Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
// SPDX-License-Identifier: GPL-2.0
/*
 * Secure pages management: Migration of pages between normal and secure
 * memory of KVM guests.
 *
 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
 */

/*
 * A pseries guest can be run as secure guest on Ultravisor-enabled
 * POWER platforms. On such platforms, this driver will be used to manage
 * the movement of guest pages between the normal memory managed by
 * hypervisor (HV) and secure memory managed by Ultravisor (UV).
 *
 * The page-in or page-out requests from UV will come to HV as hcalls and
 * HV will call back into UV via ultracalls to satisfy these page requests.
 *
 * Private ZONE_DEVICE memory equal to the amount of secure memory
 * available in the platform for running secure guests is hotplugged.
 * Whenever a page belonging to the guest becomes secure, a page from this
 * private device memory is used to represent and track that secure page
 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
 * shared between UV and HV. However such pages aren't represented by
 * device private memory and mappings to shared memory exist in both
 * UV and HV page tables.
 */

/*
 * Notes on locking
 *
 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
 * page-in and page-out requests for the same GPA. Concurrent accesses
 * can either come via UV (guest vCPUs requesting for same page)
 * or when HV and guest simultaneously access the same page.
 * This mutex serializes the migration of page from HV(normal) to
 * UV(secure) and vice versa. So the serialization points are around
 * migrate_vma routines and page-in/out routines.
 *
 * Per-guest mutex comes with a cost though. Mainly it serializes the
 * fault path as page-out can occur when HV faults on accessing secure
 * guest pages. Currently UV issues page-in requests for all the guest
 * PFNs one at a time during early boot (UV_ESM uvcall), so this is
 * not a cause for concern. Also currently the number of page-outs caused
 * by HV touching secure pages is very very low. If an when UV supports
 * overcommitting, then we might see concurrent guest driven page-outs.
 *
 * Locking order
 *
 * 1. kvm->srcu - Protects KVM memslots
 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
 *			     as sync-points for page-in/out
 */

/*
 * Notes on page size
 *
 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
 * secure GPAs at 64K page size and maintains one device PFN for each
 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
 * for 64K page at a time.
 *
 * HV faulting on secure pages: When HV touches any secure page, it
 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
 * UV splits and remaps the 2MB page if necessary and copies out the
 * required 64K page contents.
 *
 * Shared pages: Whenever guest shares a secure page, UV will split and
 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
 *
 * HV invalidating a page: When a regular page belonging to secure
 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
 * page size. Using 64K page size is correct here because any non-secure
 * page will essentially be of 64K page size. Splitting by UV during sharing
 * and page-out ensures this.
 *
 * Page fault handling: When HV handles page fault of a page belonging
 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
 * Using 64K size is correct here too as UV would have split the 2MB page
 * into 64k mappings and would have done page-outs earlier.
 *
 * In summary, the current secure pages handling code in HV assumes
 * 64K page size and in fact fails any page-in/page-out requests of
 * non-64K size upfront. If and when UV starts supporting multiple
 * page-sizes, we need to break this assumption.
 */

#include <linux/pagemap.h>
#include <linux/migrate.h>
#include <linux/kvm_host.h>
#include <linux/ksm.h>
#include <linux/of.h>
#include <linux/memremap.h>
#include <asm/ultravisor.h>
#include <asm/mman.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s_uvmem.h>

static struct dev_pagemap kvmppc_uvmem_pgmap;
static unsigned long *kvmppc_uvmem_bitmap;
static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);

/*
 * States of a GFN
 * ---------------
 * The GFN can be in one of the following states.
 *
 * (a) Secure - The GFN is secure. The GFN is associated with
 *	a Secure VM, the contents of the GFN is not accessible
 *	to the Hypervisor.  This GFN can be backed by a secure-PFN,
 *	or can be backed by a normal-PFN with contents encrypted.
 *	The former is true when the GFN is paged-in into the
 *	ultravisor. The latter is true when the GFN is paged-out
 *	of the ultravisor.
 *
 * (b) Shared - The GFN is shared. The GFN is associated with a
 *	a secure VM. The contents of the GFN is accessible to
 *	Hypervisor. This GFN is backed by a normal-PFN and its
 *	content is un-encrypted.
 *
 * (c) Normal - The GFN is a normal. The GFN is associated with
 *	a normal VM. The contents of the GFN is accessible to
 *	the Hypervisor. Its content is never encrypted.
 *
 * States of a VM.
 * ---------------
 *
 * Normal VM:  A VM whose contents are always accessible to
 *	the hypervisor.  All its GFNs are normal-GFNs.
 *
 * Secure VM: A VM whose contents are not accessible to the
 *	hypervisor without the VM's consent.  Its GFNs are
 *	either Shared-GFN or Secure-GFNs.
 *
 * Transient VM: A Normal VM that is transitioning to secure VM.
 *	The transition starts on successful return of
 *	H_SVM_INIT_START, and ends on successful return
 *	of H_SVM_INIT_DONE. This transient VM, can have GFNs
 *	in any of the three states; i.e Secure-GFN, Shared-GFN,
 *	and Normal-GFN.	The VM never executes in this state
 *	in supervisor-mode.
 *
 * Memory slot State.
 * -----------------------------
 *	The state of a memory slot mirrors the state of the
 *	VM the memory slot is associated with.
 *
 * VM State transition.
 * --------------------
 *
 *  A VM always starts in Normal Mode.
 *
 *  H_SVM_INIT_START moves the VM into transient state. During this
 *  time the Ultravisor may request some of its GFNs to be shared or
 *  secured. So its GFNs can be in one of the three GFN states.
 *
 *  H_SVM_INIT_DONE moves the VM entirely from transient state to
 *  secure-state. At this point any left-over normal-GFNs are
 *  transitioned to Secure-GFN.
 *
 *  H_SVM_INIT_ABORT moves the transient VM back to normal VM.
 *  All its GFNs are moved to Normal-GFNs.
 *
 *  UV_TERMINATE transitions the secure-VM back to normal-VM. All
 *  the secure-GFN and shared-GFNs are tranistioned to normal-GFN
 *  Note: The contents of the normal-GFN is undefined at this point.
 *
 * GFN state implementation:
 * -------------------------
 *
 * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
 * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
 * set, and contains the value of the secure-PFN.
 * It is associated with a normal-PFN; also called mem_pfn, when
 * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
 * The value of the normal-PFN is not tracked.
 *
 * Shared GFN is associated with a normal-PFN. Its pfn[] has
 * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
 * is not tracked.
 *
 * Normal GFN is associated with normal-PFN. Its pfn[] has
 * no flag set. The value of the normal-PFN is not tracked.
 *
 * Life cycle of a GFN
 * --------------------
 *
 * --------------------------------------------------------------
 * |        |     Share  |  Unshare | SVM       |H_SVM_INIT_DONE|
 * |        |operation   |operation | abort/    |               |
 * |        |            |          | terminate |               |
 * -------------------------------------------------------------
 * |        |            |          |           |               |
 * | Secure |     Shared | Secure   |Normal     |Secure         |
 * |        |            |          |           |               |
 * | Shared |     Shared | Secure   |Normal     |Shared         |
 * |        |            |          |           |               |
 * | Normal |     Shared | Secure   |Normal     |Secure         |
 * --------------------------------------------------------------
 *
 * Life cycle of a VM
 * --------------------
 *
 * --------------------------------------------------------------------
 * |         |  start    |  H_SVM_  |H_SVM_   |H_SVM_     |UV_SVM_    |
 * |         |  VM       |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE  |
 * |         |           |          |         |           |           |
 * --------- ----------------------------------------------------------
 * |         |           |          |         |           |           |
 * | Normal  | Normal    | Transient|Error    |Error      |Normal     |
 * |         |           |          |         |           |           |
 * | Secure  |   Error   | Error    |Error    |Error      |Normal     |
 * |         |           |          |         |           |           |
 * |Transient|   N/A     | Error    |Secure   |Normal     |Normal     |
 * --------------------------------------------------------------------
 */

#define KVMPPC_GFN_UVMEM_PFN	(1UL << 63)
#define KVMPPC_GFN_MEM_PFN	(1UL << 62)
#define KVMPPC_GFN_SHARED	(1UL << 61)
#define KVMPPC_GFN_SECURE	(KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
#define KVMPPC_GFN_FLAG_MASK	(KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
#define KVMPPC_GFN_PFN_MASK	(~KVMPPC_GFN_FLAG_MASK)

struct kvmppc_uvmem_slot {
	struct list_head list;
	unsigned long nr_pfns;
	unsigned long base_pfn;
	unsigned long *pfns;
};
struct kvmppc_uvmem_page_pvt {
	struct kvm *kvm;
	unsigned long gpa;
	bool skip_page_out;
	bool remove_gfn;
};

bool kvmppc_uvmem_available(void)
{
	/*
	 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
	 * and our data structures have been initialized successfully.
	 */
	return !!kvmppc_uvmem_bitmap;
}

int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
{
	struct kvmppc_uvmem_slot *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;
	p->pfns = vcalloc(slot->npages, sizeof(*p->pfns));
	if (!p->pfns) {
		kfree(p);
		return -ENOMEM;
	}
	p->nr_pfns = slot->npages;
	p->base_pfn = slot->base_gfn;

	mutex_lock(&kvm->arch.uvmem_lock);
	list_add(&p->list, &kvm->arch.uvmem_pfns);
	mutex_unlock(&kvm->arch.uvmem_lock);

	return 0;
}

/*
 * All device PFNs are already released by the time we come here.
 */
void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
{
	struct kvmppc_uvmem_slot *p, *next;

	mutex_lock(&kvm->arch.uvmem_lock);
	list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
		if (p->base_pfn == slot->base_gfn) {
			vfree(p->pfns);
			list_del(&p->list);
			kfree(p);
			break;
		}
	}
	mutex_unlock(&kvm->arch.uvmem_lock);
}

static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
			unsigned long flag, unsigned long uvmem_pfn)
{
	struct kvmppc_uvmem_slot *p;

	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
			unsigned long index = gfn - p->base_pfn;

			if (flag == KVMPPC_GFN_UVMEM_PFN)
				p->pfns[index] = uvmem_pfn | flag;
			else
				p->pfns[index] = flag;
			return;
		}
	}
}

/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
			unsigned long uvmem_pfn, struct kvm *kvm)
{
	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
}

/* mark the GFN as secure-GFN associated with a memory-PFN. */
static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
{
	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
}

/* mark the GFN as a shared GFN. */
static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
{
	kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
}

/* mark the GFN as a non-existent GFN. */
static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
{
	kvmppc_mark_gfn(gfn, kvm, 0, 0);
}

/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
				    unsigned long *uvmem_pfn)
{
	struct kvmppc_uvmem_slot *p;

	list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
		if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
			unsigned long index = gfn - p->base_pfn;

			if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
				if (uvmem_pfn)
					*uvmem_pfn = p->pfns[index] &
						     KVMPPC_GFN_PFN_MASK;
				return true;
			} else
				return false;
		}
	}
	return false;
}

/*
 * starting from *gfn search for the next available GFN that is not yet
 * transitioned to a secure GFN.  return the value of that GFN in *gfn.  If a
 * GFN is found, return true, else return false
 *
 * Must be called with kvm->arch.uvmem_lock  held.
 */
static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
		struct kvm *kvm, unsigned long *gfn)
{
	struct kvmppc_uvmem_slot *p = NULL, *iter;
	bool ret = false;
	unsigned long i;

	list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list)
		if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) {
			p = iter;
			break;
		}
	if (!p)
		return ret;
	/*
	 * The code below assumes, one to one correspondence between
	 * kvmppc_uvmem_slot and memslot.
	 */
	for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
		unsigned long index = i - p->base_pfn;

		if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
			*gfn = i;
			ret = true;
			break;
		}
	}
	return ret;
}

static int kvmppc_memslot_page_merge(struct kvm *kvm,
		const struct kvm_memory_slot *memslot, bool merge)
{
	unsigned long gfn = memslot->base_gfn;
	unsigned long end, start = gfn_to_hva(kvm, gfn);
	int ret = 0;
	struct vm_area_struct *vma;
	int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;

	if (kvm_is_error_hva(start))
		return H_STATE;

	end = start + (memslot->npages << PAGE_SHIFT);

	mmap_write_lock(kvm->mm);
	do {
		vma = find_vma_intersection(kvm->mm, start, end);
		if (!vma) {
			ret = H_STATE;
			break;
		}
		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
			  merge_flag, &vma->vm_flags);
		if (ret) {
			ret = H_STATE;
			break;
		}
		start = vma->vm_end;
	} while (end > vma->vm_end);

	mmap_write_unlock(kvm->mm);
	return ret;
}

static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
		const struct kvm_memory_slot *memslot)
{
	uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
	kvmppc_uvmem_slot_free(kvm, memslot);
	kvmppc_memslot_page_merge(kvm, memslot, true);
}

static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
		const struct kvm_memory_slot *memslot)
{
	int ret = H_PARAMETER;

	if (kvmppc_memslot_page_merge(kvm, memslot, false))
		return ret;

	if (kvmppc_uvmem_slot_init(kvm, memslot))
		goto out1;

	ret = uv_register_mem_slot(kvm->arch.lpid,
				   memslot->base_gfn << PAGE_SHIFT,
				   memslot->npages * PAGE_SIZE,
				   0, memslot->id);
	if (ret < 0) {
		ret = H_PARAMETER;
		goto out;
	}
	return 0;
out:
	kvmppc_uvmem_slot_free(kvm, memslot);
out1:
	kvmppc_memslot_page_merge(kvm, memslot, true);
	return ret;
}

unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot, *m;
	int ret = H_SUCCESS;
	int srcu_idx, bkt;

	kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;

	if (!kvmppc_uvmem_bitmap)
		return H_UNSUPPORTED;

	/* Only radix guests can be secure guests */
	if (!kvm_is_radix(kvm))
		return H_UNSUPPORTED;

	/* NAK the transition to secure if not enabled */
	if (!kvm->arch.svm_enabled)
		return H_AUTHORITY;

	srcu_idx = srcu_read_lock(&kvm->srcu);

	/* register the memslot */
	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, bkt, slots) {
		ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
		if (ret)
			break;
	}

	if (ret) {
		slots = kvm_memslots(kvm);
		kvm_for_each_memslot(m, bkt, slots) {
			if (m == memslot)
				break;
			__kvmppc_uvmem_memslot_delete(kvm, memslot);
		}
	}

	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return ret;
}

/*
 * Provision a new page on HV side and copy over the contents
 * from secure memory using UV_PAGE_OUT uvcall.
 * Caller must held kvm->arch.uvmem_lock.
 */
static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end, unsigned long page_shift,
		struct kvm *kvm, unsigned long gpa, struct page *fault_page)
{
	unsigned long src_pfn, dst_pfn = 0;
	struct migrate_vma mig = { 0 };
	struct page *dpage, *spage;
	struct kvmppc_uvmem_page_pvt *pvt;
	unsigned long pfn;
	int ret = U_SUCCESS;

	memset(&mig, 0, sizeof(mig));
	mig.vma = vma;
	mig.start = start;
	mig.end = end;
	mig.src = &src_pfn;
	mig.dst = &dst_pfn;
	mig.pgmap_owner = &kvmppc_uvmem_pgmap;
	mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
	mig.fault_page = fault_page;

	/* The requested page is already paged-out, nothing to do */
	if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
		return ret;

	ret = migrate_vma_setup(&mig);
	if (ret)
		return -1;

	spage = migrate_pfn_to_page(*mig.src);
	if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
		goto out_finalize;

	if (!is_zone_device_page(spage))
		goto out_finalize;

	dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
	if (!dpage) {
		ret = -1;
		goto out_finalize;
	}

	lock_page(dpage);
	pvt = spage->zone_device_data;
	pfn = page_to_pfn(dpage);

	/*
	 * This function is used in two cases:
	 * - When HV touches a secure page, for which we do UV_PAGE_OUT
	 * - When a secure page is converted to shared page, we *get*
	 *   the page to essentially unmap the device page. In this
	 *   case we skip page-out.
	 */
	if (!pvt->skip_page_out)
		ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
				  gpa, 0, page_shift);

	if (ret == U_SUCCESS)
		*mig.dst = migrate_pfn(pfn);
	else {
		unlock_page(dpage);
		__free_page(dpage);
		goto out_finalize;
	}

	migrate_vma_pages(&mig);

out_finalize:
	migrate_vma_finalize(&mig);
	return ret;
}

static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
				      unsigned long start, unsigned long end,
				      unsigned long page_shift,
				      struct kvm *kvm, unsigned long gpa,
				      struct page *fault_page)
{
	int ret;

	mutex_lock(&kvm->arch.uvmem_lock);
	ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa,
				fault_page);
	mutex_unlock(&kvm->arch.uvmem_lock);

	return ret;
}

/*
 * Drop device pages that we maintain for the secure guest
 *
 * We first mark the pages to be skipped from UV_PAGE_OUT when there
 * is HV side fault on these pages. Next we *get* these pages, forcing
 * fault on them, do fault time migration to replace the device PTEs in
 * QEMU page table with normal PTEs from newly allocated pages.
 */
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
			     struct kvm *kvm, bool skip_page_out)
{
	int i;
	struct kvmppc_uvmem_page_pvt *pvt;
	struct page *uvmem_page;
	struct vm_area_struct *vma = NULL;
	unsigned long uvmem_pfn, gfn;
	unsigned long addr;

	mmap_read_lock(kvm->mm);

	addr = slot->userspace_addr;

	gfn = slot->base_gfn;
	for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {

		/* Fetch the VMA if addr is not in the latest fetched one */
		if (!vma || addr >= vma->vm_end) {
			vma = vma_lookup(kvm->mm, addr);
			if (!vma) {
				pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
				break;
			}
		}

		mutex_lock(&kvm->arch.uvmem_lock);

		if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
			uvmem_page = pfn_to_page(uvmem_pfn);
			pvt = uvmem_page->zone_device_data;
			pvt->skip_page_out = skip_page_out;
			pvt->remove_gfn = true;

			if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
						  PAGE_SHIFT, kvm, pvt->gpa, NULL))
				pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
				       pvt->gpa, addr);
		} else {
			/* Remove the shared flag if any */
			kvmppc_gfn_remove(gfn, kvm);
		}

		mutex_unlock(&kvm->arch.uvmem_lock);
	}

	mmap_read_unlock(kvm->mm);
}

unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
{
	int srcu_idx, bkt;
	struct kvm_memory_slot *memslot;

	/*
	 * Expect to be called only after INIT_START and before INIT_DONE.
	 * If INIT_DONE was completed, use normal VM termination sequence.
	 */
	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
		return H_UNSUPPORTED;

	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
		return H_STATE;

	srcu_idx = srcu_read_lock(&kvm->srcu);

	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
		kvmppc_uvmem_drop_pages(memslot, kvm, false);

	srcu_read_unlock(&kvm->srcu, srcu_idx);

	kvm->arch.secure_guest = 0;
	uv_svm_terminate(kvm->arch.lpid);

	return H_PARAMETER;
}

/*
 * Get a free device PFN from the pool
 *
 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
 * PFN will be used to keep track of the secure page on HV side.
 *
 * Called with kvm->arch.uvmem_lock held
 */
static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
{
	struct page *dpage = NULL;
	unsigned long bit, uvmem_pfn;
	struct kvmppc_uvmem_page_pvt *pvt;
	unsigned long pfn_last, pfn_first;

	pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
	pfn_last = pfn_first +
		   (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);

	spin_lock(&kvmppc_uvmem_bitmap_lock);
	bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
				  pfn_last - pfn_first);
	if (bit >= (pfn_last - pfn_first))
		goto out;
	bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
	spin_unlock(&kvmppc_uvmem_bitmap_lock);

	pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
	if (!pvt)
		goto out_clear;

	uvmem_pfn = bit + pfn_first;
	kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);

	pvt->gpa = gpa;
	pvt->kvm = kvm;

	dpage = pfn_to_page(uvmem_pfn);
	dpage->zone_device_data = pvt;
	zone_device_page_init(dpage);
	return dpage;
out_clear:
	spin_lock(&kvmppc_uvmem_bitmap_lock);
	bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
out:
	spin_unlock(&kvmppc_uvmem_bitmap_lock);
	return NULL;
}

/*
 * Alloc a PFN from private device memory pool. If @pagein is true,
 * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
 */
static int kvmppc_svm_page_in(struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end, unsigned long gpa, struct kvm *kvm,
		unsigned long page_shift,
		bool pagein)
{
	unsigned long src_pfn, dst_pfn = 0;
	struct migrate_vma mig = { 0 };
	struct page *spage;
	unsigned long pfn;
	struct page *dpage;
	int ret = 0;

	memset(&mig, 0, sizeof(mig));
	mig.vma = vma;
	mig.start = start;
	mig.end = end;
	mig.src = &src_pfn;
	mig.dst = &dst_pfn;
	mig.flags = MIGRATE_VMA_SELECT_SYSTEM;

	ret = migrate_vma_setup(&mig);
	if (ret)
		return ret;

	if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
		ret = -1;
		goto out_finalize;
	}

	dpage = kvmppc_uvmem_get_page(gpa, kvm);
	if (!dpage) {
		ret = -1;
		goto out_finalize;
	}

	if (pagein) {
		pfn = *mig.src >> MIGRATE_PFN_SHIFT;
		spage = migrate_pfn_to_page(*mig.src);
		if (spage) {
			ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
					gpa, 0, page_shift);
			if (ret)
				goto out_finalize;
		}
	}

	*mig.dst = migrate_pfn(page_to_pfn(dpage));
	migrate_vma_pages(&mig);
out_finalize:
	migrate_vma_finalize(&mig);
	return ret;
}

static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
		const struct kvm_memory_slot *memslot)
{
	unsigned long gfn = memslot->base_gfn;
	struct vm_area_struct *vma;
	unsigned long start, end;
	int ret = 0;

	mmap_read_lock(kvm->mm);
	mutex_lock(&kvm->arch.uvmem_lock);
	while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
		ret = H_STATE;
		start = gfn_to_hva(kvm, gfn);
		if (kvm_is_error_hva(start))
			break;

		end = start + (1UL << PAGE_SHIFT);
		vma = find_vma_intersection(kvm->mm, start, end);
		if (!vma || vma->vm_start > start || vma->vm_end < end)
			break;

		ret = kvmppc_svm_page_in(vma, start, end,
				(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
		if (ret) {
			ret = H_STATE;
			break;
		}

		/* relinquish the cpu if needed */
		cond_resched();
	}
	mutex_unlock(&kvm->arch.uvmem_lock);
	mmap_read_unlock(kvm->mm);
	return ret;
}

unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx, bkt;
	long ret = H_SUCCESS;

	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
		return H_UNSUPPORTED;

	/* migrate any unmoved normal pfn to device pfns*/
	srcu_idx = srcu_read_lock(&kvm->srcu);
	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, bkt, slots) {
		ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
		if (ret) {
			/*
			 * The pages will remain transitioned.
			 * Its the callers responsibility to
			 * terminate the VM, which will undo
			 * all state of the VM. Till then
			 * this VM is in a erroneous state.
			 * Its KVMPPC_SECURE_INIT_DONE will
			 * remain unset.
			 */
			ret = H_STATE;
			goto out;
		}
	}

	kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
	pr_info("LPID %d went secure\n", kvm->arch.lpid);

out:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return ret;
}

/*
 * Shares the page with HV, thus making it a normal page.
 *
 * - If the page is already secure, then provision a new page and share
 * - If the page is a normal page, share the existing page
 *
 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
 * to unmap the device page from QEMU's page tables.
 */
static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
		unsigned long page_shift)
{

	int ret = H_PARAMETER;
	struct page *uvmem_page;
	struct kvmppc_uvmem_page_pvt *pvt;
	unsigned long pfn;
	unsigned long gfn = gpa >> page_shift;
	int srcu_idx;
	unsigned long uvmem_pfn;

	srcu_idx = srcu_read_lock(&kvm->srcu);
	mutex_lock(&kvm->arch.uvmem_lock);
	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
		uvmem_page = pfn_to_page(uvmem_pfn);
		pvt = uvmem_page->zone_device_data;
		pvt->skip_page_out = true;
		/*
		 * do not drop the GFN. It is a valid GFN
		 * that is transitioned to a shared GFN.
		 */
		pvt->remove_gfn = false;
	}

retry:
	mutex_unlock(&kvm->arch.uvmem_lock);
	pfn = gfn_to_pfn(kvm, gfn);
	if (is_error_noslot_pfn(pfn))
		goto out;

	mutex_lock(&kvm->arch.uvmem_lock);
	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
		uvmem_page = pfn_to_page(uvmem_pfn);
		pvt = uvmem_page->zone_device_data;
		pvt->skip_page_out = true;
		pvt->remove_gfn = false; /* it continues to be a valid GFN */
		kvm_release_pfn_clean(pfn);
		goto retry;
	}

	if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
				page_shift)) {
		kvmppc_gfn_shared(gfn, kvm);
		ret = H_SUCCESS;
	}
	kvm_release_pfn_clean(pfn);
	mutex_unlock(&kvm->arch.uvmem_lock);
out:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return ret;
}

/*
 * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
 *
 * H_PAGE_IN_SHARED flag makes the page shared which means that the same
 * memory in is visible from both UV and HV.
 */
unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
		unsigned long flags,
		unsigned long page_shift)
{
	unsigned long start, end;
	struct vm_area_struct *vma;
	int srcu_idx;
	unsigned long gfn = gpa >> page_shift;
	int ret;

	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
		return H_UNSUPPORTED;

	if (page_shift != PAGE_SHIFT)
		return H_P3;

	if (flags & ~H_PAGE_IN_SHARED)
		return H_P2;

	if (flags & H_PAGE_IN_SHARED)
		return kvmppc_share_page(kvm, gpa, page_shift);

	ret = H_PARAMETER;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	mmap_read_lock(kvm->mm);

	start = gfn_to_hva(kvm, gfn);
	if (kvm_is_error_hva(start))
		goto out;

	mutex_lock(&kvm->arch.uvmem_lock);
	/* Fail the page-in request of an already paged-in page */
	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
		goto out_unlock;

	end = start + (1UL << page_shift);
	vma = find_vma_intersection(kvm->mm, start, end);
	if (!vma || vma->vm_start > start || vma->vm_end < end)
		goto out_unlock;

	if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
				true))
		goto out_unlock;

	ret = H_SUCCESS;

out_unlock:
	mutex_unlock(&kvm->arch.uvmem_lock);
out:
	mmap_read_unlock(kvm->mm);
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return ret;
}


/*
 * Fault handler callback that gets called when HV touches any page that
 * has been moved to secure memory, we ask UV to give back the page by
 * issuing UV_PAGE_OUT uvcall.
 *
 * This eventually results in dropping of device PFN and the newly
 * provisioned page/PFN gets populated in QEMU page tables.
 */
static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
{
	struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;

	if (kvmppc_svm_page_out(vmf->vma, vmf->address,
				vmf->address + PAGE_SIZE, PAGE_SHIFT,
				pvt->kvm, pvt->gpa, vmf->page))
		return VM_FAULT_SIGBUS;
	else
		return 0;
}

/*
 * Release the device PFN back to the pool
 *
 * Gets called when secure GFN tranistions from a secure-PFN
 * to a normal PFN during H_SVM_PAGE_OUT.
 * Gets called with kvm->arch.uvmem_lock held.
 */
static void kvmppc_uvmem_page_free(struct page *page)
{
	unsigned long pfn = page_to_pfn(page) -
			(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
	struct kvmppc_uvmem_page_pvt *pvt;

	spin_lock(&kvmppc_uvmem_bitmap_lock);
	bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
	spin_unlock(&kvmppc_uvmem_bitmap_lock);

	pvt = page->zone_device_data;
	page->zone_device_data = NULL;
	if (pvt->remove_gfn)
		kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
	else
		kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
	kfree(pvt);
}

static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
	.page_free = kvmppc_uvmem_page_free,
	.migrate_to_ram	= kvmppc_uvmem_migrate_to_ram,
};

/*
 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
 */
unsigned long
kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
		      unsigned long flags, unsigned long page_shift)
{
	unsigned long gfn = gpa >> page_shift;
	unsigned long start, end;
	struct vm_area_struct *vma;
	int srcu_idx;
	int ret;

	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
		return H_UNSUPPORTED;

	if (page_shift != PAGE_SHIFT)
		return H_P3;

	if (flags)
		return H_P2;

	ret = H_PARAMETER;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	mmap_read_lock(kvm->mm);
	start = gfn_to_hva(kvm, gfn);
	if (kvm_is_error_hva(start))
		goto out;

	end = start + (1UL << page_shift);
	vma = find_vma_intersection(kvm->mm, start, end);
	if (!vma || vma->vm_start > start || vma->vm_end < end)
		goto out;

	if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL))
		ret = H_SUCCESS;
out:
	mmap_read_unlock(kvm->mm);
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return ret;
}

int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
{
	unsigned long pfn;
	int ret = U_SUCCESS;

	pfn = gfn_to_pfn(kvm, gfn);
	if (is_error_noslot_pfn(pfn))
		return -EFAULT;

	mutex_lock(&kvm->arch.uvmem_lock);
	if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
		goto out;

	ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
			 0, PAGE_SHIFT);
out:
	kvm_release_pfn_clean(pfn);
	mutex_unlock(&kvm->arch.uvmem_lock);
	return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
}

int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
{
	int ret = __kvmppc_uvmem_memslot_create(kvm, new);

	if (!ret)
		ret = kvmppc_uv_migrate_mem_slot(kvm, new);

	return ret;
}

void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
{
	__kvmppc_uvmem_memslot_delete(kvm, old);
}

static u64 kvmppc_get_secmem_size(void)
{
	struct device_node *np;
	int i, len;
	const __be32 *prop;
	u64 size = 0;

	/*
	 * First try the new ibm,secure-memory nodes which supersede the
	 * secure-memory-ranges property.
	 * If we found some, no need to read the deprecated ones.
	 */
	for_each_compatible_node(np, NULL, "ibm,secure-memory") {
		prop = of_get_property(np, "reg", &len);
		if (!prop)
			continue;
		size += of_read_number(prop + 2, 2);
	}
	if (size)
		return size;

	np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
	if (!np)
		goto out;

	prop = of_get_property(np, "secure-memory-ranges", &len);
	if (!prop)
		goto out_put;

	for (i = 0; i < len / (sizeof(*prop) * 4); i++)
		size += of_read_number(prop + (i * 4) + 2, 2);

out_put:
	of_node_put(np);
out:
	return size;
}

int kvmppc_uvmem_init(void)
{
	int ret = 0;
	unsigned long size;
	struct resource *res;
	void *addr;
	unsigned long pfn_last, pfn_first;

	size = kvmppc_get_secmem_size();
	if (!size) {
		/*
		 * Don't fail the initialization of kvm-hv module if
		 * the platform doesn't export ibm,uv-firmware node.
		 * Let normal guests run on such PEF-disabled platform.
		 */
		pr_info("KVMPPC-UVMEM: No support for secure guests\n");
		goto out;
	}

	res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
	if (IS_ERR(res)) {
		ret = PTR_ERR(res);
		goto out;
	}

	kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
	kvmppc_uvmem_pgmap.range.start = res->start;
	kvmppc_uvmem_pgmap.range.end = res->end;
	kvmppc_uvmem_pgmap.nr_range = 1;
	kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
	/* just one global instance: */
	kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
	addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
	if (IS_ERR(addr)) {
		ret = PTR_ERR(addr);
		goto out_free_region;
	}

	pfn_first = res->start >> PAGE_SHIFT;
	pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
	kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
				      sizeof(unsigned long), GFP_KERNEL);
	if (!kvmppc_uvmem_bitmap) {
		ret = -ENOMEM;
		goto out_unmap;
	}

	pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
	return ret;
out_unmap:
	memunmap_pages(&kvmppc_uvmem_pgmap);
out_free_region:
	release_mem_region(res->start, size);
out:
	return ret;
}

void kvmppc_uvmem_free(void)
{
	if (!kvmppc_uvmem_bitmap)
		return;

	memunmap_pages(&kvmppc_uvmem_pgmap);
	release_mem_region(kvmppc_uvmem_pgmap.range.start,
			   range_len(&kvmppc_uvmem_pgmap.range));
	kfree(kvmppc_uvmem_bitmap);
}