Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | // SPDX-License-Identifier: Apache-2.0 OR MIT //! Memory allocation APIs #![stable(feature = "alloc_module", since = "1.28.0")] #[cfg(not(test))] use core::intrinsics; use core::intrinsics::{min_align_of_val, size_of_val}; use core::ptr::Unique; #[cfg(not(test))] use core::ptr::{self, NonNull}; #[stable(feature = "alloc_module", since = "1.28.0")] #[doc(inline)] pub use core::alloc::*; use core::marker::Destruct; #[cfg(test)] mod tests; extern "Rust" { // These are the magic symbols to call the global allocator. rustc generates // them to call `__rg_alloc` etc. if there is a `#[global_allocator]` attribute // (the code expanding that attribute macro generates those functions), or to call // the default implementations in libstd (`__rdl_alloc` etc. in `library/std/src/alloc.rs`) // otherwise. // The rustc fork of LLVM also special-cases these function names to be able to optimize them // like `malloc`, `realloc`, and `free`, respectively. #[rustc_allocator] #[rustc_allocator_nounwind] fn __rust_alloc(size: usize, align: usize) -> *mut u8; #[rustc_allocator_nounwind] fn __rust_dealloc(ptr: *mut u8, size: usize, align: usize); #[rustc_allocator_nounwind] fn __rust_realloc(ptr: *mut u8, old_size: usize, align: usize, new_size: usize) -> *mut u8; #[rustc_allocator_nounwind] fn __rust_alloc_zeroed(size: usize, align: usize) -> *mut u8; } /// The global memory allocator. /// /// This type implements the [`Allocator`] trait by forwarding calls /// to the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// Note: while this type is unstable, the functionality it provides can be /// accessed through the [free functions in `alloc`](self#functions). #[unstable(feature = "allocator_api", issue = "32838")] #[derive(Copy, Clone, Default, Debug)] #[cfg(not(test))] pub struct Global; #[cfg(test)] pub use std::alloc::Global; /// Allocate memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::alloc`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `alloc` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::alloc`]. /// /// # Examples /// /// ``` /// use std::alloc::{alloc, dealloc, Layout}; /// /// unsafe { /// let layout = Layout::new::<u16>(); /// let ptr = alloc(layout); /// /// *(ptr as *mut u16) = 42; /// assert_eq!(*(ptr as *mut u16), 42); /// /// dealloc(ptr, layout); /// } /// ``` #[stable(feature = "global_alloc", since = "1.28.0")] #[must_use = "losing the pointer will leak memory"] #[inline] pub unsafe fn alloc(layout: Layout) -> *mut u8 { unsafe { __rust_alloc(layout.size(), layout.align()) } } /// Deallocate memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::dealloc`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `dealloc` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::dealloc`]. #[stable(feature = "global_alloc", since = "1.28.0")] #[inline] pub unsafe fn dealloc(ptr: *mut u8, layout: Layout) { unsafe { __rust_dealloc(ptr, layout.size(), layout.align()) } } /// Reallocate memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::realloc`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `realloc` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::realloc`]. #[stable(feature = "global_alloc", since = "1.28.0")] #[must_use = "losing the pointer will leak memory"] #[inline] pub unsafe fn realloc(ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { unsafe { __rust_realloc(ptr, layout.size(), layout.align(), new_size) } } /// Allocate zero-initialized memory with the global allocator. /// /// This function forwards calls to the [`GlobalAlloc::alloc_zeroed`] method /// of the allocator registered with the `#[global_allocator]` attribute /// if there is one, or the `std` crate’s default. /// /// This function is expected to be deprecated in favor of the `alloc_zeroed` method /// of the [`Global`] type when it and the [`Allocator`] trait become stable. /// /// # Safety /// /// See [`GlobalAlloc::alloc_zeroed`]. /// /// # Examples /// /// ``` /// use std::alloc::{alloc_zeroed, dealloc, Layout}; /// /// unsafe { /// let layout = Layout::new::<u16>(); /// let ptr = alloc_zeroed(layout); /// /// assert_eq!(*(ptr as *mut u16), 0); /// /// dealloc(ptr, layout); /// } /// ``` #[stable(feature = "global_alloc", since = "1.28.0")] #[must_use = "losing the pointer will leak memory"] #[inline] pub unsafe fn alloc_zeroed(layout: Layout) -> *mut u8 { unsafe { __rust_alloc_zeroed(layout.size(), layout.align()) } } #[cfg(not(test))] impl Global { #[inline] fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> { match layout.size() { 0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)), // SAFETY: `layout` is non-zero in size, size => unsafe { let raw_ptr = if zeroed { alloc_zeroed(layout) } else { alloc(layout) }; let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; Ok(NonNull::slice_from_raw_parts(ptr, size)) }, } } // SAFETY: Same as `Allocator::grow` #[inline] unsafe fn grow_impl( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, zeroed: bool, ) -> Result<NonNull<[u8]>, AllocError> { debug_assert!( new_layout.size() >= old_layout.size(), "`new_layout.size()` must be greater than or equal to `old_layout.size()`" ); match old_layout.size() { 0 => self.alloc_impl(new_layout, zeroed), // SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size` // as required by safety conditions. Other conditions must be upheld by the caller old_size if old_layout.align() == new_layout.align() => unsafe { let new_size = new_layout.size(); // `realloc` probably checks for `new_size >= old_layout.size()` or something similar. intrinsics::assume(new_size >= old_layout.size()); let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size); let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; if zeroed { raw_ptr.add(old_size).write_bytes(0, new_size - old_size); } Ok(NonNull::slice_from_raw_parts(ptr, new_size)) }, // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`, // both the old and new memory allocation are valid for reads and writes for `old_size` // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract // for `dealloc` must be upheld by the caller. old_size => unsafe { let new_ptr = self.alloc_impl(new_layout, zeroed)?; ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size); self.deallocate(ptr, old_layout); Ok(new_ptr) }, } } } #[unstable(feature = "allocator_api", issue = "32838")] #[cfg(not(test))] unsafe impl Allocator for Global { #[inline] fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { self.alloc_impl(layout, false) } #[inline] fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { self.alloc_impl(layout, true) } #[inline] unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { if layout.size() != 0 { // SAFETY: `layout` is non-zero in size, // other conditions must be upheld by the caller unsafe { dealloc(ptr.as_ptr(), layout) } } } #[inline] unsafe fn grow( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, ) -> Result<NonNull<[u8]>, AllocError> { // SAFETY: all conditions must be upheld by the caller unsafe { self.grow_impl(ptr, old_layout, new_layout, false) } } #[inline] unsafe fn grow_zeroed( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, ) -> Result<NonNull<[u8]>, AllocError> { // SAFETY: all conditions must be upheld by the caller unsafe { self.grow_impl(ptr, old_layout, new_layout, true) } } #[inline] unsafe fn shrink( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, ) -> Result<NonNull<[u8]>, AllocError> { debug_assert!( new_layout.size() <= old_layout.size(), "`new_layout.size()` must be smaller than or equal to `old_layout.size()`" ); match new_layout.size() { // SAFETY: conditions must be upheld by the caller 0 => unsafe { self.deallocate(ptr, old_layout); Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0)) }, // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller new_size if old_layout.align() == new_layout.align() => unsafe { // `realloc` probably checks for `new_size <= old_layout.size()` or something similar. intrinsics::assume(new_size <= old_layout.size()); let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size); let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; Ok(NonNull::slice_from_raw_parts(ptr, new_size)) }, // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`, // both the old and new memory allocation are valid for reads and writes for `new_size` // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract // for `dealloc` must be upheld by the caller. new_size => unsafe { let new_ptr = self.allocate(new_layout)?; ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size); self.deallocate(ptr, old_layout); Ok(new_ptr) }, } } } /// The allocator for unique pointers. #[cfg(all(not(no_global_oom_handling), not(test)))] #[lang = "exchange_malloc"] #[inline] unsafe fn exchange_malloc(size: usize, align: usize) -> *mut u8 { let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; match Global.allocate(layout) { Ok(ptr) => ptr.as_mut_ptr(), Err(_) => handle_alloc_error(layout), } } #[cfg_attr(not(test), lang = "box_free")] #[inline] #[rustc_const_unstable(feature = "const_box", issue = "92521")] // This signature has to be the same as `Box`, otherwise an ICE will happen. // When an additional parameter to `Box` is added (like `A: Allocator`), this has to be added here as // well. // For example if `Box` is changed to `struct Box<T: ?Sized, A: Allocator>(Unique<T>, A)`, // this function has to be changed to `fn box_free<T: ?Sized, A: Allocator>(Unique<T>, A)` as well. pub(crate) const unsafe fn box_free<T: ?Sized, A: ~const Allocator + ~const Destruct>( ptr: Unique<T>, alloc: A, ) { unsafe { let size = size_of_val(ptr.as_ref()); let align = min_align_of_val(ptr.as_ref()); let layout = Layout::from_size_align_unchecked(size, align); alloc.deallocate(From::from(ptr.cast()), layout) } } // # Allocation error handler #[cfg(not(no_global_oom_handling))] extern "Rust" { // This is the magic symbol to call the global alloc error handler. rustc generates // it to call `__rg_oom` if there is a `#[alloc_error_handler]`, or to call the // default implementations below (`__rdl_oom`) otherwise. fn __rust_alloc_error_handler(size: usize, align: usize) -> !; } /// Abort on memory allocation error or failure. /// /// Callers of memory allocation APIs wishing to abort computation /// in response to an allocation error are encouraged to call this function, /// rather than directly invoking `panic!` or similar. /// /// The default behavior of this function is to print a message to standard error /// and abort the process. /// It can be replaced with [`set_alloc_error_hook`] and [`take_alloc_error_hook`]. /// /// [`set_alloc_error_hook`]: ../../std/alloc/fn.set_alloc_error_hook.html /// [`take_alloc_error_hook`]: ../../std/alloc/fn.take_alloc_error_hook.html #[stable(feature = "global_alloc", since = "1.28.0")] #[rustc_const_unstable(feature = "const_alloc_error", issue = "92523")] #[cfg(all(not(no_global_oom_handling), not(test)))] #[cold] pub const fn handle_alloc_error(layout: Layout) -> ! { const fn ct_error(_: Layout) -> ! { panic!("allocation failed"); } fn rt_error(layout: Layout) -> ! { unsafe { __rust_alloc_error_handler(layout.size(), layout.align()); } } unsafe { core::intrinsics::const_eval_select((layout,), ct_error, rt_error) } } // For alloc test `std::alloc::handle_alloc_error` can be used directly. #[cfg(all(not(no_global_oom_handling), test))] pub use std::alloc::handle_alloc_error; #[cfg(all(not(no_global_oom_handling), not(test)))] #[doc(hidden)] #[allow(unused_attributes)] #[unstable(feature = "alloc_internals", issue = "none")] pub mod __alloc_error_handler { use crate::alloc::Layout; // called via generated `__rust_alloc_error_handler` // if there is no `#[alloc_error_handler]` #[rustc_std_internal_symbol] pub unsafe extern "C-unwind" fn __rdl_oom(size: usize, _align: usize) -> ! { panic!("memory allocation of {size} bytes failed") } // if there is an `#[alloc_error_handler]` #[rustc_std_internal_symbol] pub unsafe extern "C-unwind" fn __rg_oom(size: usize, align: usize) -> ! { let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; extern "Rust" { #[lang = "oom"] fn oom_impl(layout: Layout) -> !; } unsafe { oom_impl(layout) } } } /// Specialize clones into pre-allocated, uninitialized memory. /// Used by `Box::clone` and `Rc`/`Arc::make_mut`. pub(crate) trait WriteCloneIntoRaw: Sized { unsafe fn write_clone_into_raw(&self, target: *mut Self); } impl<T: Clone> WriteCloneIntoRaw for T { #[inline] default unsafe fn write_clone_into_raw(&self, target: *mut Self) { // Having allocated *first* may allow the optimizer to create // the cloned value in-place, skipping the local and move. unsafe { target.write(self.clone()) }; } } impl<T: Copy> WriteCloneIntoRaw for T { #[inline] unsafe fn write_clone_into_raw(&self, target: *mut Self) { // We can always copy in-place, without ever involving a local value. unsafe { target.copy_from_nonoverlapping(self, 1) }; } } |