// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2019 Solarflare Communications Inc.
* Copyright 2020-2022 Xilinx Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "ef100_rep.h"
#include "ef100_netdev.h"
#include "ef100_nic.h"
#include "mae.h"
#include "rx_common.h"
#include "tc_bindings.h"
#define EFX_EF100_REP_DRIVER "efx_ef100_rep"
#define EFX_REP_DEFAULT_PSEUDO_RING_SIZE 64
static int efx_ef100_rep_poll(struct napi_struct *napi, int weight);
static int efx_ef100_rep_init_struct(struct efx_nic *efx, struct efx_rep *efv,
unsigned int i)
{
efv->parent = efx;
efv->idx = i;
INIT_LIST_HEAD(&efv->list);
efv->dflt.fw_id = MC_CMD_MAE_ACTION_RULE_INSERT_OUT_ACTION_RULE_ID_NULL;
INIT_LIST_HEAD(&efv->dflt.acts.list);
INIT_LIST_HEAD(&efv->rx_list);
spin_lock_init(&efv->rx_lock);
efv->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR | NETIF_MSG_HW;
return 0;
}
static int efx_ef100_rep_open(struct net_device *net_dev)
{
struct efx_rep *efv = netdev_priv(net_dev);
netif_napi_add(net_dev, &efv->napi, efx_ef100_rep_poll);
napi_enable(&efv->napi);
return 0;
}
static int efx_ef100_rep_close(struct net_device *net_dev)
{
struct efx_rep *efv = netdev_priv(net_dev);
napi_disable(&efv->napi);
netif_napi_del(&efv->napi);
return 0;
}
static netdev_tx_t efx_ef100_rep_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct efx_rep *efv = netdev_priv(dev);
struct efx_nic *efx = efv->parent;
netdev_tx_t rc;
/* __ef100_hard_start_xmit() will always return success even in the
* case of TX drops, where it will increment efx's tx_dropped. The
* efv stats really only count attempted TX, not success/failure.
*/
atomic64_inc(&efv->stats.tx_packets);
atomic64_add(skb->len, &efv->stats.tx_bytes);
netif_tx_lock(efx->net_dev);
rc = __ef100_hard_start_xmit(skb, efx, dev, efv);
netif_tx_unlock(efx->net_dev);
return rc;
}
static int efx_ef100_rep_get_port_parent_id(struct net_device *dev,
struct netdev_phys_item_id *ppid)
{
struct efx_rep *efv = netdev_priv(dev);
struct efx_nic *efx = efv->parent;
struct ef100_nic_data *nic_data;
nic_data = efx->nic_data;
/* nic_data->port_id is a u8[] */
ppid->id_len = sizeof(nic_data->port_id);
memcpy(ppid->id, nic_data->port_id, sizeof(nic_data->port_id));
return 0;
}
static int efx_ef100_rep_get_phys_port_name(struct net_device *dev,
char *buf, size_t len)
{
struct efx_rep *efv = netdev_priv(dev);
struct efx_nic *efx = efv->parent;
struct ef100_nic_data *nic_data;
int ret;
nic_data = efx->nic_data;
ret = snprintf(buf, len, "p%upf%uvf%u", efx->port_num,
nic_data->pf_index, efv->idx);
if (ret >= len)
return -EOPNOTSUPP;
return 0;
}
static int efx_ef100_rep_setup_tc(struct net_device *net_dev,
enum tc_setup_type type, void *type_data)
{
struct efx_rep *efv = netdev_priv(net_dev);
struct efx_nic *efx = efv->parent;
if (type == TC_SETUP_CLSFLOWER)
return efx_tc_flower(efx, net_dev, type_data, efv);
if (type == TC_SETUP_BLOCK)
return efx_tc_setup_block(net_dev, efx, type_data, efv);
return -EOPNOTSUPP;
}
static void efx_ef100_rep_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct efx_rep *efv = netdev_priv(dev);
stats->rx_packets = atomic64_read(&efv->stats.rx_packets);
stats->tx_packets = atomic64_read(&efv->stats.tx_packets);
stats->rx_bytes = atomic64_read(&efv->stats.rx_bytes);
stats->tx_bytes = atomic64_read(&efv->stats.tx_bytes);
stats->rx_dropped = atomic64_read(&efv->stats.rx_dropped);
stats->tx_errors = atomic64_read(&efv->stats.tx_errors);
}
const struct net_device_ops efx_ef100_rep_netdev_ops = {
.ndo_open = efx_ef100_rep_open,
.ndo_stop = efx_ef100_rep_close,
.ndo_start_xmit = efx_ef100_rep_xmit,
.ndo_get_port_parent_id = efx_ef100_rep_get_port_parent_id,
.ndo_get_phys_port_name = efx_ef100_rep_get_phys_port_name,
.ndo_get_stats64 = efx_ef100_rep_get_stats64,
.ndo_setup_tc = efx_ef100_rep_setup_tc,
};
static void efx_ef100_rep_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strscpy(drvinfo->driver, EFX_EF100_REP_DRIVER, sizeof(drvinfo->driver));
}
static u32 efx_ef100_rep_ethtool_get_msglevel(struct net_device *net_dev)
{
struct efx_rep *efv = netdev_priv(net_dev);
return efv->msg_enable;
}
static void efx_ef100_rep_ethtool_set_msglevel(struct net_device *net_dev,
u32 msg_enable)
{
struct efx_rep *efv = netdev_priv(net_dev);
efv->msg_enable = msg_enable;
}
static void efx_ef100_rep_ethtool_get_ringparam(struct net_device *net_dev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kring,
struct netlink_ext_ack *ext_ack)
{
struct efx_rep *efv = netdev_priv(net_dev);
ring->rx_max_pending = U32_MAX;
ring->rx_pending = efv->rx_pring_size;
}
static int efx_ef100_rep_ethtool_set_ringparam(struct net_device *net_dev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kring,
struct netlink_ext_ack *ext_ack)
{
struct efx_rep *efv = netdev_priv(net_dev);
if (ring->rx_mini_pending || ring->rx_jumbo_pending || ring->tx_pending)
return -EINVAL;
efv->rx_pring_size = ring->rx_pending;
return 0;
}
static const struct ethtool_ops efx_ef100_rep_ethtool_ops = {
.get_drvinfo = efx_ef100_rep_get_drvinfo,
.get_msglevel = efx_ef100_rep_ethtool_get_msglevel,
.set_msglevel = efx_ef100_rep_ethtool_set_msglevel,
.get_ringparam = efx_ef100_rep_ethtool_get_ringparam,
.set_ringparam = efx_ef100_rep_ethtool_set_ringparam,
};
static struct efx_rep *efx_ef100_rep_create_netdev(struct efx_nic *efx,
unsigned int i)
{
struct net_device *net_dev;
struct efx_rep *efv;
int rc;
net_dev = alloc_etherdev_mq(sizeof(*efv), 1);
if (!net_dev)
return ERR_PTR(-ENOMEM);
efv = netdev_priv(net_dev);
rc = efx_ef100_rep_init_struct(efx, efv, i);
if (rc)
goto fail1;
efv->net_dev = net_dev;
rtnl_lock();
spin_lock_bh(&efx->vf_reps_lock);
list_add_tail(&efv->list, &efx->vf_reps);
spin_unlock_bh(&efx->vf_reps_lock);
if (netif_running(efx->net_dev) && efx->state == STATE_NET_UP) {
netif_device_attach(net_dev);
netif_carrier_on(net_dev);
} else {
netif_carrier_off(net_dev);
netif_tx_stop_all_queues(net_dev);
}
rtnl_unlock();
net_dev->netdev_ops = &efx_ef100_rep_netdev_ops;
net_dev->ethtool_ops = &efx_ef100_rep_ethtool_ops;
net_dev->min_mtu = EFX_MIN_MTU;
net_dev->max_mtu = EFX_MAX_MTU;
net_dev->features |= NETIF_F_LLTX;
net_dev->hw_features |= NETIF_F_LLTX;
return efv;
fail1:
free_netdev(net_dev);
return ERR_PTR(rc);
}
static int efx_ef100_configure_rep(struct efx_rep *efv)
{
struct efx_nic *efx = efv->parent;
u32 selector;
int rc;
efv->rx_pring_size = EFX_REP_DEFAULT_PSEUDO_RING_SIZE;
/* Construct mport selector for corresponding VF */
efx_mae_mport_vf(efx, efv->idx, &selector);
/* Look up actual mport ID */
rc = efx_mae_lookup_mport(efx, selector, &efv->mport);
if (rc)
return rc;
pci_dbg(efx->pci_dev, "VF %u has mport ID %#x\n", efv->idx, efv->mport);
/* mport label should fit in 16 bits */
WARN_ON(efv->mport >> 16);
return efx_tc_configure_default_rule_rep(efv);
}
static void efx_ef100_deconfigure_rep(struct efx_rep *efv)
{
struct efx_nic *efx = efv->parent;
efx_tc_deconfigure_default_rule(efx, &efv->dflt);
}
static void efx_ef100_rep_destroy_netdev(struct efx_rep *efv)
{
struct efx_nic *efx = efv->parent;
rtnl_lock();
spin_lock_bh(&efx->vf_reps_lock);
list_del(&efv->list);
spin_unlock_bh(&efx->vf_reps_lock);
rtnl_unlock();
synchronize_rcu();
free_netdev(efv->net_dev);
}
int efx_ef100_vfrep_create(struct efx_nic *efx, unsigned int i)
{
struct efx_rep *efv;
int rc;
efv = efx_ef100_rep_create_netdev(efx, i);
if (IS_ERR(efv)) {
rc = PTR_ERR(efv);
pci_err(efx->pci_dev,
"Failed to create representor for VF %d, rc %d\n", i,
rc);
return rc;
}
rc = efx_ef100_configure_rep(efv);
if (rc) {
pci_err(efx->pci_dev,
"Failed to configure representor for VF %d, rc %d\n",
i, rc);
goto fail1;
}
rc = register_netdev(efv->net_dev);
if (rc) {
pci_err(efx->pci_dev,
"Failed to register representor for VF %d, rc %d\n",
i, rc);
goto fail2;
}
pci_dbg(efx->pci_dev, "Representor for VF %d is %s\n", i,
efv->net_dev->name);
return 0;
fail2:
efx_ef100_deconfigure_rep(efv);
fail1:
efx_ef100_rep_destroy_netdev(efv);
return rc;
}
void efx_ef100_vfrep_destroy(struct efx_nic *efx, struct efx_rep *efv)
{
struct net_device *rep_dev;
rep_dev = efv->net_dev;
if (!rep_dev)
return;
netif_dbg(efx, drv, rep_dev, "Removing VF representor\n");
unregister_netdev(rep_dev);
efx_ef100_deconfigure_rep(efv);
efx_ef100_rep_destroy_netdev(efv);
}
void efx_ef100_fini_vfreps(struct efx_nic *efx)
{
struct ef100_nic_data *nic_data = efx->nic_data;
struct efx_rep *efv, *next;
if (!nic_data->grp_mae)
return;
list_for_each_entry_safe(efv, next, &efx->vf_reps, list)
efx_ef100_vfrep_destroy(efx, efv);
}
static int efx_ef100_rep_poll(struct napi_struct *napi, int weight)
{
struct efx_rep *efv = container_of(napi, struct efx_rep, napi);
unsigned int read_index;
struct list_head head;
struct sk_buff *skb;
bool need_resched;
int spent = 0;
INIT_LIST_HEAD(&head);
/* Grab up to 'weight' pending SKBs */
spin_lock_bh(&efv->rx_lock);
read_index = efv->write_index;
while (spent < weight && !list_empty(&efv->rx_list)) {
skb = list_first_entry(&efv->rx_list, struct sk_buff, list);
list_del(&skb->list);
list_add_tail(&skb->list, &head);
spent++;
}
spin_unlock_bh(&efv->rx_lock);
/* Receive them */
netif_receive_skb_list(&head);
if (spent < weight)
if (napi_complete_done(napi, spent)) {
spin_lock_bh(&efv->rx_lock);
efv->read_index = read_index;
/* If write_index advanced while we were doing the
* RX, then storing our read_index won't re-prime the
* fake-interrupt. In that case, we need to schedule
* NAPI again to consume the additional packet(s).
*/
need_resched = efv->write_index != read_index;
spin_unlock_bh(&efv->rx_lock);
if (need_resched)
napi_schedule(&efv->napi);
}
return spent;
}
void efx_ef100_rep_rx_packet(struct efx_rep *efv, struct efx_rx_buffer *rx_buf)
{
u8 *eh = efx_rx_buf_va(rx_buf);
struct sk_buff *skb;
bool primed;
/* Don't allow too many queued SKBs to build up, as they consume
* GFP_ATOMIC memory. If we overrun, just start dropping.
*/
if (efv->write_index - READ_ONCE(efv->read_index) > efv->rx_pring_size) {
atomic64_inc(&efv->stats.rx_dropped);
if (net_ratelimit())
netif_dbg(efv->parent, rx_err, efv->net_dev,
"nodesc-dropped packet of length %u\n",
rx_buf->len);
return;
}
skb = netdev_alloc_skb(efv->net_dev, rx_buf->len);
if (!skb) {
atomic64_inc(&efv->stats.rx_dropped);
if (net_ratelimit())
netif_dbg(efv->parent, rx_err, efv->net_dev,
"noskb-dropped packet of length %u\n",
rx_buf->len);
return;
}
memcpy(skb->data, eh, rx_buf->len);
__skb_put(skb, rx_buf->len);
skb_record_rx_queue(skb, 0); /* rep is single-queue */
/* Move past the ethernet header */
skb->protocol = eth_type_trans(skb, efv->net_dev);
skb_checksum_none_assert(skb);
atomic64_inc(&efv->stats.rx_packets);
atomic64_add(rx_buf->len, &efv->stats.rx_bytes);
/* Add it to the rx list */
spin_lock_bh(&efv->rx_lock);
primed = efv->read_index == efv->write_index;
list_add_tail(&skb->list, &efv->rx_list);
efv->write_index++;
spin_unlock_bh(&efv->rx_lock);
/* Trigger rx work */
if (primed)
napi_schedule(&efv->napi);
}
struct efx_rep *efx_ef100_find_rep_by_mport(struct efx_nic *efx, u16 mport)
{
struct efx_rep *efv, *out = NULL;
/* spinlock guards against list mutation while we're walking it;
* but caller must also hold rcu_read_lock() to ensure the netdev
* isn't freed after we drop the spinlock.
*/
spin_lock_bh(&efx->vf_reps_lock);
list_for_each_entry(efv, &efx->vf_reps, list)
if (efv->mport == mport) {
out = efv;
break;
}
spin_unlock_bh(&efx->vf_reps_lock);
return out;
}