Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_inode_item.h" #include "xfs_quota.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_bmap_util.h" #include "xfs_dquot_item.h" #include "xfs_dquot.h" #include "xfs_reflink.h" #include "xfs_ialloc.h" #include "xfs_ag.h" #include "xfs_log_priv.h" #include <linux/iversion.h> /* Radix tree tags for incore inode tree. */ /* inode is to be reclaimed */ #define XFS_ICI_RECLAIM_TAG 0 /* Inode has speculative preallocations (posteof or cow) to clean. */ #define XFS_ICI_BLOCKGC_TAG 1 /* * The goal for walking incore inodes. These can correspond with incore inode * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. */ enum xfs_icwalk_goal { /* Goals directly associated with tagged inodes. */ XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, }; static int xfs_icwalk(struct xfs_mount *mp, enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); static int xfs_icwalk_ag(struct xfs_perag *pag, enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); /* * Private inode cache walk flags for struct xfs_icwalk. Must not * coincide with XFS_ICWALK_FLAGS_VALID. */ /* Stop scanning after icw_scan_limit inodes. */ #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ XFS_ICWALK_FLAG_RECLAIM_SICK | \ XFS_ICWALK_FLAG_UNION) /* * Allocate and initialise an xfs_inode. */ struct xfs_inode * xfs_inode_alloc( struct xfs_mount *mp, xfs_ino_t ino) { struct xfs_inode *ip; /* * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL * and return NULL here on ENOMEM. */ ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); if (inode_init_always(mp->m_super, VFS_I(ip))) { kmem_cache_free(xfs_inode_cache, ip); return NULL; } /* VFS doesn't initialise i_mode or i_state! */ VFS_I(ip)->i_mode = 0; VFS_I(ip)->i_state = 0; mapping_set_large_folios(VFS_I(ip)->i_mapping); XFS_STATS_INC(mp, vn_active); ASSERT(atomic_read(&ip->i_pincount) == 0); ASSERT(ip->i_ino == 0); /* initialise the xfs inode */ ip->i_ino = ino; ip->i_mount = mp; memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); ip->i_cowfp = NULL; memset(&ip->i_af, 0, sizeof(ip->i_af)); ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; memset(&ip->i_df, 0, sizeof(ip->i_df)); ip->i_flags = 0; ip->i_delayed_blks = 0; ip->i_diflags2 = mp->m_ino_geo.new_diflags2; ip->i_nblocks = 0; ip->i_forkoff = 0; ip->i_sick = 0; ip->i_checked = 0; INIT_WORK(&ip->i_ioend_work, xfs_end_io); INIT_LIST_HEAD(&ip->i_ioend_list); spin_lock_init(&ip->i_ioend_lock); ip->i_next_unlinked = NULLAGINO; ip->i_prev_unlinked = NULLAGINO; return ip; } STATIC void xfs_inode_free_callback( struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); struct xfs_inode *ip = XFS_I(inode); switch (VFS_I(ip)->i_mode & S_IFMT) { case S_IFREG: case S_IFDIR: case S_IFLNK: xfs_idestroy_fork(&ip->i_df); break; } xfs_ifork_zap_attr(ip); if (ip->i_cowfp) { xfs_idestroy_fork(ip->i_cowfp); kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); } if (ip->i_itemp) { ASSERT(!test_bit(XFS_LI_IN_AIL, &ip->i_itemp->ili_item.li_flags)); xfs_inode_item_destroy(ip); ip->i_itemp = NULL; } kmem_cache_free(xfs_inode_cache, ip); } static void __xfs_inode_free( struct xfs_inode *ip) { /* asserts to verify all state is correct here */ ASSERT(atomic_read(&ip->i_pincount) == 0); ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); XFS_STATS_DEC(ip->i_mount, vn_active); call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); } void xfs_inode_free( struct xfs_inode *ip) { ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); /* * Because we use RCU freeing we need to ensure the inode always * appears to be reclaimed with an invalid inode number when in the * free state. The ip->i_flags_lock provides the barrier against lookup * races. */ spin_lock(&ip->i_flags_lock); ip->i_flags = XFS_IRECLAIM; ip->i_ino = 0; spin_unlock(&ip->i_flags_lock); __xfs_inode_free(ip); } /* * Queue background inode reclaim work if there are reclaimable inodes and there * isn't reclaim work already scheduled or in progress. */ static void xfs_reclaim_work_queue( struct xfs_mount *mp) { rcu_read_lock(); if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); } rcu_read_unlock(); } /* * Background scanning to trim preallocated space. This is queued based on the * 'speculative_prealloc_lifetime' tunable (5m by default). */ static inline void xfs_blockgc_queue( struct xfs_perag *pag) { struct xfs_mount *mp = pag->pag_mount; if (!xfs_is_blockgc_enabled(mp)) return; rcu_read_lock(); if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) queue_delayed_work(pag->pag_mount->m_blockgc_wq, &pag->pag_blockgc_work, msecs_to_jiffies(xfs_blockgc_secs * 1000)); rcu_read_unlock(); } /* Set a tag on both the AG incore inode tree and the AG radix tree. */ static void xfs_perag_set_inode_tag( struct xfs_perag *pag, xfs_agino_t agino, unsigned int tag) { struct xfs_mount *mp = pag->pag_mount; bool was_tagged; lockdep_assert_held(&pag->pag_ici_lock); was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); radix_tree_tag_set(&pag->pag_ici_root, agino, tag); if (tag == XFS_ICI_RECLAIM_TAG) pag->pag_ici_reclaimable++; if (was_tagged) return; /* propagate the tag up into the perag radix tree */ spin_lock(&mp->m_perag_lock); radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); spin_unlock(&mp->m_perag_lock); /* start background work */ switch (tag) { case XFS_ICI_RECLAIM_TAG: xfs_reclaim_work_queue(mp); break; case XFS_ICI_BLOCKGC_TAG: xfs_blockgc_queue(pag); break; } trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); } /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ static void xfs_perag_clear_inode_tag( struct xfs_perag *pag, xfs_agino_t agino, unsigned int tag) { struct xfs_mount *mp = pag->pag_mount; lockdep_assert_held(&pag->pag_ici_lock); /* * Reclaim can signal (with a null agino) that it cleared its own tag * by removing the inode from the radix tree. */ if (agino != NULLAGINO) radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); else ASSERT(tag == XFS_ICI_RECLAIM_TAG); if (tag == XFS_ICI_RECLAIM_TAG) pag->pag_ici_reclaimable--; if (radix_tree_tagged(&pag->pag_ici_root, tag)) return; /* clear the tag from the perag radix tree */ spin_lock(&mp->m_perag_lock); radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); spin_unlock(&mp->m_perag_lock); trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); } /* * When we recycle a reclaimable inode, we need to re-initialise the VFS inode * part of the structure. This is made more complex by the fact we store * information about the on-disk values in the VFS inode and so we can't just * overwrite the values unconditionally. Hence we save the parameters we * need to retain across reinitialisation, and rewrite them into the VFS inode * after reinitialisation even if it fails. */ static int xfs_reinit_inode( struct xfs_mount *mp, struct inode *inode) { int error; uint32_t nlink = inode->i_nlink; uint32_t generation = inode->i_generation; uint64_t version = inode_peek_iversion(inode); umode_t mode = inode->i_mode; dev_t dev = inode->i_rdev; kuid_t uid = inode->i_uid; kgid_t gid = inode->i_gid; error = inode_init_always(mp->m_super, inode); set_nlink(inode, nlink); inode->i_generation = generation; inode_set_iversion_queried(inode, version); inode->i_mode = mode; inode->i_rdev = dev; inode->i_uid = uid; inode->i_gid = gid; mapping_set_large_folios(inode->i_mapping); return error; } /* * Carefully nudge an inode whose VFS state has been torn down back into a * usable state. Drops the i_flags_lock and the rcu read lock. */ static int xfs_iget_recycle( struct xfs_perag *pag, struct xfs_inode *ip) __releases(&ip->i_flags_lock) { struct xfs_mount *mp = ip->i_mount; struct inode *inode = VFS_I(ip); int error; trace_xfs_iget_recycle(ip); /* * We need to make it look like the inode is being reclaimed to prevent * the actual reclaim workers from stomping over us while we recycle * the inode. We can't clear the radix tree tag yet as it requires * pag_ici_lock to be held exclusive. */ ip->i_flags |= XFS_IRECLAIM; spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); ASSERT(!rwsem_is_locked(&inode->i_rwsem)); error = xfs_reinit_inode(mp, inode); if (error) { /* * Re-initializing the inode failed, and we are in deep * trouble. Try to re-add it to the reclaim list. */ rcu_read_lock(); spin_lock(&ip->i_flags_lock); ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); ASSERT(ip->i_flags & XFS_IRECLAIMABLE); spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); trace_xfs_iget_recycle_fail(ip); return error; } spin_lock(&pag->pag_ici_lock); spin_lock(&ip->i_flags_lock); /* * Clear the per-lifetime state in the inode as we are now effectively * a new inode and need to return to the initial state before reuse * occurs. */ ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; ip->i_flags |= XFS_INEW; xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); inode->i_state = I_NEW; spin_unlock(&ip->i_flags_lock); spin_unlock(&pag->pag_ici_lock); return 0; } /* * If we are allocating a new inode, then check what was returned is * actually a free, empty inode. If we are not allocating an inode, * then check we didn't find a free inode. * * Returns: * 0 if the inode free state matches the lookup context * -ENOENT if the inode is free and we are not allocating * -EFSCORRUPTED if there is any state mismatch at all */ static int xfs_iget_check_free_state( struct xfs_inode *ip, int flags) { if (flags & XFS_IGET_CREATE) { /* should be a free inode */ if (VFS_I(ip)->i_mode != 0) { xfs_warn(ip->i_mount, "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", ip->i_ino, VFS_I(ip)->i_mode); return -EFSCORRUPTED; } if (ip->i_nblocks != 0) { xfs_warn(ip->i_mount, "Corruption detected! Free inode 0x%llx has blocks allocated!", ip->i_ino); return -EFSCORRUPTED; } return 0; } /* should be an allocated inode */ if (VFS_I(ip)->i_mode == 0) return -ENOENT; return 0; } /* Make all pending inactivation work start immediately. */ static bool xfs_inodegc_queue_all( struct xfs_mount *mp) { struct xfs_inodegc *gc; int cpu; bool ret = false; for_each_online_cpu(cpu) { gc = per_cpu_ptr(mp->m_inodegc, cpu); if (!llist_empty(&gc->list)) { mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); ret = true; } } return ret; } /* * Check the validity of the inode we just found it the cache */ static int xfs_iget_cache_hit( struct xfs_perag *pag, struct xfs_inode *ip, xfs_ino_t ino, int flags, int lock_flags) __releases(RCU) { struct inode *inode = VFS_I(ip); struct xfs_mount *mp = ip->i_mount; int error; /* * check for re-use of an inode within an RCU grace period due to the * radix tree nodes not being updated yet. We monitor for this by * setting the inode number to zero before freeing the inode structure. * If the inode has been reallocated and set up, then the inode number * will not match, so check for that, too. */ spin_lock(&ip->i_flags_lock); if (ip->i_ino != ino) goto out_skip; /* * If we are racing with another cache hit that is currently * instantiating this inode or currently recycling it out of * reclaimable state, wait for the initialisation to complete * before continuing. * * If we're racing with the inactivation worker we also want to wait. * If we're creating a new file, it's possible that the worker * previously marked the inode as free on disk but hasn't finished * updating the incore state yet. The AGI buffer will be dirty and * locked to the icreate transaction, so a synchronous push of the * inodegc workers would result in deadlock. For a regular iget, the * worker is running already, so we might as well wait. * * XXX(hch): eventually we should do something equivalent to * wait_on_inode to wait for these flags to be cleared * instead of polling for it. */ if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) goto out_skip; if (ip->i_flags & XFS_NEED_INACTIVE) { /* Unlinked inodes cannot be re-grabbed. */ if (VFS_I(ip)->i_nlink == 0) { error = -ENOENT; goto out_error; } goto out_inodegc_flush; } /* * Check the inode free state is valid. This also detects lookup * racing with unlinks. */ error = xfs_iget_check_free_state(ip, flags); if (error) goto out_error; /* Skip inodes that have no vfs state. */ if ((flags & XFS_IGET_INCORE) && (ip->i_flags & XFS_IRECLAIMABLE)) goto out_skip; /* The inode fits the selection criteria; process it. */ if (ip->i_flags & XFS_IRECLAIMABLE) { /* Drops i_flags_lock and RCU read lock. */ error = xfs_iget_recycle(pag, ip); if (error) return error; } else { /* If the VFS inode is being torn down, pause and try again. */ if (!igrab(inode)) goto out_skip; /* We've got a live one. */ spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); trace_xfs_iget_hit(ip); } if (lock_flags != 0) xfs_ilock(ip, lock_flags); if (!(flags & XFS_IGET_INCORE)) xfs_iflags_clear(ip, XFS_ISTALE); XFS_STATS_INC(mp, xs_ig_found); return 0; out_skip: trace_xfs_iget_skip(ip); XFS_STATS_INC(mp, xs_ig_frecycle); error = -EAGAIN; out_error: spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); return error; out_inodegc_flush: spin_unlock(&ip->i_flags_lock); rcu_read_unlock(); /* * Do not wait for the workers, because the caller could hold an AGI * buffer lock. We're just going to sleep in a loop anyway. */ if (xfs_is_inodegc_enabled(mp)) xfs_inodegc_queue_all(mp); return -EAGAIN; } static int xfs_iget_cache_miss( struct xfs_mount *mp, struct xfs_perag *pag, xfs_trans_t *tp, xfs_ino_t ino, struct xfs_inode **ipp, int flags, int lock_flags) { struct xfs_inode *ip; int error; xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); int iflags; ip = xfs_inode_alloc(mp, ino); if (!ip) return -ENOMEM; error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); if (error) goto out_destroy; /* * For version 5 superblocks, if we are initialising a new inode and we * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can * simply build the new inode core with a random generation number. * * For version 4 (and older) superblocks, log recovery is dependent on * the i_flushiter field being initialised from the current on-disk * value and hence we must also read the inode off disk even when * initializing new inodes. */ if (xfs_has_v3inodes(mp) && (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { VFS_I(ip)->i_generation = get_random_u32(); } else { struct xfs_buf *bp; error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); if (error) goto out_destroy; error = xfs_inode_from_disk(ip, xfs_buf_offset(bp, ip->i_imap.im_boffset)); if (!error) xfs_buf_set_ref(bp, XFS_INO_REF); xfs_trans_brelse(tp, bp); if (error) goto out_destroy; } trace_xfs_iget_miss(ip); /* * Check the inode free state is valid. This also detects lookup * racing with unlinks. */ error = xfs_iget_check_free_state(ip, flags); if (error) goto out_destroy; /* * Preload the radix tree so we can insert safely under the * write spinlock. Note that we cannot sleep inside the preload * region. Since we can be called from transaction context, don't * recurse into the file system. */ if (radix_tree_preload(GFP_NOFS)) { error = -EAGAIN; goto out_destroy; } /* * Because the inode hasn't been added to the radix-tree yet it can't * be found by another thread, so we can do the non-sleeping lock here. */ if (lock_flags) { if (!xfs_ilock_nowait(ip, lock_flags)) BUG(); } /* * These values must be set before inserting the inode into the radix * tree as the moment it is inserted a concurrent lookup (allowed by the * RCU locking mechanism) can find it and that lookup must see that this * is an inode currently under construction (i.e. that XFS_INEW is set). * The ip->i_flags_lock that protects the XFS_INEW flag forms the * memory barrier that ensures this detection works correctly at lookup * time. */ iflags = XFS_INEW; if (flags & XFS_IGET_DONTCACHE) d_mark_dontcache(VFS_I(ip)); ip->i_udquot = NULL; ip->i_gdquot = NULL; ip->i_pdquot = NULL; xfs_iflags_set(ip, iflags); /* insert the new inode */ spin_lock(&pag->pag_ici_lock); error = radix_tree_insert(&pag->pag_ici_root, agino, ip); if (unlikely(error)) { WARN_ON(error != -EEXIST); XFS_STATS_INC(mp, xs_ig_dup); error = -EAGAIN; goto out_preload_end; } spin_unlock(&pag->pag_ici_lock); radix_tree_preload_end(); *ipp = ip; return 0; out_preload_end: spin_unlock(&pag->pag_ici_lock); radix_tree_preload_end(); if (lock_flags) xfs_iunlock(ip, lock_flags); out_destroy: __destroy_inode(VFS_I(ip)); xfs_inode_free(ip); return error; } /* * Look up an inode by number in the given file system. The inode is looked up * in the cache held in each AG. If the inode is found in the cache, initialise * the vfs inode if necessary. * * If it is not in core, read it in from the file system's device, add it to the * cache and initialise the vfs inode. * * The inode is locked according to the value of the lock_flags parameter. * Inode lookup is only done during metadata operations and not as part of the * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. */ int xfs_iget( struct xfs_mount *mp, struct xfs_trans *tp, xfs_ino_t ino, uint flags, uint lock_flags, struct xfs_inode **ipp) { struct xfs_inode *ip; struct xfs_perag *pag; xfs_agino_t agino; int error; ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); /* reject inode numbers outside existing AGs */ if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) return -EINVAL; XFS_STATS_INC(mp, xs_ig_attempts); /* get the perag structure and ensure that it's inode capable */ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); agino = XFS_INO_TO_AGINO(mp, ino); again: error = 0; rcu_read_lock(); ip = radix_tree_lookup(&pag->pag_ici_root, agino); if (ip) { error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); if (error) goto out_error_or_again; } else { rcu_read_unlock(); if (flags & XFS_IGET_INCORE) { error = -ENODATA; goto out_error_or_again; } XFS_STATS_INC(mp, xs_ig_missed); error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, flags, lock_flags); if (error) goto out_error_or_again; } xfs_perag_put(pag); *ipp = ip; /* * If we have a real type for an on-disk inode, we can setup the inode * now. If it's a new inode being created, xfs_init_new_inode will * handle it. */ if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) xfs_setup_existing_inode(ip); return 0; out_error_or_again: if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { delay(1); goto again; } xfs_perag_put(pag); return error; } /* * "Is this a cached inode that's also allocated?" * * Look up an inode by number in the given file system. If the inode is * in cache and isn't in purgatory, return 1 if the inode is allocated * and 0 if it is not. For all other cases (not in cache, being torn * down, etc.), return a negative error code. * * The caller has to prevent inode allocation and freeing activity, * presumably by locking the AGI buffer. This is to ensure that an * inode cannot transition from allocated to freed until the caller is * ready to allow that. If the inode is in an intermediate state (new, * reclaimable, or being reclaimed), -EAGAIN will be returned; if the * inode is not in the cache, -ENOENT will be returned. The caller must * deal with these scenarios appropriately. * * This is a specialized use case for the online scrubber; if you're * reading this, you probably want xfs_iget. */ int xfs_icache_inode_is_allocated( struct xfs_mount *mp, struct xfs_trans *tp, xfs_ino_t ino, bool *inuse) { struct xfs_inode *ip; int error; error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); if (error) return error; *inuse = !!(VFS_I(ip)->i_mode); xfs_irele(ip); return 0; } /* * Grab the inode for reclaim exclusively. * * We have found this inode via a lookup under RCU, so the inode may have * already been freed, or it may be in the process of being recycled by * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE * will not be set. Hence we need to check for both these flag conditions to * avoid inodes that are no longer reclaim candidates. * * Note: checking for other state flags here, under the i_flags_lock or not, is * racy and should be avoided. Those races should be resolved only after we have * ensured that we are able to reclaim this inode and the world can see that we * are going to reclaim it. * * Return true if we grabbed it, false otherwise. */ static bool xfs_reclaim_igrab( struct xfs_inode *ip, struct xfs_icwalk *icw) { ASSERT(rcu_read_lock_held()); spin_lock(&ip->i_flags_lock); if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || __xfs_iflags_test(ip, XFS_IRECLAIM)) { /* not a reclaim candidate. */ spin_unlock(&ip->i_flags_lock); return false; } /* Don't reclaim a sick inode unless the caller asked for it. */ if (ip->i_sick && (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { spin_unlock(&ip->i_flags_lock); return false; } __xfs_iflags_set(ip, XFS_IRECLAIM); spin_unlock(&ip->i_flags_lock); return true; } /* * Inode reclaim is non-blocking, so the default action if progress cannot be * made is to "requeue" the inode for reclaim by unlocking it and clearing the * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about * blocking anymore and hence we can wait for the inode to be able to reclaim * it. * * We do no IO here - if callers require inodes to be cleaned they must push the * AIL first to trigger writeback of dirty inodes. This enables writeback to be * done in the background in a non-blocking manner, and enables memory reclaim * to make progress without blocking. */ static void xfs_reclaim_inode( struct xfs_inode *ip, struct xfs_perag *pag) { xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) goto out; if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) goto out_iunlock; /* * Check for log shutdown because aborting the inode can move the log * tail and corrupt in memory state. This is fine if the log is shut * down, but if the log is still active and only the mount is shut down * then the in-memory log tail movement caused by the abort can be * incorrectly propagated to disk. */ if (xlog_is_shutdown(ip->i_mount->m_log)) { xfs_iunpin_wait(ip); xfs_iflush_shutdown_abort(ip); goto reclaim; } if (xfs_ipincount(ip)) goto out_clear_flush; if (!xfs_inode_clean(ip)) goto out_clear_flush; xfs_iflags_clear(ip, XFS_IFLUSHING); reclaim: trace_xfs_inode_reclaiming(ip); /* * Because we use RCU freeing we need to ensure the inode always appears * to be reclaimed with an invalid inode number when in the free state. * We do this as early as possible under the ILOCK so that * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to * detect races with us here. By doing this, we guarantee that once * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that * it will see either a valid inode that will serialise correctly, or it * will see an invalid inode that it can skip. */ spin_lock(&ip->i_flags_lock); ip->i_flags = XFS_IRECLAIM; ip->i_ino = 0; ip->i_sick = 0; ip->i_checked = 0; spin_unlock(&ip->i_flags_lock); ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); xfs_iunlock(ip, XFS_ILOCK_EXCL); XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); /* * Remove the inode from the per-AG radix tree. * * Because radix_tree_delete won't complain even if the item was never * added to the tree assert that it's been there before to catch * problems with the inode life time early on. */ spin_lock(&pag->pag_ici_lock); if (!radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(ip->i_mount, ino))) ASSERT(0); xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); spin_unlock(&pag->pag_ici_lock); /* * Here we do an (almost) spurious inode lock in order to coordinate * with inode cache radix tree lookups. This is because the lookup * can reference the inodes in the cache without taking references. * * We make that OK here by ensuring that we wait until the inode is * unlocked after the lookup before we go ahead and free it. */ xfs_ilock(ip, XFS_ILOCK_EXCL); ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); xfs_iunlock(ip, XFS_ILOCK_EXCL); ASSERT(xfs_inode_clean(ip)); __xfs_inode_free(ip); return; out_clear_flush: xfs_iflags_clear(ip, XFS_IFLUSHING); out_iunlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); out: xfs_iflags_clear(ip, XFS_IRECLAIM); } /* Reclaim sick inodes if we're unmounting or the fs went down. */ static inline bool xfs_want_reclaim_sick( struct xfs_mount *mp) { return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || xfs_is_shutdown(mp); } void xfs_reclaim_inodes( struct xfs_mount *mp) { struct xfs_icwalk icw = { .icw_flags = 0, }; if (xfs_want_reclaim_sick(mp)) icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { xfs_ail_push_all_sync(mp->m_ail); xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); } } /* * The shrinker infrastructure determines how many inodes we should scan for * reclaim. We want as many clean inodes ready to reclaim as possible, so we * push the AIL here. We also want to proactively free up memory if we can to * minimise the amount of work memory reclaim has to do so we kick the * background reclaim if it isn't already scheduled. */ long xfs_reclaim_inodes_nr( struct xfs_mount *mp, unsigned long nr_to_scan) { struct xfs_icwalk icw = { .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), }; if (xfs_want_reclaim_sick(mp)) icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; /* kick background reclaimer and push the AIL */ xfs_reclaim_work_queue(mp); xfs_ail_push_all(mp->m_ail); xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); return 0; } /* * Return the number of reclaimable inodes in the filesystem for * the shrinker to determine how much to reclaim. */ long xfs_reclaim_inodes_count( struct xfs_mount *mp) { struct xfs_perag *pag; xfs_agnumber_t ag = 0; long reclaimable = 0; while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { ag = pag->pag_agno + 1; reclaimable += pag->pag_ici_reclaimable; xfs_perag_put(pag); } return reclaimable; } STATIC bool xfs_icwalk_match_id( struct xfs_inode *ip, struct xfs_icwalk *icw) { if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) return false; if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) return false; if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && ip->i_projid != icw->icw_prid) return false; return true; } /* * A union-based inode filtering algorithm. Process the inode if any of the * criteria match. This is for global/internal scans only. */ STATIC bool xfs_icwalk_match_id_union( struct xfs_inode *ip, struct xfs_icwalk *icw) { if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) return true; if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) return true; if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && ip->i_projid == icw->icw_prid) return true; return false; } /* * Is this inode @ip eligible for eof/cow block reclamation, given some * filtering parameters @icw? The inode is eligible if @icw is null or * if the predicate functions match. */ static bool xfs_icwalk_match( struct xfs_inode *ip, struct xfs_icwalk *icw) { bool match; if (!icw) return true; if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) match = xfs_icwalk_match_id_union(ip, icw); else match = xfs_icwalk_match_id(ip, icw); if (!match) return false; /* skip the inode if the file size is too small */ if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && XFS_ISIZE(ip) < icw->icw_min_file_size) return false; return true; } /* * This is a fast pass over the inode cache to try to get reclaim moving on as * many inodes as possible in a short period of time. It kicks itself every few * seconds, as well as being kicked by the inode cache shrinker when memory * goes low. */ void xfs_reclaim_worker( struct work_struct *work) { struct xfs_mount *mp = container_of(to_delayed_work(work), struct xfs_mount, m_reclaim_work); xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); xfs_reclaim_work_queue(mp); } STATIC int xfs_inode_free_eofblocks( struct xfs_inode *ip, struct xfs_icwalk *icw, unsigned int *lockflags) { bool wait; wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) return 0; /* * If the mapping is dirty the operation can block and wait for some * time. Unless we are waiting, skip it. */ if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) return 0; if (!xfs_icwalk_match(ip, icw)) return 0; /* * If the caller is waiting, return -EAGAIN to keep the background * scanner moving and revisit the inode in a subsequent pass. */ if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { if (wait) return -EAGAIN; return 0; } *lockflags |= XFS_IOLOCK_EXCL; if (xfs_can_free_eofblocks(ip, false)) return xfs_free_eofblocks(ip); /* inode could be preallocated or append-only */ trace_xfs_inode_free_eofblocks_invalid(ip); xfs_inode_clear_eofblocks_tag(ip); return 0; } static void xfs_blockgc_set_iflag( struct xfs_inode *ip, unsigned long iflag) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); /* * Don't bother locking the AG and looking up in the radix trees * if we already know that we have the tag set. */ if (ip->i_flags & iflag) return; spin_lock(&ip->i_flags_lock); ip->i_flags |= iflag; spin_unlock(&ip->i_flags_lock); pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); spin_lock(&pag->pag_ici_lock); xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_BLOCKGC_TAG); spin_unlock(&pag->pag_ici_lock); xfs_perag_put(pag); } void xfs_inode_set_eofblocks_tag( xfs_inode_t *ip) { trace_xfs_inode_set_eofblocks_tag(ip); return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); } static void xfs_blockgc_clear_iflag( struct xfs_inode *ip, unsigned long iflag) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; bool clear_tag; ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); spin_lock(&ip->i_flags_lock); ip->i_flags &= ~iflag; clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; spin_unlock(&ip->i_flags_lock); if (!clear_tag) return; pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); spin_lock(&pag->pag_ici_lock); xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_BLOCKGC_TAG); spin_unlock(&pag->pag_ici_lock); xfs_perag_put(pag); } void xfs_inode_clear_eofblocks_tag( xfs_inode_t *ip) { trace_xfs_inode_clear_eofblocks_tag(ip); return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); } /* * Set ourselves up to free CoW blocks from this file. If it's already clean * then we can bail out quickly, but otherwise we must back off if the file * is undergoing some kind of write. */ static bool xfs_prep_free_cowblocks( struct xfs_inode *ip) { /* * Just clear the tag if we have an empty cow fork or none at all. It's * possible the inode was fully unshared since it was originally tagged. */ if (!xfs_inode_has_cow_data(ip)) { trace_xfs_inode_free_cowblocks_invalid(ip); xfs_inode_clear_cowblocks_tag(ip); return false; } /* * If the mapping is dirty or under writeback we cannot touch the * CoW fork. Leave it alone if we're in the midst of a directio. */ if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || atomic_read(&VFS_I(ip)->i_dio_count)) return false; return true; } /* * Automatic CoW Reservation Freeing * * These functions automatically garbage collect leftover CoW reservations * that were made on behalf of a cowextsize hint when we start to run out * of quota or when the reservations sit around for too long. If the file * has dirty pages or is undergoing writeback, its CoW reservations will * be retained. * * The actual garbage collection piggybacks off the same code that runs * the speculative EOF preallocation garbage collector. */ STATIC int xfs_inode_free_cowblocks( struct xfs_inode *ip, struct xfs_icwalk *icw, unsigned int *lockflags) { bool wait; int ret = 0; wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) return 0; if (!xfs_prep_free_cowblocks(ip)) return 0; if (!xfs_icwalk_match(ip, icw)) return 0; /* * If the caller is waiting, return -EAGAIN to keep the background * scanner moving and revisit the inode in a subsequent pass. */ if (!(*lockflags & XFS_IOLOCK_EXCL) && !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { if (wait) return -EAGAIN; return 0; } *lockflags |= XFS_IOLOCK_EXCL; if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { if (wait) return -EAGAIN; return 0; } *lockflags |= XFS_MMAPLOCK_EXCL; /* * Check again, nobody else should be able to dirty blocks or change * the reflink iflag now that we have the first two locks held. */ if (xfs_prep_free_cowblocks(ip)) ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); return ret; } void xfs_inode_set_cowblocks_tag( xfs_inode_t *ip) { trace_xfs_inode_set_cowblocks_tag(ip); return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); } void xfs_inode_clear_cowblocks_tag( xfs_inode_t *ip) { trace_xfs_inode_clear_cowblocks_tag(ip); return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); } /* Disable post-EOF and CoW block auto-reclamation. */ void xfs_blockgc_stop( struct xfs_mount *mp) { struct xfs_perag *pag; xfs_agnumber_t agno; if (!xfs_clear_blockgc_enabled(mp)) return; for_each_perag(mp, agno, pag) cancel_delayed_work_sync(&pag->pag_blockgc_work); trace_xfs_blockgc_stop(mp, __return_address); } /* Enable post-EOF and CoW block auto-reclamation. */ void xfs_blockgc_start( struct xfs_mount *mp) { struct xfs_perag *pag; xfs_agnumber_t agno; if (xfs_set_blockgc_enabled(mp)) return; trace_xfs_blockgc_start(mp, __return_address); for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) xfs_blockgc_queue(pag); } /* Don't try to run block gc on an inode that's in any of these states. */ #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ XFS_NEED_INACTIVE | \ XFS_INACTIVATING | \ XFS_IRECLAIMABLE | \ XFS_IRECLAIM) /* * Decide if the given @ip is eligible for garbage collection of speculative * preallocations, and grab it if so. Returns true if it's ready to go or * false if we should just ignore it. */ static bool xfs_blockgc_igrab( struct xfs_inode *ip) { struct inode *inode = VFS_I(ip); ASSERT(rcu_read_lock_held()); /* Check for stale RCU freed inode */ spin_lock(&ip->i_flags_lock); if (!ip->i_ino) goto out_unlock_noent; if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) goto out_unlock_noent; spin_unlock(&ip->i_flags_lock); /* nothing to sync during shutdown */ if (xfs_is_shutdown(ip->i_mount)) return false; /* If we can't grab the inode, it must on it's way to reclaim. */ if (!igrab(inode)) return false; /* inode is valid */ return true; out_unlock_noent: spin_unlock(&ip->i_flags_lock); return false; } /* Scan one incore inode for block preallocations that we can remove. */ static int xfs_blockgc_scan_inode( struct xfs_inode *ip, struct xfs_icwalk *icw) { unsigned int lockflags = 0; int error; error = xfs_inode_free_eofblocks(ip, icw, &lockflags); if (error) goto unlock; error = xfs_inode_free_cowblocks(ip, icw, &lockflags); unlock: if (lockflags) xfs_iunlock(ip, lockflags); xfs_irele(ip); return error; } /* Background worker that trims preallocated space. */ void xfs_blockgc_worker( struct work_struct *work) { struct xfs_perag *pag = container_of(to_delayed_work(work), struct xfs_perag, pag_blockgc_work); struct xfs_mount *mp = pag->pag_mount; int error; trace_xfs_blockgc_worker(mp, __return_address); error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); if (error) xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", pag->pag_agno, error); xfs_blockgc_queue(pag); } /* * Try to free space in the filesystem by purging inactive inodes, eofblocks * and cowblocks. */ int xfs_blockgc_free_space( struct xfs_mount *mp, struct xfs_icwalk *icw) { int error; trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); if (error) return error; xfs_inodegc_flush(mp); return 0; } /* * Reclaim all the free space that we can by scheduling the background blockgc * and inodegc workers immediately and waiting for them all to clear. */ void xfs_blockgc_flush_all( struct xfs_mount *mp) { struct xfs_perag *pag; xfs_agnumber_t agno; trace_xfs_blockgc_flush_all(mp, __return_address); /* * For each blockgc worker, move its queue time up to now. If it * wasn't queued, it will not be requeued. Then flush whatever's * left. */ for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) mod_delayed_work(pag->pag_mount->m_blockgc_wq, &pag->pag_blockgc_work, 0); for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) flush_delayed_work(&pag->pag_blockgc_work); xfs_inodegc_flush(mp); } /* * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which * quota caused an allocation failure, so we make a best effort by including * each quota under low free space conditions (less than 1% free space) in the * scan. * * Callers must not hold any inode's ILOCK. If requesting a synchronous scan * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or * MMAPLOCK. */ int xfs_blockgc_free_dquots( struct xfs_mount *mp, struct xfs_dquot *udqp, struct xfs_dquot *gdqp, struct xfs_dquot *pdqp, unsigned int iwalk_flags) { struct xfs_icwalk icw = {0}; bool do_work = false; if (!udqp && !gdqp && !pdqp) return 0; /* * Run a scan to free blocks using the union filter to cover all * applicable quotas in a single scan. */ icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); icw.icw_flags |= XFS_ICWALK_FLAG_UID; do_work = true; } if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); icw.icw_flags |= XFS_ICWALK_FLAG_GID; do_work = true; } if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { icw.icw_prid = pdqp->q_id; icw.icw_flags |= XFS_ICWALK_FLAG_PRID; do_work = true; } if (!do_work) return 0; return xfs_blockgc_free_space(mp, &icw); } /* Run cow/eofblocks scans on the quotas attached to the inode. */ int xfs_blockgc_free_quota( struct xfs_inode *ip, unsigned int iwalk_flags) { return xfs_blockgc_free_dquots(ip->i_mount, xfs_inode_dquot(ip, XFS_DQTYPE_USER), xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); } /* XFS Inode Cache Walking Code */ /* * The inode lookup is done in batches to keep the amount of lock traffic and * radix tree lookups to a minimum. The batch size is a trade off between * lookup reduction and stack usage. This is in the reclaim path, so we can't * be too greedy. */ #define XFS_LOOKUP_BATCH 32 /* * Decide if we want to grab this inode in anticipation of doing work towards * the goal. */ static inline bool xfs_icwalk_igrab( enum xfs_icwalk_goal goal, struct xfs_inode *ip, struct xfs_icwalk *icw) { switch (goal) { case XFS_ICWALK_BLOCKGC: return xfs_blockgc_igrab(ip); case XFS_ICWALK_RECLAIM: return xfs_reclaim_igrab(ip, icw); default: return false; } } /* * Process an inode. Each processing function must handle any state changes * made by the icwalk igrab function. Return -EAGAIN to skip an inode. */ static inline int xfs_icwalk_process_inode( enum xfs_icwalk_goal goal, struct xfs_inode *ip, struct xfs_perag *pag, struct xfs_icwalk *icw) { int error = 0; switch (goal) { case XFS_ICWALK_BLOCKGC: error = xfs_blockgc_scan_inode(ip, icw); break; case XFS_ICWALK_RECLAIM: xfs_reclaim_inode(ip, pag); break; } return error; } /* * For a given per-AG structure @pag and a goal, grab qualifying inodes and * process them in some manner. */ static int xfs_icwalk_ag( struct xfs_perag *pag, enum xfs_icwalk_goal goal, struct xfs_icwalk *icw) { struct xfs_mount *mp = pag->pag_mount; uint32_t first_index; int last_error = 0; int skipped; bool done; int nr_found; restart: done = false; skipped = 0; if (goal == XFS_ICWALK_RECLAIM) first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); else first_index = 0; nr_found = 0; do { struct xfs_inode *batch[XFS_LOOKUP_BATCH]; int error = 0; int i; rcu_read_lock(); nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, (void **) batch, first_index, XFS_LOOKUP_BATCH, goal); if (!nr_found) { done = true; rcu_read_unlock(); break; } /* * Grab the inodes before we drop the lock. if we found * nothing, nr == 0 and the loop will be skipped. */ for (i = 0; i < nr_found; i++) { struct xfs_inode *ip = batch[i]; if (done || !xfs_icwalk_igrab(goal, ip, icw)) batch[i] = NULL; /* * Update the index for the next lookup. Catch * overflows into the next AG range which can occur if * we have inodes in the last block of the AG and we * are currently pointing to the last inode. * * Because we may see inodes that are from the wrong AG * due to RCU freeing and reallocation, only update the * index if it lies in this AG. It was a race that lead * us to see this inode, so another lookup from the * same index will not find it again. */ if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) continue; first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) done = true; } /* unlock now we've grabbed the inodes. */ rcu_read_unlock(); for (i = 0; i < nr_found; i++) { if (!batch[i]) continue; error = xfs_icwalk_process_inode(goal, batch[i], pag, icw); if (error == -EAGAIN) { skipped++; continue; } if (error && last_error != -EFSCORRUPTED) last_error = error; } /* bail out if the filesystem is corrupted. */ if (error == -EFSCORRUPTED) break; cond_resched(); if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { icw->icw_scan_limit -= XFS_LOOKUP_BATCH; if (icw->icw_scan_limit <= 0) break; } } while (nr_found && !done); if (goal == XFS_ICWALK_RECLAIM) { if (done) first_index = 0; WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); } if (skipped) { delay(1); goto restart; } return last_error; } /* Walk all incore inodes to achieve a given goal. */ static int xfs_icwalk( struct xfs_mount *mp, enum xfs_icwalk_goal goal, struct xfs_icwalk *icw) { struct xfs_perag *pag; int error = 0; int last_error = 0; xfs_agnumber_t agno; for_each_perag_tag(mp, agno, pag, goal) { error = xfs_icwalk_ag(pag, goal, icw); if (error) { last_error = error; if (error == -EFSCORRUPTED) { xfs_perag_put(pag); break; } } } return last_error; BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); } #ifdef DEBUG static void xfs_check_delalloc( struct xfs_inode *ip, int whichfork) { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); struct xfs_bmbt_irec got; struct xfs_iext_cursor icur; if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) return; do { if (isnullstartblock(got.br_startblock)) { xfs_warn(ip->i_mount, "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", ip->i_ino, whichfork == XFS_DATA_FORK ? "data" : "cow", got.br_startoff, got.br_blockcount); } } while (xfs_iext_next_extent(ifp, &icur, &got)); } #else #define xfs_check_delalloc(ip, whichfork) do { } while (0) #endif /* Schedule the inode for reclaim. */ static void xfs_inodegc_set_reclaimable( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { xfs_check_delalloc(ip, XFS_DATA_FORK); xfs_check_delalloc(ip, XFS_COW_FORK); ASSERT(0); } pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); spin_lock(&pag->pag_ici_lock); spin_lock(&ip->i_flags_lock); trace_xfs_inode_set_reclaimable(ip); ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); ip->i_flags |= XFS_IRECLAIMABLE; xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); spin_unlock(&ip->i_flags_lock); spin_unlock(&pag->pag_ici_lock); xfs_perag_put(pag); } /* * Free all speculative preallocations and possibly even the inode itself. * This is the last chance to make changes to an otherwise unreferenced file * before incore reclamation happens. */ static void xfs_inodegc_inactivate( struct xfs_inode *ip) { trace_xfs_inode_inactivating(ip); xfs_inactive(ip); xfs_inodegc_set_reclaimable(ip); } void xfs_inodegc_worker( struct work_struct *work) { struct xfs_inodegc *gc = container_of(to_delayed_work(work), struct xfs_inodegc, work); struct llist_node *node = llist_del_all(&gc->list); struct xfs_inode *ip, *n; ASSERT(gc->cpu == smp_processor_id()); WRITE_ONCE(gc->items, 0); if (!node) return; ip = llist_entry(node, struct xfs_inode, i_gclist); trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); WRITE_ONCE(gc->shrinker_hits, 0); llist_for_each_entry_safe(ip, n, node, i_gclist) { xfs_iflags_set(ip, XFS_INACTIVATING); xfs_inodegc_inactivate(ip); } } /* * Expedite all pending inodegc work to run immediately. This does not wait for * completion of the work. */ void xfs_inodegc_push( struct xfs_mount *mp) { if (!xfs_is_inodegc_enabled(mp)) return; trace_xfs_inodegc_push(mp, __return_address); xfs_inodegc_queue_all(mp); } /* * Force all currently queued inode inactivation work to run immediately and * wait for the work to finish. */ void xfs_inodegc_flush( struct xfs_mount *mp) { xfs_inodegc_push(mp); trace_xfs_inodegc_flush(mp, __return_address); flush_workqueue(mp->m_inodegc_wq); } /* * Flush all the pending work and then disable the inode inactivation background * workers and wait for them to stop. Caller must hold sb->s_umount to * coordinate changes in the inodegc_enabled state. */ void xfs_inodegc_stop( struct xfs_mount *mp) { bool rerun; if (!xfs_clear_inodegc_enabled(mp)) return; /* * Drain all pending inodegc work, including inodes that could be * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan * threads that sample the inodegc state just prior to us clearing it. * The inodegc flag state prevents new threads from queuing more * inodes, so we queue pending work items and flush the workqueue until * all inodegc lists are empty. IOWs, we cannot use drain_workqueue * here because it does not allow other unserialized mechanisms to * reschedule inodegc work while this draining is in progress. */ xfs_inodegc_queue_all(mp); do { flush_workqueue(mp->m_inodegc_wq); rerun = xfs_inodegc_queue_all(mp); } while (rerun); trace_xfs_inodegc_stop(mp, __return_address); } /* * Enable the inode inactivation background workers and schedule deferred inode * inactivation work if there is any. Caller must hold sb->s_umount to * coordinate changes in the inodegc_enabled state. */ void xfs_inodegc_start( struct xfs_mount *mp) { if (xfs_set_inodegc_enabled(mp)) return; trace_xfs_inodegc_start(mp, __return_address); xfs_inodegc_queue_all(mp); } #ifdef CONFIG_XFS_RT static inline bool xfs_inodegc_want_queue_rt_file( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; if (!XFS_IS_REALTIME_INODE(ip)) return false; if (__percpu_counter_compare(&mp->m_frextents, mp->m_low_rtexts[XFS_LOWSP_5_PCNT], XFS_FDBLOCKS_BATCH) < 0) return true; return false; } #else # define xfs_inodegc_want_queue_rt_file(ip) (false) #endif /* CONFIG_XFS_RT */ /* * Schedule the inactivation worker when: * * - We've accumulated more than one inode cluster buffer's worth of inodes. * - There is less than 5% free space left. * - Any of the quotas for this inode are near an enforcement limit. */ static inline bool xfs_inodegc_want_queue_work( struct xfs_inode *ip, unsigned int items) { struct xfs_mount *mp = ip->i_mount; if (items > mp->m_ino_geo.inodes_per_cluster) return true; if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_low_space[XFS_LOWSP_5_PCNT], XFS_FDBLOCKS_BATCH) < 0) return true; if (xfs_inodegc_want_queue_rt_file(ip)) return true; if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) return true; if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) return true; if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) return true; return false; } /* * Upper bound on the number of inodes in each AG that can be queued for * inactivation at any given time, to avoid monopolizing the workqueue. */ #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) /* * Make the frontend wait for inactivations when: * * - Memory shrinkers queued the inactivation worker and it hasn't finished. * - The queue depth exceeds the maximum allowable percpu backlog. * * Note: If the current thread is running a transaction, we don't ever want to * wait for other transactions because that could introduce a deadlock. */ static inline bool xfs_inodegc_want_flush_work( struct xfs_inode *ip, unsigned int items, unsigned int shrinker_hits) { if (current->journal_info) return false; if (shrinker_hits > 0) return true; if (items > XFS_INODEGC_MAX_BACKLOG) return true; return false; } /* * Queue a background inactivation worker if there are inodes that need to be * inactivated and higher level xfs code hasn't disabled the background * workers. */ static void xfs_inodegc_queue( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_inodegc *gc; int items; unsigned int shrinker_hits; unsigned long queue_delay = 1; trace_xfs_inode_set_need_inactive(ip); spin_lock(&ip->i_flags_lock); ip->i_flags |= XFS_NEED_INACTIVE; spin_unlock(&ip->i_flags_lock); gc = get_cpu_ptr(mp->m_inodegc); llist_add(&ip->i_gclist, &gc->list); items = READ_ONCE(gc->items); WRITE_ONCE(gc->items, items + 1); shrinker_hits = READ_ONCE(gc->shrinker_hits); /* * We queue the work while holding the current CPU so that the work * is scheduled to run on this CPU. */ if (!xfs_is_inodegc_enabled(mp)) { put_cpu_ptr(gc); return; } if (xfs_inodegc_want_queue_work(ip, items)) queue_delay = 0; trace_xfs_inodegc_queue(mp, __return_address); mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, queue_delay); put_cpu_ptr(gc); if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { trace_xfs_inodegc_throttle(mp, __return_address); flush_delayed_work(&gc->work); } } /* * Fold the dead CPU inodegc queue into the current CPUs queue. */ void xfs_inodegc_cpu_dead( struct xfs_mount *mp, unsigned int dead_cpu) { struct xfs_inodegc *dead_gc, *gc; struct llist_node *first, *last; unsigned int count = 0; dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); cancel_delayed_work_sync(&dead_gc->work); if (llist_empty(&dead_gc->list)) return; first = dead_gc->list.first; last = first; while (last->next) { last = last->next; count++; } dead_gc->list.first = NULL; dead_gc->items = 0; /* Add pending work to current CPU */ gc = get_cpu_ptr(mp->m_inodegc); llist_add_batch(first, last, &gc->list); count += READ_ONCE(gc->items); WRITE_ONCE(gc->items, count); if (xfs_is_inodegc_enabled(mp)) { trace_xfs_inodegc_queue(mp, __return_address); mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 0); } put_cpu_ptr(gc); } /* * We set the inode flag atomically with the radix tree tag. Once we get tag * lookups on the radix tree, this inode flag can go away. * * We always use background reclaim here because even if the inode is clean, it * still may be under IO and hence we have wait for IO completion to occur * before we can reclaim the inode. The background reclaim path handles this * more efficiently than we can here, so simply let background reclaim tear down * all inodes. */ void xfs_inode_mark_reclaimable( struct xfs_inode *ip) { struct xfs_mount *mp = ip->i_mount; bool need_inactive; XFS_STATS_INC(mp, vn_reclaim); /* * We should never get here with any of the reclaim flags already set. */ ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); need_inactive = xfs_inode_needs_inactive(ip); if (need_inactive) { xfs_inodegc_queue(ip); return; } /* Going straight to reclaim, so drop the dquots. */ xfs_qm_dqdetach(ip); xfs_inodegc_set_reclaimable(ip); } /* * Register a phony shrinker so that we can run background inodegc sooner when * there's memory pressure. Inactivation does not itself free any memory but * it does make inodes reclaimable, which eventually frees memory. * * The count function, seek value, and batch value are crafted to trigger the * scan function during the second round of scanning. Hopefully this means * that we reclaimed enough memory that initiating metadata transactions won't * make things worse. */ #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) static unsigned long xfs_inodegc_shrinker_count( struct shrinker *shrink, struct shrink_control *sc) { struct xfs_mount *mp = container_of(shrink, struct xfs_mount, m_inodegc_shrinker); struct xfs_inodegc *gc; int cpu; if (!xfs_is_inodegc_enabled(mp)) return 0; for_each_online_cpu(cpu) { gc = per_cpu_ptr(mp->m_inodegc, cpu); if (!llist_empty(&gc->list)) return XFS_INODEGC_SHRINKER_COUNT; } return 0; } static unsigned long xfs_inodegc_shrinker_scan( struct shrinker *shrink, struct shrink_control *sc) { struct xfs_mount *mp = container_of(shrink, struct xfs_mount, m_inodegc_shrinker); struct xfs_inodegc *gc; int cpu; bool no_items = true; if (!xfs_is_inodegc_enabled(mp)) return SHRINK_STOP; trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); for_each_online_cpu(cpu) { gc = per_cpu_ptr(mp->m_inodegc, cpu); if (!llist_empty(&gc->list)) { unsigned int h = READ_ONCE(gc->shrinker_hits); WRITE_ONCE(gc->shrinker_hits, h + 1); mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); no_items = false; } } /* * If there are no inodes to inactivate, we don't want the shrinker * to think there's deferred work to call us back about. */ if (no_items) return LONG_MAX; return SHRINK_STOP; } /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ int xfs_inodegc_register_shrinker( struct xfs_mount *mp) { struct shrinker *shrink = &mp->m_inodegc_shrinker; shrink->count_objects = xfs_inodegc_shrinker_count; shrink->scan_objects = xfs_inodegc_shrinker_scan; shrink->seeks = 0; shrink->flags = SHRINKER_NONSLAB; shrink->batch = XFS_INODEGC_SHRINKER_BATCH; return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); } |