unsigned int blk5_cmd_ctrl:3;
	unsigned int blk6_cmd_ctrl:3;
	unsigned int blk7_cmd_ctrl:3;
	unsigned int blk8_cmd_ctrl:3;
	unsigned int reserved2:7;
};

struct iop3xx_dma_desc_ctrl {
	unsigned int pci_transaction:4;
	unsigned int int_en:1;
	unsigned int dac_cycle_en:1;
	unsigned int mem_to_mem_en:1;
	unsigned int crc_data_tx_en:1;
	unsigned int crc_gen_en:1;
	unsigned int crc_seed_dis:1;
	unsigned int reserved:21;
	unsigned int crc_tx_complete:1;
};

struct iop3xx_desc_dma {
	u32 next_desc;
	union {
		u32 pci_src_addr;
		u32 pci_dest_addr;
		u32 src_addr;
	};
	union {
		u32 upper_pci_src_addr;
		u32 upper_pci_dest_addr;
	};
	union {
		u32 local_pci_src_addr;
		u32 local_pci_dest_addr;
		u32 dest_addr;
	};
	u32 byte_count;
	union {
		u32 desc_ctrl;
		struct iop3xx_dma_desc_ctrl desc_ctrl_field;
	};
	u32 crc_addr;
};

struct iop3xx_desc_aau {
	u32 next_desc;
	u32 src[4];
	u32 dest_addr;
	u32 byte_count;
	union {
		u32 desc_ctrl;
		struct iop3xx_aau_desc_ctrl desc_ctrl_field;
	};
	union {
		u32 src_addr;
		u32 e_desc_ctrl;
		struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field;
	} src_edc[31];
};

struct iop3xx_aau_gfmr {
	unsigned int gfmr1:8;
	unsigned int gfmr2:8;
	unsigned int gfmr3:8;
	unsigned int gfmr4:8;
};

struct iop3xx_desc_pq_xor {
	u32 next_desc;
	u32 src[3];
	union {
		u32 data_mult1;
		struct iop3xx_aau_gfmr data_mult1_field;
	};
	u32 dest_addr;
	u32 byte_count;
	union {
		u32 desc_ctrl;
		struct iop3xx_aau_desc_ctrl desc_ctrl_field;
	};
	union {
		u32 src_addr;
		u32 e_desc_ctrl;
		struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field;
		u32 data_multiplier;
		struct iop3xx_aau_gfmr data_mult_field;
		u32 reserved;
	} src_edc_gfmr[19];
};

struct iop3xx_desc_dual_xor {
	u32 next_desc;
	u32 src0_addr;
	u32 src1_addr;
	u32 h_src_addr;
	u32 d_src_addr;
	u32 h_dest_addr;
	u32 byte_count;
	union {
		u32 desc_ctrl;
		struct iop3xx_aau_desc_ctrl desc_ctrl_field;
	};
	u32 d_dest_addr;
};

union iop3xx_desc {
	struct iop3xx_desc_aau *aau;
	struct iop3xx_desc_dma *dma;
	struct iop3xx_desc_pq_xor *pq_xor;
	struct iop3xx_desc_dual_xor *dual_xor;
	void *ptr;
};

/* No support for p+q operations */
static inline int
iop_chan_pq_slot_count(size_t len, int src_cnt, int *slots_per_op)
{
	BUG();
	return 0;
}

static inline void
iop_desc_init_pq(struct iop_adma_desc_slot *desc, int src_cnt,
		  unsigned long flags)
{
	BUG();
}

static inline void
iop_desc_set_pq_addr(struct iop_adma_desc_slot *desc, dma_addr_t *addr)
{
	BUG();
}

static inline void
iop_desc_set_pq_src_addr(struct iop_adma_desc_slot *desc, int src_idx,
			 dma_addr_t addr, unsigned char coef)
{
	BUG();
}

static inline int
iop_chan_pq_zero_sum_slot_count(size_t len, int src_cnt, int *slots_per_op)
{
	BUG();
	return 0;
}

static inline void
iop_desc_init_pq_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt,
			  unsigned long flags)
{
	BUG();
}

static inline void
iop_desc_set_pq_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len)
{
	BUG();
}

#define iop_desc_set_pq_zero_sum_src_addr iop_desc_set_pq_src_addr

static inline void
iop_desc_set_pq_zero_sum_addr(struct iop_adma_desc_slot *desc, int pq_idx,
			      dma_addr_t *src)
{
	BUG();
}

static inline int iop_adma_get_max_xor(void)
{
	return 32;
}

static inline int iop_adma_get_max_pq(void)
{
	BUG();
	return 0;
}

static inline u32 iop_chan_get_current_descriptor(struct iop_adma_chan *chan)
{
	int id = chan->device->id;

	switch (id) {
	case DMA0_ID:
	case DMA1_ID:
		return __raw_readl(DMA_DAR(chan));
	case AAU_ID:
		return __raw_readl(AAU_ADAR(chan));
	default:
		BUG();
	}
	return 0;
}

static inline void iop_chan_set_next_descriptor(struct iop_adma_chan *chan,
						u32 next_desc_addr)
{
	int id = chan->device->id;

	switch (id) {
	case DMA0_ID:
	case DMA1_ID:
		__raw_writel(next_desc_addr, DMA_NDAR(chan));
		break;
	case AAU_ID:
		__raw_writel(next_desc_addr, AAU_ANDAR(chan));
		break;
	}

}

#define IOP_ADMA_STATUS_BUSY (1 << 10)
#define IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT (1024)
#define IOP_ADMA_XOR_MAX_BYTE_COUNT (16 * 1024 * 1024)
#define IOP_ADMA_MAX_BYTE_COUNT (16 * 1024 * 1024)

static inline int iop_chan_is_busy(struct iop_adma_chan *chan)
{
	u32 status = __raw_readl(DMA_CSR(chan));
	return (status & IOP_ADMA_STATUS_BUSY) ? 1 : 0;
}

static inline int iop_desc_is_aligned(struct iop_adma_desc_slot *desc,
					int num_slots)
{
	/* num_slots will only ever be 1, 2, 4, or 8 */
	return (desc->idx & (num_slots - 1)) ? 0 : 1;
}

/* to do: support large (i.e. > hw max) buffer sizes */
static inline int iop_chan_memcpy_slot_count(size_t len, int *slots_per_op)
{
	*slots_per_op = 1;
	return 1;
}

/* to do: support large (i.e. > hw max) buffer sizes */
static inline int iop_chan_memset_slot_count(size_t len, int *slots_per_op)
{
	*slots_per_op = 1;
	return 1;
}

static inline int iop3xx_aau_xor_slot_count(size_t len, int src_cnt,
					int *slots_per_op)
{
	static const char slot_count_table[] = {
						1, 1, 1, 1, /* 01 - 04 */
						2, 2, 2, 2, /* 05 - 08 */
						4, 4, 4, 4, /* 09 - 12 */
						4, 4, 4, 4, /* 13 - 16 */
						8, 8, 8, 8, /* 17 - 20 */
						8, 8, 8, 8, /* 21 - 24 */
						8, 8, 8, 8, /* 25 - 28 */
						8, 8, 8, 8, /* 29 - 32 */
					      };
	*slots_per_op = slot_count_table[src_cnt - 1];
	return *slots_per_op;
}

static inline int
iop_chan_interrupt_slot_count(int *slots_per_op, struct iop_adma_chan *chan)
{
	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		return iop_chan_memcpy_slot_count(0, slots_per_op);
	case AAU_ID:
		return iop3xx_aau_xor_slot_count(0, 2, slots_per_op);
	default:
		BUG();
	}
	return 0;
}

static inline int iop_chan_xor_slot_count(size_t len, int src_cnt,
						int *slots_per_op)
{
	int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op);

	if (len <= IOP_ADMA_XOR_MAX_BYTE_COUNT)
		return slot_cnt;

	len -= IOP_ADMA_XOR_MAX_BYTE_COUNT;
	while (len > IOP_ADMA_XOR_MAX_BYTE_COUNT) {
		len -= IOP_ADMA_XOR_MAX_BYTE_COUNT;
		slot_cnt += *slots_per_op;
	}

	slot_cnt += *slots_per_op;

	return slot_cnt;
}

/* zero sum on iop3xx is limited to 1k at a time so it requires multiple
 * descriptors
 */
static inline int iop_chan_zero_sum_slot_count(size_t len, int src_cnt,
						int *slots_per_op)
{
	int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op);

	if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT)
		return slot_cnt;

	len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
	while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
		len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
		slot_cnt += *slots_per_op;
	}

	slot_cnt += *slots_per_op;

	return slot_cnt;
}

static inline u32 iop_desc_get_byte_count(struct iop_adma_desc_slot *desc,
					struct iop_adma_chan *chan)
{
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };

	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		return hw_desc.dma->byte_count;
	case AAU_ID:
		return hw_desc.aau->byte_count;
	default:
		BUG();
	}
	return 0;
}

/* translate the src_idx to a descriptor word index */
static inline int __desc_idx(int src_idx)
{
	static const int desc_idx_table[] = { 0, 0, 0, 0,
					      0, 1, 2, 3,
					      5, 6, 7, 8,
					      9, 10, 11, 12,
					      14, 15, 16, 17,
					      18, 19, 20, 21,
					      23, 24, 25, 26,
					      27, 28, 29, 30,
					    };

	return desc_idx_table[src_idx];
}

static inline u32 iop_desc_get_src_addr(struct iop_adma_desc_slot *desc,
					struct iop_adma_chan *chan,
					int src_idx)
{
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };

	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		return hw_desc.dma->src_addr;
	case AAU_ID:
		break;
	default:
		BUG();
	}

	if (src_idx < 4)
		return hw_desc.aau->src[src_idx];
	else
		return hw_desc.aau->src_edc[__desc_idx(src_idx)].src_addr;
}

static inline void iop3xx_aau_desc_set_src_addr(struct iop3xx_desc_aau *hw_desc,
					int src_idx, dma_addr_t addr)
{
	if (src_idx < 4)
		hw_desc->src[src_idx] = addr;
	else
		hw_desc->src_edc[__desc_idx(src_idx)].src_addr = addr;
}

static inline void
iop_desc_init_memcpy(struct iop_adma_desc_slot *desc, unsigned long flags)
{
	struct iop3xx_desc_dma *hw_desc = desc->hw_desc;
	union {
		u32 value;
		struct iop3xx_dma_desc_ctrl field;
	} u_desc_ctrl;

	u_desc_ctrl.value = 0;
	u_desc_ctrl.field.mem_to_mem_en = 1;
	u_desc_ctrl.field.pci_transaction = 0xe; /* memory read block */
	u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
	hw_desc->desc_ctrl = u_desc_ctrl.value;
	hw_desc->upper_pci_src_addr = 0;
	hw_desc->crc_addr = 0;
}

static inline void
iop_desc_init_memset(struct iop_adma_desc_slot *desc, unsigned long flags)
{
	struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
	union {
		u32 value;
		struct iop3xx_aau_desc_ctrl field;
	} u_desc_ctrl;

	u_desc_ctrl.value = 0;
	u_desc_ctrl.field.blk1_cmd_ctrl = 0x2; /* memory block fill */
	u_desc_ctrl.field.dest_write_en = 1;
	u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
	hw_desc->desc_ctrl = u_desc_ctrl.value;
}

static inline u32
iop3xx_desc_init_xor(struct iop3xx_desc_aau *hw_desc, int src_cnt,
		     unsigned long flags)
{
	int i, shift;
	u32 edcr;
	union {
		u32 value;
		struct iop3xx_aau_desc_ctrl field;
	} u_desc_ctrl;

	u_desc_ctrl.value = 0;
	switch (src_cnt) {
	case 25 ... 32:
		u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
		edcr = 0;
		shift = 1;
		for (i = 24; i < src_cnt; i++) {
			edcr |= (1 << shift);
			shift += 3;
		}
		hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = edcr;
		src_cnt = 24;
		fallthrough;
	case 17 ... 24:
		if (!u_desc_ctrl.field.blk_ctrl) {
			hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
			u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
		}
		edcr = 0;
		shift = 1;
		for (i = 16; i < src_cnt; i++) {
			edcr |= (1 << shift);
			shift += 3;
		}
		hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = edcr;
		src_cnt = 16;
		fallthrough;
	case 9 ... 16:
		if (!u_desc_ctrl.field.blk_ctrl)
			u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */
		edcr = 0;
		shift = 1;
		for (i = 8; i < src_cnt; i++) {
			edcr |= (1 << shift);
			shift += 3;
		}
		hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = edcr;
		src_cnt = 8;
		fallthrough;
	case 2 ... 8:
		shift = 1;
		for (i = 0; i < src_cnt; i++) {
			u_desc_ctrl.value |= (1 << shift);
			shift += 3;
		}

		if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4)
			u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */
	}

	u_desc_ctrl.field.dest_write_en = 1;
	u_desc_ctrl.field.blk1_cmd_ctrl = 0x7; /* direct fill */
	u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
	hw_desc->desc_ctrl = u_desc_ctrl.value;

	return u_desc_ctrl.value;
}

static inline void
iop_desc_init_xor(struct iop_adma_desc_slot *desc, int src_cnt,
		  unsigned long flags)
{
	iop3xx_desc_init_xor(desc->hw_desc, src_cnt, flags);
}

/* return the number of operations */
static inline int
iop_desc_init_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt,
		       unsigned long flags)
{
	int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
	struct iop3xx_desc_aau *hw_desc, *prev_hw_desc, *iter;
	union {
		u32 value;
		struct iop3xx_aau_desc_ctrl field;
	} u_desc_ctrl;
	int i, j;

	hw_desc = desc->hw_desc;

	for (i = 0, j = 0; (slot_cnt -= slots_per_op) >= 0;
		i += slots_per_op, j++) {
		iter = iop_hw_desc_slot_idx(hw_desc, i);
		u_desc_ctrl.value = iop3xx_desc_init_xor(iter, src_cnt, flags);
		u_desc_ctrl.field.dest_write_en = 0;
		u_desc_ctrl.field.zero_result_en = 1;
		u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
		iter->desc_ctrl = u_desc_ctrl.value;

		/* for the subsequent descriptors preserve the store queue
		 * and chain them together
		 */
		if (i) {
			prev_hw_desc =
				iop_hw_desc_slot_idx(hw_desc, i - slots_per_op);
			prev_hw_desc->next_desc =
				(u32) (desc->async_tx.phys + (i << 5));
		}
	}

	return j;
}

static inline void
iop_desc_init_null_xor(struct iop_adma_desc_slot *desc, int src_cnt,
		       unsigned long flags)
{
	struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
	union {
		u32 value;
		struct iop3xx_aau_desc_ctrl field;
	} u_desc_ctrl;

	u_desc_ctrl.value = 0;
	switch (src_cnt) {
	case 25 ... 32:
		u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
		hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
		fallthrough;
	case 17 ... 24:
		if (!u_desc_ctrl.field.blk_ctrl) {
			hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
			u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
		}
		hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = 0;
		fallthrough;
	case 9 ... 16:
		if (!u_desc_ctrl.field.blk_ctrl)
			u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */
		hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = 0;
		fallthrough;
	case 1 ... 8:
		if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4)
			u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */
	}

	u_desc_ctrl.field.dest_write_en = 0;
	u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
	hw_desc->desc_ctrl = u_desc_ctrl.value;
}

static inline void iop_desc_set_byte_count(struct iop_adma_desc_slot *desc,
					struct iop_adma_chan *chan,
					u32 byte_count)
{
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };

	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		hw_desc.dma->byte_count = byte_count;
		break;
	case AAU_ID:
		hw_desc.aau->byte_count = byte_count;
		break;
	default:
		BUG();
	}
}

static inline void
iop_desc_init_interrupt(struct iop_adma_desc_slot *desc,
			struct iop_adma_chan *chan)
{
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };

	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		iop_desc_init_memcpy(desc, 1);
		hw_desc.dma->byte_count = 0;
		hw_desc.dma->dest_addr = 0;
		hw_desc.dma->src_addr = 0;
		break;
	case AAU_ID:
		iop_desc_init_null_xor(desc, 2, 1);
		hw_desc.aau->byte_count = 0;
		hw_desc.aau->dest_addr = 0;
		hw_desc.aau->src[0] = 0;
		hw_desc.aau->src[1] = 0;
		break;
	default:
		BUG();
	}
}

static inline void
iop_desc_set_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len)
{
	int slots_per_op = desc->slots_per_op;
	struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
	int i = 0;

	if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
		hw_desc->byte_count = len;
	} else {
		do {
			iter = iop_hw_desc_slot_idx(hw_desc, i);
			iter->byte_count = IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
			len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
			i += slots_per_op;
		} while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT);

		iter = iop_hw_desc_slot_idx(hw_desc, i);
		iter->byte_count = len;
	}
}

static inline void iop_desc_set_dest_addr(struct iop_adma_desc_slot *desc,
					struct iop_adma_chan *chan,
					dma_addr_t addr)
{
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };

	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		hw_desc.dma->dest_addr = addr;
		break;
	case AAU_ID:
		hw_desc.aau->dest_addr = addr;
		break;
	default:
		BUG();
	}
}

static inline void iop_desc_set_memcpy_src_addr(struct iop_adma_desc_slot *desc,
					dma_addr_t addr)
{
	struct iop3xx_desc_dma *hw_desc = desc->hw_desc;
	hw_desc->src_addr = addr;
}

static inline void
iop_desc_set_zero_sum_src_addr(struct iop_adma_desc_slot *desc, int src_idx,
				dma_addr_t addr)
{

	struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
	int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
	int i;

	for (i = 0; (slot_cnt -= slots_per_op) >= 0;
		i += slots_per_op, addr += IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
		iter = iop_hw_desc_slot_idx(hw_desc, i);
		iop3xx_aau_desc_set_src_addr(iter, src_idx, addr);
	}
}

static inline void iop_desc_set_xor_src_addr(struct iop_adma_desc_slot *desc,
					int src_idx, dma_addr_t addr)
{

	struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
	int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
	int i;

	for (i = 0; (slot_cnt -= slots_per_op) >= 0;
		i += slots_per_op, addr += IOP_ADMA_XOR_MAX_BYTE_COUNT) {
		iter = iop_hw_desc_slot_idx(hw_desc, i);
		iop3xx_aau_desc_set_src_addr(iter, src_idx, addr);
	}
}

static inline void iop_desc_set_next_desc(struct iop_adma_desc_slot *desc,
					u32 next_desc_addr)
{
	/* hw_desc->next_desc is the same location for all channels */
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };

	iop_paranoia(hw_desc.dma->next_desc);
	hw_desc.dma->next_desc = next_desc_addr;
}

static inline u32 iop_desc_get_next_desc(struct iop_adma_desc_slot *desc)
{
	/* hw_desc->next_desc is the same location for all channels */
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
	return hw_desc.dma->next_desc;
}

static inline void iop_desc_clear_next_desc(struct iop_adma_desc_slot *desc)
{
	/* hw_desc->next_desc is the same location for all channels */
	union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
	hw_desc.dma->next_desc = 0;
}

static inline void iop_desc_set_block_fill_val(struct iop_adma_desc_slot *desc,
						u32 val)
{
	struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
	hw_desc->src[0] = val;
}

static inline enum sum_check_flags
iop_desc_get_zero_result(struct iop_adma_desc_slot *desc)
{
	struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
	struct iop3xx_aau_desc_ctrl desc_ctrl = hw_desc->desc_ctrl_field;

	iop_paranoia(!(desc_ctrl.tx_complete && desc_ctrl.zero_result_en));
	return desc_ctrl.zero_result_err << SUM_CHECK_P;
}

static inline void iop_chan_append(struct iop_adma_chan *chan)
{
	u32 dma_chan_ctrl;

	dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
	dma_chan_ctrl |= 0x2;
	__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}

static inline u32 iop_chan_get_status(struct iop_adma_chan *chan)
{
	return __raw_readl(DMA_CSR(chan));
}

static inline void iop_chan_disable(struct iop_adma_chan *chan)
{
	u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
	dma_chan_ctrl &= ~1;
	__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}

static inline void iop_chan_enable(struct iop_adma_chan *chan)
{
	u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan));

	dma_chan_ctrl |= 1;
	__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}

static inline void iop_adma_device_clear_eot_status(struct iop_adma_chan *chan)
{
	u32 status = __raw_readl(DMA_CSR(chan));
	status &= (1 << 9);
	__raw_writel(status, DMA_CSR(chan));
}

static inline void iop_adma_device_clear_eoc_status(struct iop_adma_chan *chan)
{
	u32 status = __raw_readl(DMA_CSR(chan));
	status &= (1 << 8);
	__raw_writel(status, DMA_CSR(chan));
}

static inline void iop_adma_device_clear_err_status(struct iop_adma_chan *chan)
{
	u32 status = __raw_readl(DMA_CSR(chan));

	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		status &= (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1);
		break;
	case AAU_ID:
		status &= (1 << 5);
		break;
	default:
		BUG();
	}

	__raw_writel(status, DMA_CSR(chan));
}

static inline int
iop_is_err_int_parity(unsigned long status, struct iop_adma_chan *chan)
{
	return 0;
}

static inline int
iop_is_err_mcu_abort(unsigned long status, struct iop_adma_chan *chan)
{
	return 0;
}

static inline int
iop_is_err_int_tabort(unsigned long status, struct iop_adma_chan *chan)
{
	return 0;
}

static inline int
iop_is_err_int_mabort(unsigned long status, struct iop_adma_chan *chan)
{
	return test_bit(5, &status);
}

static inline int
iop_is_err_pci_tabort(unsigned long status, struct iop_adma_chan *chan)
{
	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		return test_bit(2, &status);
	default:
		return 0;
	}
}

static inline int
iop_is_err_pci_mabort(unsigned long status, struct iop_adma_chan *chan)
{
	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		return test_bit(3, &status);
	default:
		return 0;
	}
}

static inline int
iop_is_err_split_tx(unsigned long status, struct iop_adma_chan *chan)
{
	switch (chan->device->id) {
	case DMA0_ID:
	case DMA1_ID:
		return test_bit(1, &status);
	default:
		return 0;
	}
}
#endif /* _ADMA_H */