Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2020 Linaro Limited * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * * The DTPM CPU is based on the energy model. It hooks the CPU in the * DTPM tree which in turns update the power number by propagating the * power number from the CPU energy model information to the parents. * * The association between the power and the performance state, allows * to set the power of the CPU at the OPP granularity. * * The CPU hotplug is supported and the power numbers will be updated * if a CPU is hot plugged / unplugged. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cpumask.h> #include <linux/cpufreq.h> #include <linux/cpuhotplug.h> #include <linux/dtpm.h> #include <linux/energy_model.h> #include <linux/of.h> #include <linux/pm_qos.h> #include <linux/slab.h> #include <linux/units.h> struct dtpm_cpu { struct dtpm dtpm; struct freq_qos_request qos_req; int cpu; }; static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu); static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm) { return container_of(dtpm, struct dtpm_cpu, dtpm); } static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu); struct cpumask cpus; unsigned long freq; u64 power; int i, nr_cpus; cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus)); nr_cpus = cpumask_weight(&cpus); for (i = 0; i < pd->nr_perf_states; i++) { power = pd->table[i].power * nr_cpus; if (power > power_limit) break; } freq = pd->table[i - 1].frequency; freq_qos_update_request(&dtpm_cpu->qos_req, freq); power_limit = pd->table[i - 1].power * nr_cpus; return power_limit; } static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power) { unsigned long max, sum_util = 0; int cpu; /* * The capacity is the same for all CPUs belonging to * the same perf domain. */ max = arch_scale_cpu_capacity(cpumask_first(pd_mask)); for_each_cpu_and(cpu, pd_mask, cpu_online_mask) sum_util += sched_cpu_util(cpu); return (power * ((sum_util << 10) / max)) >> 10; } static u64 get_pd_power_uw(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct em_perf_domain *pd; struct cpumask *pd_mask; unsigned long freq; int i; pd = em_cpu_get(dtpm_cpu->cpu); pd_mask = em_span_cpus(pd); freq = cpufreq_quick_get(dtpm_cpu->cpu); for (i = 0; i < pd->nr_perf_states; i++) { if (pd->table[i].frequency < freq) continue; return scale_pd_power_uw(pd_mask, pd->table[i].power * MICROWATT_PER_MILLIWATT); } return 0; } static int update_pd_power_uw(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu); struct cpumask cpus; int nr_cpus; cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus)); nr_cpus = cpumask_weight(&cpus); dtpm->power_min = em->table[0].power; dtpm->power_min *= MICROWATT_PER_MILLIWATT; dtpm->power_min *= nr_cpus; dtpm->power_max = em->table[em->nr_perf_states - 1].power; dtpm->power_max *= MICROWATT_PER_MILLIWATT; dtpm->power_max *= nr_cpus; return 0; } static void pd_release(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct cpufreq_policy *policy; if (freq_qos_request_active(&dtpm_cpu->qos_req)) freq_qos_remove_request(&dtpm_cpu->qos_req); policy = cpufreq_cpu_get(dtpm_cpu->cpu); if (policy) { for_each_cpu(dtpm_cpu->cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL; } kfree(dtpm_cpu); } static struct dtpm_ops dtpm_ops = { .set_power_uw = set_pd_power_limit, .get_power_uw = get_pd_power_uw, .update_power_uw = update_pd_power_uw, .release = pd_release, }; static int cpuhp_dtpm_cpu_offline(unsigned int cpu) { struct dtpm_cpu *dtpm_cpu; dtpm_cpu = per_cpu(dtpm_per_cpu, cpu); if (dtpm_cpu) dtpm_update_power(&dtpm_cpu->dtpm); return 0; } static int cpuhp_dtpm_cpu_online(unsigned int cpu) { struct dtpm_cpu *dtpm_cpu; dtpm_cpu = per_cpu(dtpm_per_cpu, cpu); if (dtpm_cpu) return dtpm_update_power(&dtpm_cpu->dtpm); return 0; } static int __dtpm_cpu_setup(int cpu, struct dtpm *parent) { struct dtpm_cpu *dtpm_cpu; struct cpufreq_policy *policy; struct em_perf_domain *pd; char name[CPUFREQ_NAME_LEN]; int ret = -ENOMEM; dtpm_cpu = per_cpu(dtpm_per_cpu, cpu); if (dtpm_cpu) return 0; policy = cpufreq_cpu_get(cpu); if (!policy) return 0; pd = em_cpu_get(cpu); if (!pd || em_is_artificial(pd)) return -EINVAL; dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL); if (!dtpm_cpu) return -ENOMEM; dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops); dtpm_cpu->cpu = cpu; for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu; snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu); ret = dtpm_register(name, &dtpm_cpu->dtpm, parent); if (ret) goto out_kfree_dtpm_cpu; ret = freq_qos_add_request(&policy->constraints, &dtpm_cpu->qos_req, FREQ_QOS_MAX, pd->table[pd->nr_perf_states - 1].frequency); if (ret) goto out_dtpm_unregister; return 0; out_dtpm_unregister: dtpm_unregister(&dtpm_cpu->dtpm); dtpm_cpu = NULL; out_kfree_dtpm_cpu: for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = NULL; kfree(dtpm_cpu); return ret; } static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np) { int cpu; cpu = of_cpu_node_to_id(np); if (cpu < 0) return 0; return __dtpm_cpu_setup(cpu, dtpm); } static int dtpm_cpu_init(void) { int ret; /* * The callbacks at CPU hotplug time are calling * dtpm_update_power() which in turns calls update_pd_power(). * * The function update_pd_power() uses the online mask to * figure out the power consumption limits. * * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU * online mask when the cpuhp_dtpm_cpu_online function is * called, but the CPU is still in the online mask for the * tear down callback. So the power can not be updated when * the CPU is unplugged. * * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as * above. The CPU online mask is not up to date when the CPU * is plugged in. * * For this reason, we need to call the online and offline * callbacks at different moments when the CPU online mask is * consistent with the power numbers we want to update. */ ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline", NULL, cpuhp_dtpm_cpu_offline); if (ret < 0) return ret; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online", cpuhp_dtpm_cpu_online, NULL); if (ret < 0) return ret; return 0; } static void dtpm_cpu_exit(void) { cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN); cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD); } struct dtpm_subsys_ops dtpm_cpu_ops = { .name = KBUILD_MODNAME, .init = dtpm_cpu_init, .exit = dtpm_cpu_exit, .setup = dtpm_cpu_setup, }; |