Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 | // SPDX-License-Identifier: GPL-2.0 #include <linux/slab.h> #include <linux/lockdep.h> #include <linux/sysfs.h> #include <linux/kobject.h> #include <linux/memory.h> #include <linux/memory-tiers.h> #include "internal.h" struct memory_tier { /* hierarchy of memory tiers */ struct list_head list; /* list of all memory types part of this tier */ struct list_head memory_types; /* * start value of abstract distance. memory tier maps * an abstract distance range, * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE */ int adistance_start; struct device dev; /* All the nodes that are part of all the lower memory tiers. */ nodemask_t lower_tier_mask; }; struct demotion_nodes { nodemask_t preferred; }; struct node_memory_type_map { struct memory_dev_type *memtype; int map_count; }; static DEFINE_MUTEX(memory_tier_lock); static LIST_HEAD(memory_tiers); static struct node_memory_type_map node_memory_types[MAX_NUMNODES]; static struct memory_dev_type *default_dram_type; static struct bus_type memory_tier_subsys = { .name = "memory_tiering", .dev_name = "memory_tier", }; #ifdef CONFIG_MIGRATION static int top_tier_adistance; /* * node_demotion[] examples: * * Example 1: * * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. * * node distances: * node 0 1 2 3 * 0 10 20 30 40 * 1 20 10 40 30 * 2 30 40 10 40 * 3 40 30 40 10 * * memory_tiers0 = 0-1 * memory_tiers1 = 2-3 * * node_demotion[0].preferred = 2 * node_demotion[1].preferred = 3 * node_demotion[2].preferred = <empty> * node_demotion[3].preferred = <empty> * * Example 2: * * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. * * node distances: * node 0 1 2 * 0 10 20 30 * 1 20 10 30 * 2 30 30 10 * * memory_tiers0 = 0-2 * * node_demotion[0].preferred = <empty> * node_demotion[1].preferred = <empty> * node_demotion[2].preferred = <empty> * * Example 3: * * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. * * node distances: * node 0 1 2 * 0 10 20 30 * 1 20 10 40 * 2 30 40 10 * * memory_tiers0 = 1 * memory_tiers1 = 0 * memory_tiers2 = 2 * * node_demotion[0].preferred = 2 * node_demotion[1].preferred = 0 * node_demotion[2].preferred = <empty> * */ static struct demotion_nodes *node_demotion __read_mostly; #endif /* CONFIG_MIGRATION */ static inline struct memory_tier *to_memory_tier(struct device *device) { return container_of(device, struct memory_tier, dev); } static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) { nodemask_t nodes = NODE_MASK_NONE; struct memory_dev_type *memtype; list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling) nodes_or(nodes, nodes, memtype->nodes); return nodes; } static void memory_tier_device_release(struct device *dev) { struct memory_tier *tier = to_memory_tier(dev); /* * synchronize_rcu in clear_node_memory_tier makes sure * we don't have rcu access to this memory tier. */ kfree(tier); } static ssize_t nodelist_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; nodemask_t nmask; mutex_lock(&memory_tier_lock); nmask = get_memtier_nodemask(to_memory_tier(dev)); ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask)); mutex_unlock(&memory_tier_lock); return ret; } static DEVICE_ATTR_RO(nodelist); static struct attribute *memtier_dev_attrs[] = { &dev_attr_nodelist.attr, NULL }; static const struct attribute_group memtier_dev_group = { .attrs = memtier_dev_attrs, }; static const struct attribute_group *memtier_dev_groups[] = { &memtier_dev_group, NULL }; static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype) { int ret; bool found_slot = false; struct memory_tier *memtier, *new_memtier; int adistance = memtype->adistance; unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE; lockdep_assert_held_once(&memory_tier_lock); adistance = round_down(adistance, memtier_adistance_chunk_size); /* * If the memtype is already part of a memory tier, * just return that. */ if (!list_empty(&memtype->tier_sibiling)) { list_for_each_entry(memtier, &memory_tiers, list) { if (adistance == memtier->adistance_start) return memtier; } WARN_ON(1); return ERR_PTR(-EINVAL); } list_for_each_entry(memtier, &memory_tiers, list) { if (adistance == memtier->adistance_start) { goto link_memtype; } else if (adistance < memtier->adistance_start) { found_slot = true; break; } } new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL); if (!new_memtier) return ERR_PTR(-ENOMEM); new_memtier->adistance_start = adistance; INIT_LIST_HEAD(&new_memtier->list); INIT_LIST_HEAD(&new_memtier->memory_types); if (found_slot) list_add_tail(&new_memtier->list, &memtier->list); else list_add_tail(&new_memtier->list, &memory_tiers); new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS; new_memtier->dev.bus = &memory_tier_subsys; new_memtier->dev.release = memory_tier_device_release; new_memtier->dev.groups = memtier_dev_groups; ret = device_register(&new_memtier->dev); if (ret) { list_del(&new_memtier->list); put_device(&new_memtier->dev); return ERR_PTR(ret); } memtier = new_memtier; link_memtype: list_add(&memtype->tier_sibiling, &memtier->memory_types); return memtier; } static struct memory_tier *__node_get_memory_tier(int node) { pg_data_t *pgdat; pgdat = NODE_DATA(node); if (!pgdat) return NULL; /* * Since we hold memory_tier_lock, we can avoid * RCU read locks when accessing the details. No * parallel updates are possible here. */ return rcu_dereference_check(pgdat->memtier, lockdep_is_held(&memory_tier_lock)); } #ifdef CONFIG_MIGRATION bool node_is_toptier(int node) { bool toptier; pg_data_t *pgdat; struct memory_tier *memtier; pgdat = NODE_DATA(node); if (!pgdat) return false; rcu_read_lock(); memtier = rcu_dereference(pgdat->memtier); if (!memtier) { toptier = true; goto out; } if (memtier->adistance_start <= top_tier_adistance) toptier = true; else toptier = false; out: rcu_read_unlock(); return toptier; } void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets) { struct memory_tier *memtier; /* * pg_data_t.memtier updates includes a synchronize_rcu() * which ensures that we either find NULL or a valid memtier * in NODE_DATA. protect the access via rcu_read_lock(); */ rcu_read_lock(); memtier = rcu_dereference(pgdat->memtier); if (memtier) *targets = memtier->lower_tier_mask; else *targets = NODE_MASK_NONE; rcu_read_unlock(); } /** * next_demotion_node() - Get the next node in the demotion path * @node: The starting node to lookup the next node * * Return: node id for next memory node in the demotion path hierarchy * from @node; NUMA_NO_NODE if @node is terminal. This does not keep * @node online or guarantee that it *continues* to be the next demotion * target. */ int next_demotion_node(int node) { struct demotion_nodes *nd; int target; if (!node_demotion) return NUMA_NO_NODE; nd = &node_demotion[node]; /* * node_demotion[] is updated without excluding this * function from running. * * Make sure to use RCU over entire code blocks if * node_demotion[] reads need to be consistent. */ rcu_read_lock(); /* * If there are multiple target nodes, just select one * target node randomly. * * In addition, we can also use round-robin to select * target node, but we should introduce another variable * for node_demotion[] to record last selected target node, * that may cause cache ping-pong due to the changing of * last target node. Or introducing per-cpu data to avoid * caching issue, which seems more complicated. So selecting * target node randomly seems better until now. */ target = node_random(&nd->preferred); rcu_read_unlock(); return target; } static void disable_all_demotion_targets(void) { struct memory_tier *memtier; int node; for_each_node_state(node, N_MEMORY) { node_demotion[node].preferred = NODE_MASK_NONE; /* * We are holding memory_tier_lock, it is safe * to access pgda->memtier. */ memtier = __node_get_memory_tier(node); if (memtier) memtier->lower_tier_mask = NODE_MASK_NONE; } /* * Ensure that the "disable" is visible across the system. * Readers will see either a combination of before+disable * state or disable+after. They will never see before and * after state together. */ synchronize_rcu(); } /* * Find an automatic demotion target for all memory * nodes. Failing here is OK. It might just indicate * being at the end of a chain. */ static void establish_demotion_targets(void) { struct memory_tier *memtier; struct demotion_nodes *nd; int target = NUMA_NO_NODE, node; int distance, best_distance; nodemask_t tier_nodes, lower_tier; lockdep_assert_held_once(&memory_tier_lock); if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION)) return; disable_all_demotion_targets(); for_each_node_state(node, N_MEMORY) { best_distance = -1; nd = &node_demotion[node]; memtier = __node_get_memory_tier(node); if (!memtier || list_is_last(&memtier->list, &memory_tiers)) continue; /* * Get the lower memtier to find the demotion node list. */ memtier = list_next_entry(memtier, list); tier_nodes = get_memtier_nodemask(memtier); /* * find_next_best_node, use 'used' nodemask as a skip list. * Add all memory nodes except the selected memory tier * nodelist to skip list so that we find the best node from the * memtier nodelist. */ nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); /* * Find all the nodes in the memory tier node list of same best distance. * add them to the preferred mask. We randomly select between nodes * in the preferred mask when allocating pages during demotion. */ do { target = find_next_best_node(node, &tier_nodes); if (target == NUMA_NO_NODE) break; distance = node_distance(node, target); if (distance == best_distance || best_distance == -1) { best_distance = distance; node_set(target, nd->preferred); } else { break; } } while (1); } /* * Promotion is allowed from a memory tier to higher * memory tier only if the memory tier doesn't include * compute. We want to skip promotion from a memory tier, * if any node that is part of the memory tier have CPUs. * Once we detect such a memory tier, we consider that tier * as top tiper from which promotion is not allowed. */ list_for_each_entry_reverse(memtier, &memory_tiers, list) { tier_nodes = get_memtier_nodemask(memtier); nodes_and(tier_nodes, node_states[N_CPU], tier_nodes); if (!nodes_empty(tier_nodes)) { /* * abstract distance below the max value of this memtier * is considered toptier. */ top_tier_adistance = memtier->adistance_start + MEMTIER_CHUNK_SIZE - 1; break; } } /* * Now build the lower_tier mask for each node collecting node mask from * all memory tier below it. This allows us to fallback demotion page * allocation to a set of nodes that is closer the above selected * perferred node. */ lower_tier = node_states[N_MEMORY]; list_for_each_entry(memtier, &memory_tiers, list) { /* * Keep removing current tier from lower_tier nodes, * This will remove all nodes in current and above * memory tier from the lower_tier mask. */ tier_nodes = get_memtier_nodemask(memtier); nodes_andnot(lower_tier, lower_tier, tier_nodes); memtier->lower_tier_mask = lower_tier; } } #else static inline void disable_all_demotion_targets(void) {} static inline void establish_demotion_targets(void) {} #endif /* CONFIG_MIGRATION */ static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype) { if (!node_memory_types[node].memtype) node_memory_types[node].memtype = memtype; /* * for each device getting added in the same NUMA node * with this specific memtype, bump the map count. We * Only take memtype device reference once, so that * changing a node memtype can be done by droping the * only reference count taken here. */ if (node_memory_types[node].memtype == memtype) { if (!node_memory_types[node].map_count++) kref_get(&memtype->kref); } } static struct memory_tier *set_node_memory_tier(int node) { struct memory_tier *memtier; struct memory_dev_type *memtype; pg_data_t *pgdat = NODE_DATA(node); lockdep_assert_held_once(&memory_tier_lock); if (!node_state(node, N_MEMORY)) return ERR_PTR(-EINVAL); __init_node_memory_type(node, default_dram_type); memtype = node_memory_types[node].memtype; node_set(node, memtype->nodes); memtier = find_create_memory_tier(memtype); if (!IS_ERR(memtier)) rcu_assign_pointer(pgdat->memtier, memtier); return memtier; } static void destroy_memory_tier(struct memory_tier *memtier) { list_del(&memtier->list); device_unregister(&memtier->dev); } static bool clear_node_memory_tier(int node) { bool cleared = false; pg_data_t *pgdat; struct memory_tier *memtier; pgdat = NODE_DATA(node); if (!pgdat) return false; /* * Make sure that anybody looking at NODE_DATA who finds * a valid memtier finds memory_dev_types with nodes still * linked to the memtier. We achieve this by waiting for * rcu read section to finish using synchronize_rcu. * This also enables us to free the destroyed memory tier * with kfree instead of kfree_rcu */ memtier = __node_get_memory_tier(node); if (memtier) { struct memory_dev_type *memtype; rcu_assign_pointer(pgdat->memtier, NULL); synchronize_rcu(); memtype = node_memory_types[node].memtype; node_clear(node, memtype->nodes); if (nodes_empty(memtype->nodes)) { list_del_init(&memtype->tier_sibiling); if (list_empty(&memtier->memory_types)) destroy_memory_tier(memtier); } cleared = true; } return cleared; } static void release_memtype(struct kref *kref) { struct memory_dev_type *memtype; memtype = container_of(kref, struct memory_dev_type, kref); kfree(memtype); } struct memory_dev_type *alloc_memory_type(int adistance) { struct memory_dev_type *memtype; memtype = kmalloc(sizeof(*memtype), GFP_KERNEL); if (!memtype) return ERR_PTR(-ENOMEM); memtype->adistance = adistance; INIT_LIST_HEAD(&memtype->tier_sibiling); memtype->nodes = NODE_MASK_NONE; kref_init(&memtype->kref); return memtype; } EXPORT_SYMBOL_GPL(alloc_memory_type); void destroy_memory_type(struct memory_dev_type *memtype) { kref_put(&memtype->kref, release_memtype); } EXPORT_SYMBOL_GPL(destroy_memory_type); void init_node_memory_type(int node, struct memory_dev_type *memtype) { mutex_lock(&memory_tier_lock); __init_node_memory_type(node, memtype); mutex_unlock(&memory_tier_lock); } EXPORT_SYMBOL_GPL(init_node_memory_type); void clear_node_memory_type(int node, struct memory_dev_type *memtype) { mutex_lock(&memory_tier_lock); if (node_memory_types[node].memtype == memtype) node_memory_types[node].map_count--; /* * If we umapped all the attached devices to this node, * clear the node memory type. */ if (!node_memory_types[node].map_count) { node_memory_types[node].memtype = NULL; kref_put(&memtype->kref, release_memtype); } mutex_unlock(&memory_tier_lock); } EXPORT_SYMBOL_GPL(clear_node_memory_type); static int __meminit memtier_hotplug_callback(struct notifier_block *self, unsigned long action, void *_arg) { struct memory_tier *memtier; struct memory_notify *arg = _arg; /* * Only update the node migration order when a node is * changing status, like online->offline. */ if (arg->status_change_nid < 0) return notifier_from_errno(0); switch (action) { case MEM_OFFLINE: mutex_lock(&memory_tier_lock); if (clear_node_memory_tier(arg->status_change_nid)) establish_demotion_targets(); mutex_unlock(&memory_tier_lock); break; case MEM_ONLINE: mutex_lock(&memory_tier_lock); memtier = set_node_memory_tier(arg->status_change_nid); if (!IS_ERR(memtier)) establish_demotion_targets(); mutex_unlock(&memory_tier_lock); break; } return notifier_from_errno(0); } static int __init memory_tier_init(void) { int ret, node; struct memory_tier *memtier; ret = subsys_virtual_register(&memory_tier_subsys, NULL); if (ret) panic("%s() failed to register memory tier subsystem\n", __func__); #ifdef CONFIG_MIGRATION node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes), GFP_KERNEL); WARN_ON(!node_demotion); #endif mutex_lock(&memory_tier_lock); /* * For now we can have 4 faster memory tiers with smaller adistance * than default DRAM tier. */ default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM); if (!default_dram_type) panic("%s() failed to allocate default DRAM tier\n", __func__); /* * Look at all the existing N_MEMORY nodes and add them to * default memory tier or to a tier if we already have memory * types assigned. */ for_each_node_state(node, N_MEMORY) { memtier = set_node_memory_tier(node); if (IS_ERR(memtier)) /* * Continue with memtiers we are able to setup */ break; } establish_demotion_targets(); mutex_unlock(&memory_tier_lock); hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO); return 0; } subsys_initcall(memory_tier_init); bool numa_demotion_enabled = false; #ifdef CONFIG_MIGRATION #ifdef CONFIG_SYSFS static ssize_t numa_demotion_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", numa_demotion_enabled ? "true" : "false"); } static ssize_t numa_demotion_enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { ssize_t ret; ret = kstrtobool(buf, &numa_demotion_enabled); if (ret) return ret; return count; } static struct kobj_attribute numa_demotion_enabled_attr = __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, numa_demotion_enabled_store); static struct attribute *numa_attrs[] = { &numa_demotion_enabled_attr.attr, NULL, }; static const struct attribute_group numa_attr_group = { .attrs = numa_attrs, }; static int __init numa_init_sysfs(void) { int err; struct kobject *numa_kobj; numa_kobj = kobject_create_and_add("numa", mm_kobj); if (!numa_kobj) { pr_err("failed to create numa kobject\n"); return -ENOMEM; } err = sysfs_create_group(numa_kobj, &numa_attr_group); if (err) { pr_err("failed to register numa group\n"); goto delete_obj; } return 0; delete_obj: kobject_put(numa_kobj); return err; } subsys_initcall(numa_init_sysfs); #endif /* CONFIG_SYSFS */ #endif |