Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005 Intel Corporation * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> * - Added _PDC for SMP C-states on Intel CPUs */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/init.h> #include <linux/acpi.h> #include <linux/cpu.h> #include <linux/sched.h> #include <acpi/processor.h> #include <asm/mwait.h> #include <asm/special_insns.h> /* * Initialize bm_flags based on the CPU cache properties * On SMP it depends on cache configuration * - When cache is not shared among all CPUs, we flush cache * before entering C3. * - When cache is shared among all CPUs, we use bm_check * mechanism as in UP case * * This routine is called only after all the CPUs are online */ void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags, unsigned int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); flags->bm_check = 0; if (num_online_cpus() == 1) flags->bm_check = 1; else if (c->x86_vendor == X86_VENDOR_INTEL) { /* * Today all MP CPUs that support C3 share cache. * And caches should not be flushed by software while * entering C3 type state. */ flags->bm_check = 1; } /* * On all recent Intel platforms, ARB_DISABLE is a nop. * So, set bm_control to zero to indicate that ARB_DISABLE * is not required while entering C3 type state on * P4, Core and beyond CPUs */ if (c->x86_vendor == X86_VENDOR_INTEL && (c->x86 > 0xf || (c->x86 == 6 && c->x86_model >= 0x0f))) flags->bm_control = 0; /* * For all recent Centaur CPUs, the ucode will make sure that each * core can keep cache coherence with each other while entering C3 * type state. So, set bm_check to 1 to indicate that the kernel * doesn't need to execute a cache flush operation (WBINVD) when * entering C3 type state. */ if (c->x86_vendor == X86_VENDOR_CENTAUR) { if (c->x86 > 6 || (c->x86 == 6 && c->x86_model == 0x0f && c->x86_stepping >= 0x0e)) flags->bm_check = 1; } if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { /* * All Zhaoxin CPUs that support C3 share cache. * And caches should not be flushed by software while * entering C3 type state. */ flags->bm_check = 1; /* * On all recent Zhaoxin platforms, ARB_DISABLE is a nop. * So, set bm_control to zero to indicate that ARB_DISABLE * is not required while entering C3 type state. */ flags->bm_control = 0; } if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) { /* * For all AMD Zen or newer CPUs that support C3, caches * should not be flushed by software while entering C3 * type state. Set bm->check to 1 so that kernel doesn't * need to execute cache flush operation. */ flags->bm_check = 1; /* * In current AMD C state implementation ARB_DIS is no longer * used. So set bm_control to zero to indicate ARB_DIS is not * required while entering C3 type state. */ flags->bm_control = 0; } } EXPORT_SYMBOL(acpi_processor_power_init_bm_check); /* The code below handles cstate entry with monitor-mwait pair on Intel*/ struct cstate_entry { struct { unsigned int eax; unsigned int ecx; } states[ACPI_PROCESSOR_MAX_POWER]; }; static struct cstate_entry __percpu *cpu_cstate_entry; /* per CPU ptr */ static short mwait_supported[ACPI_PROCESSOR_MAX_POWER]; #define NATIVE_CSTATE_BEYOND_HALT (2) static long acpi_processor_ffh_cstate_probe_cpu(void *_cx) { struct acpi_processor_cx *cx = _cx; long retval; unsigned int eax, ebx, ecx, edx; unsigned int edx_part; unsigned int cstate_type; /* C-state type and not ACPI C-state type */ unsigned int num_cstate_subtype; cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); /* Check whether this particular cx_type (in CST) is supported or not */ cstate_type = ((cx->address >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK) + 1; edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE); num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK; retval = 0; /* If the HW does not support any sub-states in this C-state */ if (num_cstate_subtype == 0) { pr_warn(FW_BUG "ACPI MWAIT C-state 0x%x not supported by HW (0x%x)\n", cx->address, edx_part); retval = -1; goto out; } /* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */ if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) { retval = -1; goto out; } if (!mwait_supported[cstate_type]) { mwait_supported[cstate_type] = 1; printk(KERN_DEBUG "Monitor-Mwait will be used to enter C-%d state\n", cx->type); } snprintf(cx->desc, ACPI_CX_DESC_LEN, "ACPI FFH MWAIT 0x%x", cx->address); out: return retval; } int acpi_processor_ffh_cstate_probe(unsigned int cpu, struct acpi_processor_cx *cx, struct acpi_power_register *reg) { struct cstate_entry *percpu_entry; struct cpuinfo_x86 *c = &cpu_data(cpu); long retval; if (!cpu_cstate_entry || c->cpuid_level < CPUID_MWAIT_LEAF) return -1; if (reg->bit_offset != NATIVE_CSTATE_BEYOND_HALT) return -1; percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu); percpu_entry->states[cx->index].eax = 0; percpu_entry->states[cx->index].ecx = 0; /* Make sure we are running on right CPU */ retval = call_on_cpu(cpu, acpi_processor_ffh_cstate_probe_cpu, cx, false); if (retval == 0) { /* Use the hint in CST */ percpu_entry->states[cx->index].eax = cx->address; percpu_entry->states[cx->index].ecx = MWAIT_ECX_INTERRUPT_BREAK; } /* * For _CST FFH on Intel, if GAS.access_size bit 1 is cleared, * then we should skip checking BM_STS for this C-state. * ref: "Intel Processor Vendor-Specific ACPI Interface Specification" */ if ((c->x86_vendor == X86_VENDOR_INTEL) && !(reg->access_size & 0x2)) cx->bm_sts_skip = 1; return retval; } EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe); void __cpuidle acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx) { unsigned int cpu = smp_processor_id(); struct cstate_entry *percpu_entry; percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu); mwait_idle_with_hints(percpu_entry->states[cx->index].eax, percpu_entry->states[cx->index].ecx); } EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_enter); static int __init ffh_cstate_init(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86_vendor != X86_VENDOR_INTEL && c->x86_vendor != X86_VENDOR_AMD && c->x86_vendor != X86_VENDOR_HYGON) return -1; cpu_cstate_entry = alloc_percpu(struct cstate_entry); return 0; } static void __exit ffh_cstate_exit(void) { free_percpu(cpu_cstate_entry); cpu_cstate_entry = NULL; } arch_initcall(ffh_cstate_init); __exitcall(ffh_cstate_exit); |