Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 | // SPDX-License-Identifier: GPL-2.0 /* bbc_envctrl.c: UltraSPARC-III environment control driver. * * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net) */ #include <linux/kthread.h> #include <linux/delay.h> #include <linux/kmod.h> #include <linux/reboot.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/of_device.h> #include <asm/oplib.h> #include "bbc_i2c.h" #include "max1617.h" #undef ENVCTRL_TRACE /* WARNING: Making changes to this driver is very dangerous. * If you misprogram the sensor chips they can * cut the power on you instantly. */ /* Two temperature sensors exist in the SunBLADE-1000 enclosure. * Both are implemented using max1617 i2c devices. Each max1617 * monitors 2 temperatures, one for one of the cpu dies and the other * for the ambient temperature. * * The max1617 is capable of being programmed with power-off * temperature values, one low limit and one high limit. These * can be controlled independently for the cpu or ambient temperature. * If a limit is violated, the power is simply shut off. The frequency * with which the max1617 does temperature sampling can be controlled * as well. * * Three fans exist inside the machine, all three are controlled with * an i2c digital to analog converter. There is a fan directed at the * two processor slots, another for the rest of the enclosure, and the * third is for the power supply. The first two fans may be speed * controlled by changing the voltage fed to them. The third fan may * only be completely off or on. The third fan is meant to only be * disabled/enabled when entering/exiting the lowest power-saving * mode of the machine. * * An environmental control kernel thread periodically monitors all * temperature sensors. Based upon the samples it will adjust the * fan speeds to try and keep the system within a certain temperature * range (the goal being to make the fans as quiet as possible without * allowing the system to get too hot). * * If the temperature begins to rise/fall outside of the acceptable * operating range, a periodic warning will be sent to the kernel log. * The fans will be put on full blast to attempt to deal with this * situation. After exceeding the acceptable operating range by a * certain threshold, the kernel thread will shut down the system. * Here, the thread is attempting to shut the machine down cleanly * before the hardware based power-off event is triggered. */ /* These settings are in Celsius. We use these defaults only * if we cannot interrogate the cpu-fru SEEPROM. */ struct temp_limits { s8 high_pwroff, high_shutdown, high_warn; s8 low_warn, low_shutdown, low_pwroff; }; static struct temp_limits cpu_temp_limits[2] = { { 100, 85, 80, 5, -5, -10 }, { 100, 85, 80, 5, -5, -10 }, }; static struct temp_limits amb_temp_limits[2] = { { 65, 55, 40, 5, -5, -10 }, { 65, 55, 40, 5, -5, -10 }, }; static LIST_HEAD(all_temps); static LIST_HEAD(all_fans); #define CPU_FAN_REG 0xf0 #define SYS_FAN_REG 0xf2 #define PSUPPLY_FAN_REG 0xf4 #define FAN_SPEED_MIN 0x0c #define FAN_SPEED_MAX 0x3f #define PSUPPLY_FAN_ON 0x1f #define PSUPPLY_FAN_OFF 0x00 static void set_fan_speeds(struct bbc_fan_control *fp) { /* Put temperatures into range so we don't mis-program * the hardware. */ if (fp->cpu_fan_speed < FAN_SPEED_MIN) fp->cpu_fan_speed = FAN_SPEED_MIN; if (fp->cpu_fan_speed > FAN_SPEED_MAX) fp->cpu_fan_speed = FAN_SPEED_MAX; if (fp->system_fan_speed < FAN_SPEED_MIN) fp->system_fan_speed = FAN_SPEED_MIN; if (fp->system_fan_speed > FAN_SPEED_MAX) fp->system_fan_speed = FAN_SPEED_MAX; #ifdef ENVCTRL_TRACE printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n", fp->index, fp->cpu_fan_speed, fp->system_fan_speed); #endif bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG); bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG); bbc_i2c_writeb(fp->client, (fp->psupply_fan_on ? PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF), PSUPPLY_FAN_REG); } static void get_current_temps(struct bbc_cpu_temperature *tp) { tp->prev_amb_temp = tp->curr_amb_temp; bbc_i2c_readb(tp->client, (unsigned char *) &tp->curr_amb_temp, MAX1617_AMB_TEMP); tp->prev_cpu_temp = tp->curr_cpu_temp; bbc_i2c_readb(tp->client, (unsigned char *) &tp->curr_cpu_temp, MAX1617_CPU_TEMP); #ifdef ENVCTRL_TRACE printk("temp%d: cpu(%d C) amb(%d C)\n", tp->index, (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp); #endif } static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp) { static int shutting_down = 0; char *type = "???"; s8 val = -1; if (shutting_down != 0) return; if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown || tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) { type = "ambient"; val = tp->curr_amb_temp; } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown || tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) { type = "CPU"; val = tp->curr_cpu_temp; } printk(KERN_CRIT "temp%d: Outside of safe %s " "operating temperature, %d C.\n", tp->index, type, val); printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n"); shutting_down = 1; orderly_poweroff(true); } #define WARN_INTERVAL (30 * HZ) static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick) { int ret = 0; if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) { if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn) { printk(KERN_WARNING "temp%d: " "Above safe ambient operating temperature, %d C.\n", tp->index, (int) tp->curr_amb_temp); ret = 1; } else if (tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn) { printk(KERN_WARNING "temp%d: " "Below safe ambient operating temperature, %d C.\n", tp->index, (int) tp->curr_amb_temp); ret = 1; } if (ret) *last_warn = jiffies; } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn || tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn) ret = 1; /* Now check the shutdown limits. */ if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown || tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) { do_envctrl_shutdown(tp); ret = 1; } if (ret) { tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST; } else if ((tick & (8 - 1)) == 0) { s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10; s8 amb_goal_lo; amb_goal_lo = amb_goal_hi - 3; /* We do not try to avoid 'too cold' events. Basically we * only try to deal with over-heating and fan noise reduction. */ if (tp->avg_amb_temp < amb_goal_hi) { if (tp->avg_amb_temp >= amb_goal_lo) tp->fan_todo[FAN_AMBIENT] = FAN_SAME; else tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER; } else { tp->fan_todo[FAN_AMBIENT] = FAN_FASTER; } } else { tp->fan_todo[FAN_AMBIENT] = FAN_SAME; } } static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick) { int ret = 0; if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) { if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn) { printk(KERN_WARNING "temp%d: " "Above safe CPU operating temperature, %d C.\n", tp->index, (int) tp->curr_cpu_temp); ret = 1; } else if (tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn) { printk(KERN_WARNING "temp%d: " "Below safe CPU operating temperature, %d C.\n", tp->index, (int) tp->curr_cpu_temp); ret = 1; } if (ret) *last_warn = jiffies; } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn || tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn) ret = 1; /* Now check the shutdown limits. */ if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown || tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) { do_envctrl_shutdown(tp); ret = 1; } if (ret) { tp->fan_todo[FAN_CPU] = FAN_FULLBLAST; } else if ((tick & (8 - 1)) == 0) { s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10; s8 cpu_goal_lo; cpu_goal_lo = cpu_goal_hi - 3; /* We do not try to avoid 'too cold' events. Basically we * only try to deal with over-heating and fan noise reduction. */ if (tp->avg_cpu_temp < cpu_goal_hi) { if (tp->avg_cpu_temp >= cpu_goal_lo) tp->fan_todo[FAN_CPU] = FAN_SAME; else tp->fan_todo[FAN_CPU] = FAN_SLOWER; } else { tp->fan_todo[FAN_CPU] = FAN_FASTER; } } else { tp->fan_todo[FAN_CPU] = FAN_SAME; } } static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn) { tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2); tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2); analyze_ambient_temp(tp, last_warn, tp->sample_tick); analyze_cpu_temp(tp, last_warn, tp->sample_tick); tp->sample_tick++; } static enum fan_action prioritize_fan_action(int which_fan) { struct bbc_cpu_temperature *tp; enum fan_action decision = FAN_STATE_MAX; /* Basically, prioritize what the temperature sensors * recommend we do, and perform that action on all the * fans. */ list_for_each_entry(tp, &all_temps, glob_list) { if (tp->fan_todo[which_fan] == FAN_FULLBLAST) { decision = FAN_FULLBLAST; break; } if (tp->fan_todo[which_fan] == FAN_SAME && decision != FAN_FASTER) decision = FAN_SAME; else if (tp->fan_todo[which_fan] == FAN_FASTER) decision = FAN_FASTER; else if (decision != FAN_FASTER && decision != FAN_SAME && tp->fan_todo[which_fan] == FAN_SLOWER) decision = FAN_SLOWER; } if (decision == FAN_STATE_MAX) decision = FAN_SAME; return decision; } static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp) { enum fan_action decision = prioritize_fan_action(FAN_AMBIENT); int ret; if (decision == FAN_SAME) return 0; ret = 1; if (decision == FAN_FULLBLAST) { if (fp->system_fan_speed >= FAN_SPEED_MAX) ret = 0; else fp->system_fan_speed = FAN_SPEED_MAX; } else { if (decision == FAN_FASTER) { if (fp->system_fan_speed >= FAN_SPEED_MAX) ret = 0; else fp->system_fan_speed += 2; } else { int orig_speed = fp->system_fan_speed; if (orig_speed <= FAN_SPEED_MIN || orig_speed <= (fp->cpu_fan_speed - 3)) ret = 0; else fp->system_fan_speed -= 1; } } return ret; } static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp) { enum fan_action decision = prioritize_fan_action(FAN_CPU); int ret; if (decision == FAN_SAME) return 0; ret = 1; if (decision == FAN_FULLBLAST) { if (fp->cpu_fan_speed >= FAN_SPEED_MAX) ret = 0; else fp->cpu_fan_speed = FAN_SPEED_MAX; } else { if (decision == FAN_FASTER) { if (fp->cpu_fan_speed >= FAN_SPEED_MAX) ret = 0; else { fp->cpu_fan_speed += 2; if (fp->system_fan_speed < (fp->cpu_fan_speed - 3)) fp->system_fan_speed = fp->cpu_fan_speed - 3; } } else { if (fp->cpu_fan_speed <= FAN_SPEED_MIN) ret = 0; else fp->cpu_fan_speed -= 1; } } return ret; } static void maybe_new_fan_speeds(struct bbc_fan_control *fp) { int new; new = maybe_new_ambient_fan_speed(fp); new |= maybe_new_cpu_fan_speed(fp); if (new) set_fan_speeds(fp); } static void fans_full_blast(void) { struct bbc_fan_control *fp; /* Since we will not be monitoring things anymore, put * the fans on full blast. */ list_for_each_entry(fp, &all_fans, glob_list) { fp->cpu_fan_speed = FAN_SPEED_MAX; fp->system_fan_speed = FAN_SPEED_MAX; fp->psupply_fan_on = 1; set_fan_speeds(fp); } } #define POLL_INTERVAL (5 * 1000) static unsigned long last_warning_jiffies; static struct task_struct *kenvctrld_task; static int kenvctrld(void *__unused) { printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n"); last_warning_jiffies = jiffies - WARN_INTERVAL; for (;;) { struct bbc_cpu_temperature *tp; struct bbc_fan_control *fp; msleep_interruptible(POLL_INTERVAL); if (kthread_should_stop()) break; list_for_each_entry(tp, &all_temps, glob_list) { get_current_temps(tp); analyze_temps(tp, &last_warning_jiffies); } list_for_each_entry(fp, &all_fans, glob_list) maybe_new_fan_speeds(fp); } printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n"); fans_full_blast(); return 0; } static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op, int temp_idx) { struct bbc_cpu_temperature *tp; tp = kzalloc(sizeof(*tp), GFP_KERNEL); if (!tp) return; INIT_LIST_HEAD(&tp->bp_list); INIT_LIST_HEAD(&tp->glob_list); tp->client = bbc_i2c_attach(bp, op); if (!tp->client) { kfree(tp); return; } tp->index = temp_idx; list_add(&tp->glob_list, &all_temps); list_add(&tp->bp_list, &bp->temps); /* Tell it to convert once every 5 seconds, clear all cfg * bits. */ bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE); bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE); /* Program the hard temperature limits into the chip. */ bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff, MAX1617_WR_AMB_HIGHLIM); bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff, MAX1617_WR_AMB_LOWLIM); bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff, MAX1617_WR_CPU_HIGHLIM); bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff, MAX1617_WR_CPU_LOWLIM); get_current_temps(tp); tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp; tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp; tp->fan_todo[FAN_AMBIENT] = FAN_SAME; tp->fan_todo[FAN_CPU] = FAN_SAME; } static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op, int fan_idx) { struct bbc_fan_control *fp; fp = kzalloc(sizeof(*fp), GFP_KERNEL); if (!fp) return; INIT_LIST_HEAD(&fp->bp_list); INIT_LIST_HEAD(&fp->glob_list); fp->client = bbc_i2c_attach(bp, op); if (!fp->client) { kfree(fp); return; } fp->index = fan_idx; list_add(&fp->glob_list, &all_fans); list_add(&fp->bp_list, &bp->fans); /* The i2c device controlling the fans is write-only. * So the only way to keep track of the current power * level fed to the fans is via software. Choose half * power for cpu/system and 'on' fo the powersupply fan * and set it now. */ fp->psupply_fan_on = 1; fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2; fp->cpu_fan_speed += FAN_SPEED_MIN; fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2; fp->system_fan_speed += FAN_SPEED_MIN; set_fan_speeds(fp); } static void destroy_one_temp(struct bbc_cpu_temperature *tp) { bbc_i2c_detach(tp->client); kfree(tp); } static void destroy_all_temps(struct bbc_i2c_bus *bp) { struct bbc_cpu_temperature *tp, *tpos; list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) { list_del(&tp->bp_list); list_del(&tp->glob_list); destroy_one_temp(tp); } } static void destroy_one_fan(struct bbc_fan_control *fp) { bbc_i2c_detach(fp->client); kfree(fp); } static void destroy_all_fans(struct bbc_i2c_bus *bp) { struct bbc_fan_control *fp, *fpos; list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) { list_del(&fp->bp_list); list_del(&fp->glob_list); destroy_one_fan(fp); } } int bbc_envctrl_init(struct bbc_i2c_bus *bp) { struct platform_device *op; int temp_index = 0; int fan_index = 0; int devidx = 0; while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) { if (of_node_name_eq(op->dev.of_node, "temperature")) attach_one_temp(bp, op, temp_index++); if (of_node_name_eq(op->dev.of_node, "fan-control")) attach_one_fan(bp, op, fan_index++); } if (temp_index != 0 && fan_index != 0) { kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld"); if (IS_ERR(kenvctrld_task)) { int err = PTR_ERR(kenvctrld_task); kenvctrld_task = NULL; destroy_all_temps(bp); destroy_all_fans(bp); return err; } } return 0; } void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp) { if (kenvctrld_task) kthread_stop(kenvctrld_task); destroy_all_temps(bp); destroy_all_fans(bp); } |