Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | // SPDX-License-Identifier: GPL-2.0 /* Kernel module help for sparc64. * * Copyright (C) 2001 Rusty Russell. * Copyright (C) 2002 David S. Miller. */ #include <linux/moduleloader.h> #include <linux/kernel.h> #include <linux/elf.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <linux/gfp.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/mm.h> #include <asm/processor.h> #include <asm/spitfire.h> #include <asm/cacheflush.h> #include "entry.h" #ifdef CONFIG_SPARC64 #include <linux/jump_label.h> static void *module_map(unsigned long size) { if (PAGE_ALIGN(size) > MODULES_LEN) return NULL; return __vmalloc_node_range(size, 1, MODULES_VADDR, MODULES_END, GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE, __builtin_return_address(0)); } #else static void *module_map(unsigned long size) { return vmalloc(size); } #endif /* CONFIG_SPARC64 */ void *module_alloc(unsigned long size) { void *ret; ret = module_map(size); if (ret) memset(ret, 0, size); return ret; } /* Make generic code ignore STT_REGISTER dummy undefined symbols. */ int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { unsigned int symidx; Elf_Sym *sym; char *strtab; int i; for (symidx = 0; sechdrs[symidx].sh_type != SHT_SYMTAB; symidx++) { if (symidx == hdr->e_shnum-1) { printk("%s: no symtab found.\n", mod->name); return -ENOEXEC; } } sym = (Elf_Sym *)sechdrs[symidx].sh_addr; strtab = (char *)sechdrs[sechdrs[symidx].sh_link].sh_addr; for (i = 1; i < sechdrs[symidx].sh_size / sizeof(Elf_Sym); i++) { if (sym[i].st_shndx == SHN_UNDEF) { if (ELF_ST_TYPE(sym[i].st_info) == STT_REGISTER) sym[i].st_shndx = SHN_ABS; } } return 0; } int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { unsigned int i; Elf_Rela *rel = (void *)sechdrs[relsec].sh_addr; Elf_Sym *sym; u8 *location; u32 *loc32; for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { Elf_Addr v; /* This is where to make the change */ location = (u8 *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; loc32 = (u32 *) location; #ifdef CONFIG_SPARC64 BUG_ON(((u64)location >> (u64)32) != (u64)0); #endif /* CONFIG_SPARC64 */ /* This is the symbol it is referring to. Note that all undefined symbols have been resolved. */ sym = (Elf_Sym *)sechdrs[symindex].sh_addr + ELF_R_SYM(rel[i].r_info); v = sym->st_value + rel[i].r_addend; switch (ELF_R_TYPE(rel[i].r_info) & 0xff) { case R_SPARC_DISP32: v -= (Elf_Addr) location; *loc32 = v; break; #ifdef CONFIG_SPARC64 case R_SPARC_64: location[0] = v >> 56; location[1] = v >> 48; location[2] = v >> 40; location[3] = v >> 32; location[4] = v >> 24; location[5] = v >> 16; location[6] = v >> 8; location[7] = v >> 0; break; case R_SPARC_WDISP19: v -= (Elf_Addr) location; *loc32 = (*loc32 & ~0x7ffff) | ((v >> 2) & 0x7ffff); break; case R_SPARC_OLO10: *loc32 = (*loc32 & ~0x1fff) | (((v & 0x3ff) + (ELF_R_TYPE(rel[i].r_info) >> 8)) & 0x1fff); break; #endif /* CONFIG_SPARC64 */ case R_SPARC_32: case R_SPARC_UA32: location[0] = v >> 24; location[1] = v >> 16; location[2] = v >> 8; location[3] = v >> 0; break; case R_SPARC_WDISP30: v -= (Elf_Addr) location; *loc32 = (*loc32 & ~0x3fffffff) | ((v >> 2) & 0x3fffffff); break; case R_SPARC_WDISP22: v -= (Elf_Addr) location; *loc32 = (*loc32 & ~0x3fffff) | ((v >> 2) & 0x3fffff); break; case R_SPARC_LO10: *loc32 = (*loc32 & ~0x3ff) | (v & 0x3ff); break; case R_SPARC_HI22: *loc32 = (*loc32 & ~0x3fffff) | ((v >> 10) & 0x3fffff); break; default: printk(KERN_ERR "module %s: Unknown relocation: %x\n", me->name, (int) (ELF_R_TYPE(rel[i].r_info) & 0xff)); return -ENOEXEC; } } return 0; } #ifdef CONFIG_SPARC64 static void do_patch_sections(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs) { const Elf_Shdr *s, *sun4v_1insn = NULL, *sun4v_2insn = NULL; char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { if (!strcmp(".sun4v_1insn_patch", secstrings + s->sh_name)) sun4v_1insn = s; if (!strcmp(".sun4v_2insn_patch", secstrings + s->sh_name)) sun4v_2insn = s; } if (sun4v_1insn && tlb_type == hypervisor) { void *p = (void *) sun4v_1insn->sh_addr; sun4v_patch_1insn_range(p, p + sun4v_1insn->sh_size); } if (sun4v_2insn && tlb_type == hypervisor) { void *p = (void *) sun4v_2insn->sh_addr; sun4v_patch_2insn_range(p, p + sun4v_2insn->sh_size); } } int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *me) { do_patch_sections(hdr, sechdrs); /* Cheetah's I-cache is fully coherent. */ if (tlb_type == spitfire) { unsigned long va; flushw_all(); for (va = 0; va < (PAGE_SIZE << 1); va += 32) spitfire_put_icache_tag(va, 0x0); __asm__ __volatile__("flush %g6"); } return 0; } #endif /* CONFIG_SPARC64 */ |