Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | // SPDX-License-Identifier: MIT /* * Copyright © 2020-2021 Intel Corporation */ #include "gt/intel_migrate.h" #include "gt/intel_gpu_commands.h" #include "gem/i915_gem_ttm_move.h" #include "i915_deps.h" #include "selftests/igt_reset.h" #include "selftests/igt_spinner.h" static int igt_fill_check_buffer(struct drm_i915_gem_object *obj, bool fill) { struct drm_i915_private *i915 = to_i915(obj->base.dev); unsigned int i, count = obj->base.size / sizeof(u32); enum i915_map_type map_type = i915_coherent_map_type(i915, obj, false); u32 *cur; int err = 0; assert_object_held(obj); cur = i915_gem_object_pin_map(obj, map_type); if (IS_ERR(cur)) return PTR_ERR(cur); if (fill) for (i = 0; i < count; ++i) *cur++ = i; else for (i = 0; i < count; ++i) if (*cur++ != i) { pr_err("Object content mismatch at location %d of %d\n", i, count); err = -EINVAL; break; } i915_gem_object_unpin_map(obj); return err; } static int igt_create_migrate(struct intel_gt *gt, enum intel_region_id src, enum intel_region_id dst) { struct drm_i915_private *i915 = gt->i915; struct intel_memory_region *src_mr = i915->mm.regions[src]; struct intel_memory_region *dst_mr = i915->mm.regions[dst]; struct drm_i915_gem_object *obj; struct i915_gem_ww_ctx ww; int err = 0; GEM_BUG_ON(!src_mr); GEM_BUG_ON(!dst_mr); /* Switch object backing-store on create */ obj = i915_gem_object_create_region(src_mr, dst_mr->min_page_size, 0, 0); if (IS_ERR(obj)) return PTR_ERR(obj); for_i915_gem_ww(&ww, err, true) { err = i915_gem_object_lock(obj, &ww); if (err) continue; err = igt_fill_check_buffer(obj, true); if (err) continue; err = i915_gem_object_migrate(obj, &ww, dst); if (err) continue; err = i915_gem_object_pin_pages(obj); if (err) continue; if (i915_gem_object_can_migrate(obj, src)) err = -EINVAL; i915_gem_object_unpin_pages(obj); err = i915_gem_object_wait_migration(obj, true); if (err) continue; err = igt_fill_check_buffer(obj, false); } i915_gem_object_put(obj); return err; } static int igt_smem_create_migrate(void *arg) { return igt_create_migrate(arg, INTEL_REGION_LMEM_0, INTEL_REGION_SMEM); } static int igt_lmem_create_migrate(void *arg) { return igt_create_migrate(arg, INTEL_REGION_SMEM, INTEL_REGION_LMEM_0); } static int igt_same_create_migrate(void *arg) { return igt_create_migrate(arg, INTEL_REGION_LMEM_0, INTEL_REGION_LMEM_0); } static int lmem_pages_migrate_one(struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *obj, struct i915_vma *vma, bool silent_migrate) { int err; err = i915_gem_object_lock(obj, ww); if (err) return err; if (vma) { err = i915_vma_pin_ww(vma, ww, obj->base.size, 0, 0UL | PIN_OFFSET_FIXED | PIN_USER); if (err) { if (err != -EINTR && err != ERESTARTSYS && err != -EDEADLK) pr_err("Failed to pin vma.\n"); return err; } i915_vma_unpin(vma); } /* * Migration will implicitly unbind (asynchronously) any bound * vmas. */ if (i915_gem_object_is_lmem(obj)) { err = i915_gem_object_migrate(obj, ww, INTEL_REGION_SMEM); if (err) { if (!silent_migrate) pr_err("Object failed migration to smem\n"); if (err) return err; } if (i915_gem_object_is_lmem(obj)) { pr_err("object still backed by lmem\n"); err = -EINVAL; } if (!i915_gem_object_has_struct_page(obj)) { pr_err("object not backed by struct page\n"); err = -EINVAL; } } else { err = i915_gem_object_migrate(obj, ww, INTEL_REGION_LMEM_0); if (err) { if (!silent_migrate) pr_err("Object failed migration to lmem\n"); if (err) return err; } if (i915_gem_object_has_struct_page(obj)) { pr_err("object still backed by struct page\n"); err = -EINVAL; } if (!i915_gem_object_is_lmem(obj)) { pr_err("object not backed by lmem\n"); err = -EINVAL; } } return err; } static int __igt_lmem_pages_migrate(struct intel_gt *gt, struct i915_address_space *vm, struct i915_deps *deps, struct igt_spinner *spin, struct dma_fence *spin_fence, bool borked_migrate) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma = NULL; struct i915_gem_ww_ctx ww; struct i915_request *rq; int err; int i; /* From LMEM to shmem and back again */ obj = i915_gem_object_create_lmem(i915, SZ_2M, 0); if (IS_ERR(obj)) return PTR_ERR(obj); if (vm) { vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } } /* Initial GPU fill, sync, CPU initialization. */ for_i915_gem_ww(&ww, err, true) { err = i915_gem_object_lock(obj, &ww); if (err) continue; err = ____i915_gem_object_get_pages(obj); if (err) continue; err = intel_migrate_clear(>->migrate, &ww, deps, obj->mm.pages->sgl, obj->cache_level, i915_gem_object_is_lmem(obj), 0xdeadbeaf, &rq); if (rq) { err = dma_resv_reserve_fences(obj->base.resv, 1); if (!err) dma_resv_add_fence(obj->base.resv, &rq->fence, DMA_RESV_USAGE_KERNEL); i915_request_put(rq); } if (err) continue; if (!vma) { err = igt_fill_check_buffer(obj, true); if (err) continue; } } if (err) goto out_put; /* * Migrate to and from smem without explicitly syncing. * Finalize with data in smem for fast readout. */ for (i = 1; i <= 5; ++i) { for_i915_gem_ww(&ww, err, true) err = lmem_pages_migrate_one(&ww, obj, vma, borked_migrate); if (err) goto out_put; } err = i915_gem_object_lock_interruptible(obj, NULL); if (err) goto out_put; if (spin) { if (dma_fence_is_signaled(spin_fence)) { pr_err("Spinner was terminated by hangcheck.\n"); err = -EBUSY; goto out_unlock; } igt_spinner_end(spin); } /* Finally sync migration and check content. */ err = i915_gem_object_wait_migration(obj, true); if (err) goto out_unlock; if (vma) { err = i915_vma_wait_for_bind(vma); if (err) goto out_unlock; } else { err = igt_fill_check_buffer(obj, false); } out_unlock: i915_gem_object_unlock(obj); out_put: i915_gem_object_put(obj); return err; } static int igt_lmem_pages_failsafe_migrate(void *arg) { int fail_gpu, fail_alloc, ban_memcpy, ret; struct intel_gt *gt = arg; for (fail_gpu = 0; fail_gpu < 2; ++fail_gpu) { for (fail_alloc = 0; fail_alloc < 2; ++fail_alloc) { for (ban_memcpy = 0; ban_memcpy < 2; ++ban_memcpy) { pr_info("Simulated failure modes: gpu: %d, alloc:%d, ban_memcpy: %d\n", fail_gpu, fail_alloc, ban_memcpy); i915_ttm_migrate_set_ban_memcpy(ban_memcpy); i915_ttm_migrate_set_failure_modes(fail_gpu, fail_alloc); ret = __igt_lmem_pages_migrate(gt, NULL, NULL, NULL, NULL, ban_memcpy && fail_gpu); if (ban_memcpy && fail_gpu) { struct intel_gt *__gt; unsigned int id; if (ret != -EIO) { pr_err("expected -EIO, got (%d)\n", ret); ret = -EINVAL; } else { ret = 0; } for_each_gt(__gt, gt->i915, id) { intel_wakeref_t wakeref; bool wedged; mutex_lock(&__gt->reset.mutex); wedged = test_bit(I915_WEDGED, &__gt->reset.flags); mutex_unlock(&__gt->reset.mutex); if (fail_gpu && !fail_alloc) { if (!wedged) { pr_err("gt(%u) not wedged\n", id); ret = -EINVAL; continue; } } else if (wedged) { pr_err("gt(%u) incorrectly wedged\n", id); ret = -EINVAL; } else { continue; } wakeref = intel_runtime_pm_get(__gt->uncore->rpm); igt_global_reset_lock(__gt); intel_gt_reset(__gt, ALL_ENGINES, NULL); igt_global_reset_unlock(__gt); intel_runtime_pm_put(__gt->uncore->rpm, wakeref); } if (ret) goto out_err; } } } } out_err: i915_ttm_migrate_set_failure_modes(false, false); i915_ttm_migrate_set_ban_memcpy(false); return ret; } /* * This subtest tests that unbinding at migration is indeed performed * async. We launch a spinner and a number of migrations depending on * that spinner to have terminated. Before each migration we bind a * vma, which should then be async unbound by the migration operation. * If we are able to schedule migrations without blocking while the * spinner is still running, those unbinds are indeed async and non- * blocking. * * Note that each async bind operation is awaiting the previous migration * due to the moving fence resulting from the migration. */ static int igt_async_migrate(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; struct i915_ppgtt *ppgtt; struct igt_spinner spin; int err; ppgtt = i915_ppgtt_create(gt, 0); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (igt_spinner_init(&spin, gt)) { err = -ENOMEM; goto out_spin; } for_each_engine(engine, gt, id) { struct ttm_operation_ctx ctx = { .interruptible = true }; struct dma_fence *spin_fence; struct intel_context *ce; struct i915_request *rq; struct i915_deps deps; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out_ce; } /* * Use MI_NOOP, making the spinner non-preemptible. If there * is a code path where we fail async operation due to the * running spinner, we will block and fail to end the * spinner resulting in a deadlock. But with a non- * preemptible spinner, hangcheck will terminate the spinner * for us, and we will later detect that and fail the test. */ rq = igt_spinner_create_request(&spin, ce, MI_NOOP); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } i915_deps_init(&deps, GFP_KERNEL); err = i915_deps_add_dependency(&deps, &rq->fence, &ctx); spin_fence = dma_fence_get(&rq->fence); i915_request_add(rq); if (err) goto out_ce; err = __igt_lmem_pages_migrate(gt, &ppgtt->vm, &deps, &spin, spin_fence, false); i915_deps_fini(&deps); dma_fence_put(spin_fence); if (err) goto out_ce; } out_ce: igt_spinner_fini(&spin); out_spin: i915_vm_put(&ppgtt->vm); return err; } /* * Setting ASYNC_FAIL_ALLOC to 2 will simulate memory allocation failure while * arming the migration error check and block async migration. This * will cause us to deadlock and hangcheck will terminate the spinner * causing the test to fail. */ #define ASYNC_FAIL_ALLOC 1 static int igt_lmem_async_migrate(void *arg) { int fail_gpu, fail_alloc, ban_memcpy, ret; struct intel_gt *gt = arg; for (fail_gpu = 0; fail_gpu < 2; ++fail_gpu) { for (fail_alloc = 0; fail_alloc < ASYNC_FAIL_ALLOC; ++fail_alloc) { for (ban_memcpy = 0; ban_memcpy < 2; ++ban_memcpy) { pr_info("Simulated failure modes: gpu: %d, alloc: %d, ban_memcpy: %d\n", fail_gpu, fail_alloc, ban_memcpy); i915_ttm_migrate_set_ban_memcpy(ban_memcpy); i915_ttm_migrate_set_failure_modes(fail_gpu, fail_alloc); ret = igt_async_migrate(gt); if (fail_gpu && ban_memcpy) { struct intel_gt *__gt; unsigned int id; if (ret != -EIO) { pr_err("expected -EIO, got (%d)\n", ret); ret = -EINVAL; } else { ret = 0; } for_each_gt(__gt, gt->i915, id) { intel_wakeref_t wakeref; bool wedged; mutex_lock(&__gt->reset.mutex); wedged = test_bit(I915_WEDGED, &__gt->reset.flags); mutex_unlock(&__gt->reset.mutex); if (fail_gpu && !fail_alloc) { if (!wedged) { pr_err("gt(%u) not wedged\n", id); ret = -EINVAL; continue; } } else if (wedged) { pr_err("gt(%u) incorrectly wedged\n", id); ret = -EINVAL; } else { continue; } wakeref = intel_runtime_pm_get(__gt->uncore->rpm); igt_global_reset_lock(__gt); intel_gt_reset(__gt, ALL_ENGINES, NULL); igt_global_reset_unlock(__gt); intel_runtime_pm_put(__gt->uncore->rpm, wakeref); } } if (ret) goto out_err; } } } out_err: i915_ttm_migrate_set_failure_modes(false, false); i915_ttm_migrate_set_ban_memcpy(false); return ret; } int i915_gem_migrate_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_smem_create_migrate), SUBTEST(igt_lmem_create_migrate), SUBTEST(igt_same_create_migrate), SUBTEST(igt_lmem_pages_failsafe_migrate), SUBTEST(igt_lmem_async_migrate), }; if (!HAS_LMEM(i915)) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); } |