Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | // SPDX-License-Identifier: GPL-2.0+ #include <linux/crc32.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_vblank.h> #include <linux/minmax.h> #include "vkms_drv.h" static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) { u32 new_color; new_color = (src * 0xffff + dst * (0xffff - alpha)); return DIV_ROUND_CLOSEST(new_color, 0xffff); } /** * pre_mul_alpha_blend - alpha blending equation * @src_frame_info: source framebuffer's metadata * @stage_buffer: The line with the pixels from src_plane * @output_buffer: A line buffer that receives all the blends output * * Using the information from the `frame_info`, this blends only the * necessary pixels from the `stage_buffer` to the `output_buffer` * using premultiplied blend formula. * * The current DRM assumption is that pixel color values have been already * pre-multiplied with the alpha channel values. See more * drm_plane_create_blend_mode_property(). Also, this formula assumes a * completely opaque background. */ static void pre_mul_alpha_blend(struct vkms_frame_info *frame_info, struct line_buffer *stage_buffer, struct line_buffer *output_buffer) { int x_dst = frame_info->dst.x1; struct pixel_argb_u16 *out = output_buffer->pixels + x_dst; struct pixel_argb_u16 *in = stage_buffer->pixels; int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), stage_buffer->n_pixels); for (int x = 0; x < x_limit; x++) { out[x].a = (u16)0xffff; out[x].r = pre_mul_blend_channel(in[x].r, out[x].r, in[x].a); out[x].g = pre_mul_blend_channel(in[x].g, out[x].g, in[x].a); out[x].b = pre_mul_blend_channel(in[x].b, out[x].b, in[x].a); } } static bool check_y_limit(struct vkms_frame_info *frame_info, int y) { if (y >= frame_info->dst.y1 && y < frame_info->dst.y2) return true; return false; } static void fill_background(const struct pixel_argb_u16 *background_color, struct line_buffer *output_buffer) { for (size_t i = 0; i < output_buffer->n_pixels; i++) output_buffer->pixels[i] = *background_color; } /** * @wb_frame_info: The writeback frame buffer metadata * @crtc_state: The crtc state * @crc32: The crc output of the final frame * @output_buffer: A buffer of a row that will receive the result of the blend(s) * @stage_buffer: The line with the pixels from plane being blend to the output * * This function blends the pixels (Using the `pre_mul_alpha_blend`) * from all planes, calculates the crc32 of the output from the former step, * and, if necessary, convert and store the output to the writeback buffer. */ static void blend(struct vkms_writeback_job *wb, struct vkms_crtc_state *crtc_state, u32 *crc32, struct line_buffer *stage_buffer, struct line_buffer *output_buffer, size_t row_size) { struct vkms_plane_state **plane = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; const struct pixel_argb_u16 background_color = { .a = 0xffff }; size_t crtc_y_limit = crtc_state->base.crtc->mode.vdisplay; for (size_t y = 0; y < crtc_y_limit; y++) { fill_background(&background_color, output_buffer); /* The active planes are composed associatively in z-order. */ for (size_t i = 0; i < n_active_planes; i++) { if (!check_y_limit(plane[i]->frame_info, y)) continue; vkms_compose_row(stage_buffer, plane[i], y); pre_mul_alpha_blend(plane[i]->frame_info, stage_buffer, output_buffer); } *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); if (wb) wb->wb_write(&wb->wb_frame_info, output_buffer, y); } } static int check_format_funcs(struct vkms_crtc_state *crtc_state, struct vkms_writeback_job *active_wb) { struct vkms_plane_state **planes = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) if (!planes[i]->pixel_read) return -1; if (active_wb && !active_wb->wb_write) return -1; return 0; } static int check_iosys_map(struct vkms_crtc_state *crtc_state) { struct vkms_plane_state **plane_state = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) return -1; return 0; } static int compose_active_planes(struct vkms_writeback_job *active_wb, struct vkms_crtc_state *crtc_state, u32 *crc32) { size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); struct line_buffer output_buffer, stage_buffer; int ret = 0; /* * This check exists so we can call `crc32_le` for the entire line * instead doing it for each channel of each pixel in case * `struct `pixel_argb_u16` had any gap added by the compiler * between the struct fields. */ static_assert(sizeof(struct pixel_argb_u16) == 8); if (WARN_ON(check_iosys_map(crtc_state))) return -EINVAL; if (WARN_ON(check_format_funcs(crtc_state, active_wb))) return -EINVAL; line_width = crtc_state->base.crtc->mode.hdisplay; stage_buffer.n_pixels = line_width; output_buffer.n_pixels = line_width; stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); if (!stage_buffer.pixels) { DRM_ERROR("Cannot allocate memory for the output line buffer"); return -ENOMEM; } output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); if (!output_buffer.pixels) { DRM_ERROR("Cannot allocate memory for intermediate line buffer"); ret = -ENOMEM; goto free_stage_buffer; } blend(active_wb, crtc_state, crc32, &stage_buffer, &output_buffer, line_width * pixel_size); kvfree(output_buffer.pixels); free_stage_buffer: kvfree(stage_buffer.pixels); return ret; } /** * vkms_composer_worker - ordered work_struct to compute CRC * * @work: work_struct * * Work handler for composing and computing CRCs. work_struct scheduled in * an ordered workqueue that's periodically scheduled to run by * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). */ void vkms_composer_worker(struct work_struct *work) { struct vkms_crtc_state *crtc_state = container_of(work, struct vkms_crtc_state, composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; struct vkms_writeback_job *active_wb = crtc_state->active_writeback; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool crc_pending, wb_pending; u64 frame_start, frame_end; u32 crc32 = 0; int ret; spin_lock_irq(&out->composer_lock); frame_start = crtc_state->frame_start; frame_end = crtc_state->frame_end; crc_pending = crtc_state->crc_pending; wb_pending = crtc_state->wb_pending; crtc_state->frame_start = 0; crtc_state->frame_end = 0; crtc_state->crc_pending = false; spin_unlock_irq(&out->composer_lock); /* * We raced with the vblank hrtimer and previous work already computed * the crc, nothing to do. */ if (!crc_pending) return; if (wb_pending) ret = compose_active_planes(active_wb, crtc_state, &crc32); else ret = compose_active_planes(NULL, crtc_state, &crc32); if (ret) return; if (wb_pending) { drm_writeback_signal_completion(&out->wb_connector, 0); spin_lock_irq(&out->composer_lock); crtc_state->wb_pending = false; spin_unlock_irq(&out->composer_lock); } /* * The worker can fall behind the vblank hrtimer, make sure we catch up. */ while (frame_start <= frame_end) drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); } static const char * const pipe_crc_sources[] = {"auto"}; const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, size_t *count) { *count = ARRAY_SIZE(pipe_crc_sources); return pipe_crc_sources; } static int vkms_crc_parse_source(const char *src_name, bool *enabled) { int ret = 0; if (!src_name) { *enabled = false; } else if (strcmp(src_name, "auto") == 0) { *enabled = true; } else { *enabled = false; ret = -EINVAL; } return ret; } int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, size_t *values_cnt) { bool enabled; if (vkms_crc_parse_source(src_name, &enabled) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", src_name); return -EINVAL; } *values_cnt = 1; return 0; } void vkms_set_composer(struct vkms_output *out, bool enabled) { bool old_enabled; if (enabled) drm_crtc_vblank_get(&out->crtc); spin_lock_irq(&out->lock); old_enabled = out->composer_enabled; out->composer_enabled = enabled; spin_unlock_irq(&out->lock); if (old_enabled) drm_crtc_vblank_put(&out->crtc); } int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) { struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool enabled = false; int ret = 0; ret = vkms_crc_parse_source(src_name, &enabled); vkms_set_composer(out, enabled); return ret; } |