Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 | // SPDX-License-Identifier: GPL-2.0 /* * Secure pages management: Migration of pages between normal and secure * memory of KVM guests. * * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com> */ /* * A pseries guest can be run as secure guest on Ultravisor-enabled * POWER platforms. On such platforms, this driver will be used to manage * the movement of guest pages between the normal memory managed by * hypervisor (HV) and secure memory managed by Ultravisor (UV). * * The page-in or page-out requests from UV will come to HV as hcalls and * HV will call back into UV via ultracalls to satisfy these page requests. * * Private ZONE_DEVICE memory equal to the amount of secure memory * available in the platform for running secure guests is hotplugged. * Whenever a page belonging to the guest becomes secure, a page from this * private device memory is used to represent and track that secure page * on the HV side. Some pages (like virtio buffers, VPA pages etc) are * shared between UV and HV. However such pages aren't represented by * device private memory and mappings to shared memory exist in both * UV and HV page tables. */ /* * Notes on locking * * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent * page-in and page-out requests for the same GPA. Concurrent accesses * can either come via UV (guest vCPUs requesting for same page) * or when HV and guest simultaneously access the same page. * This mutex serializes the migration of page from HV(normal) to * UV(secure) and vice versa. So the serialization points are around * migrate_vma routines and page-in/out routines. * * Per-guest mutex comes with a cost though. Mainly it serializes the * fault path as page-out can occur when HV faults on accessing secure * guest pages. Currently UV issues page-in requests for all the guest * PFNs one at a time during early boot (UV_ESM uvcall), so this is * not a cause for concern. Also currently the number of page-outs caused * by HV touching secure pages is very very low. If an when UV supports * overcommitting, then we might see concurrent guest driven page-outs. * * Locking order * * 1. kvm->srcu - Protects KVM memslots * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting * as sync-points for page-in/out */ /* * Notes on page size * * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks * secure GPAs at 64K page size and maintains one device PFN for each * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued * for 64K page at a time. * * HV faulting on secure pages: When HV touches any secure page, it * faults and issues a UV_PAGE_OUT request with 64K page size. Currently * UV splits and remaps the 2MB page if necessary and copies out the * required 64K page contents. * * Shared pages: Whenever guest shares a secure page, UV will split and * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. * * HV invalidating a page: When a regular page belonging to secure * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K * page size. Using 64K page size is correct here because any non-secure * page will essentially be of 64K page size. Splitting by UV during sharing * and page-out ensures this. * * Page fault handling: When HV handles page fault of a page belonging * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. * Using 64K size is correct here too as UV would have split the 2MB page * into 64k mappings and would have done page-outs earlier. * * In summary, the current secure pages handling code in HV assumes * 64K page size and in fact fails any page-in/page-out requests of * non-64K size upfront. If and when UV starts supporting multiple * page-sizes, we need to break this assumption. */ #include <linux/pagemap.h> #include <linux/migrate.h> #include <linux/kvm_host.h> #include <linux/ksm.h> #include <linux/of.h> #include <linux/memremap.h> #include <asm/ultravisor.h> #include <asm/mman.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s_uvmem.h> static struct dev_pagemap kvmppc_uvmem_pgmap; static unsigned long *kvmppc_uvmem_bitmap; static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); /* * States of a GFN * --------------- * The GFN can be in one of the following states. * * (a) Secure - The GFN is secure. The GFN is associated with * a Secure VM, the contents of the GFN is not accessible * to the Hypervisor. This GFN can be backed by a secure-PFN, * or can be backed by a normal-PFN with contents encrypted. * The former is true when the GFN is paged-in into the * ultravisor. The latter is true when the GFN is paged-out * of the ultravisor. * * (b) Shared - The GFN is shared. The GFN is associated with a * a secure VM. The contents of the GFN is accessible to * Hypervisor. This GFN is backed by a normal-PFN and its * content is un-encrypted. * * (c) Normal - The GFN is a normal. The GFN is associated with * a normal VM. The contents of the GFN is accessible to * the Hypervisor. Its content is never encrypted. * * States of a VM. * --------------- * * Normal VM: A VM whose contents are always accessible to * the hypervisor. All its GFNs are normal-GFNs. * * Secure VM: A VM whose contents are not accessible to the * hypervisor without the VM's consent. Its GFNs are * either Shared-GFN or Secure-GFNs. * * Transient VM: A Normal VM that is transitioning to secure VM. * The transition starts on successful return of * H_SVM_INIT_START, and ends on successful return * of H_SVM_INIT_DONE. This transient VM, can have GFNs * in any of the three states; i.e Secure-GFN, Shared-GFN, * and Normal-GFN. The VM never executes in this state * in supervisor-mode. * * Memory slot State. * ----------------------------- * The state of a memory slot mirrors the state of the * VM the memory slot is associated with. * * VM State transition. * -------------------- * * A VM always starts in Normal Mode. * * H_SVM_INIT_START moves the VM into transient state. During this * time the Ultravisor may request some of its GFNs to be shared or * secured. So its GFNs can be in one of the three GFN states. * * H_SVM_INIT_DONE moves the VM entirely from transient state to * secure-state. At this point any left-over normal-GFNs are * transitioned to Secure-GFN. * * H_SVM_INIT_ABORT moves the transient VM back to normal VM. * All its GFNs are moved to Normal-GFNs. * * UV_TERMINATE transitions the secure-VM back to normal-VM. All * the secure-GFN and shared-GFNs are tranistioned to normal-GFN * Note: The contents of the normal-GFN is undefined at this point. * * GFN state implementation: * ------------------------- * * Secure GFN is associated with a secure-PFN; also called uvmem_pfn, * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag * set, and contains the value of the secure-PFN. * It is associated with a normal-PFN; also called mem_pfn, when * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. * The value of the normal-PFN is not tracked. * * Shared GFN is associated with a normal-PFN. Its pfn[] has * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN * is not tracked. * * Normal GFN is associated with normal-PFN. Its pfn[] has * no flag set. The value of the normal-PFN is not tracked. * * Life cycle of a GFN * -------------------- * * -------------------------------------------------------------- * | | Share | Unshare | SVM |H_SVM_INIT_DONE| * | |operation |operation | abort/ | | * | | | | terminate | | * ------------------------------------------------------------- * | | | | | | * | Secure | Shared | Secure |Normal |Secure | * | | | | | | * | Shared | Shared | Secure |Normal |Shared | * | | | | | | * | Normal | Shared | Secure |Normal |Secure | * -------------------------------------------------------------- * * Life cycle of a VM * -------------------- * * -------------------------------------------------------------------- * | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | * | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | * | | | | | | | * --------- ---------------------------------------------------------- * | | | | | | | * | Normal | Normal | Transient|Error |Error |Normal | * | | | | | | | * | Secure | Error | Error |Error |Error |Normal | * | | | | | | | * |Transient| N/A | Error |Secure |Normal |Normal | * -------------------------------------------------------------------- */ #define KVMPPC_GFN_UVMEM_PFN (1UL << 63) #define KVMPPC_GFN_MEM_PFN (1UL << 62) #define KVMPPC_GFN_SHARED (1UL << 61) #define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN) #define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED) #define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK) struct kvmppc_uvmem_slot { struct list_head list; unsigned long nr_pfns; unsigned long base_pfn; unsigned long *pfns; }; struct kvmppc_uvmem_page_pvt { struct kvm *kvm; unsigned long gpa; bool skip_page_out; bool remove_gfn; }; bool kvmppc_uvmem_available(void) { /* * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor * and our data structures have been initialized successfully. */ return !!kvmppc_uvmem_bitmap; } int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) { struct kvmppc_uvmem_slot *p; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; p->pfns = vcalloc(slot->npages, sizeof(*p->pfns)); if (!p->pfns) { kfree(p); return -ENOMEM; } p->nr_pfns = slot->npages; p->base_pfn = slot->base_gfn; mutex_lock(&kvm->arch.uvmem_lock); list_add(&p->list, &kvm->arch.uvmem_pfns); mutex_unlock(&kvm->arch.uvmem_lock); return 0; } /* * All device PFNs are already released by the time we come here. */ void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) { struct kvmppc_uvmem_slot *p, *next; mutex_lock(&kvm->arch.uvmem_lock); list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { if (p->base_pfn == slot->base_gfn) { vfree(p->pfns); list_del(&p->list); kfree(p); break; } } mutex_unlock(&kvm->arch.uvmem_lock); } static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm, unsigned long flag, unsigned long uvmem_pfn) { struct kvmppc_uvmem_slot *p; list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { unsigned long index = gfn - p->base_pfn; if (flag == KVMPPC_GFN_UVMEM_PFN) p->pfns[index] = uvmem_pfn | flag; else p->pfns[index] = flag; return; } } } /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */ static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn, unsigned long uvmem_pfn, struct kvm *kvm) { kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn); } /* mark the GFN as secure-GFN associated with a memory-PFN. */ static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm) { kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0); } /* mark the GFN as a shared GFN. */ static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm) { kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0); } /* mark the GFN as a non-existent GFN. */ static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm) { kvmppc_mark_gfn(gfn, kvm, 0, 0); } /* return true, if the GFN is a secure-GFN backed by a secure-PFN */ static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, unsigned long *uvmem_pfn) { struct kvmppc_uvmem_slot *p; list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { unsigned long index = gfn - p->base_pfn; if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) { if (uvmem_pfn) *uvmem_pfn = p->pfns[index] & KVMPPC_GFN_PFN_MASK; return true; } else return false; } } return false; } /* * starting from *gfn search for the next available GFN that is not yet * transitioned to a secure GFN. return the value of that GFN in *gfn. If a * GFN is found, return true, else return false * * Must be called with kvm->arch.uvmem_lock held. */ static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot, struct kvm *kvm, unsigned long *gfn) { struct kvmppc_uvmem_slot *p = NULL, *iter; bool ret = false; unsigned long i; list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list) if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) { p = iter; break; } if (!p) return ret; /* * The code below assumes, one to one correspondence between * kvmppc_uvmem_slot and memslot. */ for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) { unsigned long index = i - p->base_pfn; if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) { *gfn = i; ret = true; break; } } return ret; } static int kvmppc_memslot_page_merge(struct kvm *kvm, const struct kvm_memory_slot *memslot, bool merge) { unsigned long gfn = memslot->base_gfn; unsigned long end, start = gfn_to_hva(kvm, gfn); int ret = 0; struct vm_area_struct *vma; int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE; if (kvm_is_error_hva(start)) return H_STATE; end = start + (memslot->npages << PAGE_SHIFT); mmap_write_lock(kvm->mm); do { vma = find_vma_intersection(kvm->mm, start, end); if (!vma) { ret = H_STATE; break; } ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, merge_flag, &vma->vm_flags); if (ret) { ret = H_STATE; break; } start = vma->vm_end; } while (end > vma->vm_end); mmap_write_unlock(kvm->mm); return ret; } static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *memslot) { uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); kvmppc_uvmem_slot_free(kvm, memslot); kvmppc_memslot_page_merge(kvm, memslot, true); } static int __kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *memslot) { int ret = H_PARAMETER; if (kvmppc_memslot_page_merge(kvm, memslot, false)) return ret; if (kvmppc_uvmem_slot_init(kvm, memslot)) goto out1; ret = uv_register_mem_slot(kvm->arch.lpid, memslot->base_gfn << PAGE_SHIFT, memslot->npages * PAGE_SIZE, 0, memslot->id); if (ret < 0) { ret = H_PARAMETER; goto out; } return 0; out: kvmppc_uvmem_slot_free(kvm, memslot); out1: kvmppc_memslot_page_merge(kvm, memslot, true); return ret; } unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot, *m; int ret = H_SUCCESS; int srcu_idx, bkt; kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START; if (!kvmppc_uvmem_bitmap) return H_UNSUPPORTED; /* Only radix guests can be secure guests */ if (!kvm_is_radix(kvm)) return H_UNSUPPORTED; /* NAK the transition to secure if not enabled */ if (!kvm->arch.svm_enabled) return H_AUTHORITY; srcu_idx = srcu_read_lock(&kvm->srcu); /* register the memslot */ slots = kvm_memslots(kvm); kvm_for_each_memslot(memslot, bkt, slots) { ret = __kvmppc_uvmem_memslot_create(kvm, memslot); if (ret) break; } if (ret) { slots = kvm_memslots(kvm); kvm_for_each_memslot(m, bkt, slots) { if (m == memslot) break; __kvmppc_uvmem_memslot_delete(kvm, memslot); } } srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } /* * Provision a new page on HV side and copy over the contents * from secure memory using UV_PAGE_OUT uvcall. * Caller must held kvm->arch.uvmem_lock. */ static int __kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long page_shift, struct kvm *kvm, unsigned long gpa, struct page *fault_page) { unsigned long src_pfn, dst_pfn = 0; struct migrate_vma mig = { 0 }; struct page *dpage, *spage; struct kvmppc_uvmem_page_pvt *pvt; unsigned long pfn; int ret = U_SUCCESS; memset(&mig, 0, sizeof(mig)); mig.vma = vma; mig.start = start; mig.end = end; mig.src = &src_pfn; mig.dst = &dst_pfn; mig.pgmap_owner = &kvmppc_uvmem_pgmap; mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; mig.fault_page = fault_page; /* The requested page is already paged-out, nothing to do */ if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) return ret; ret = migrate_vma_setup(&mig); if (ret) return -1; spage = migrate_pfn_to_page(*mig.src); if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) goto out_finalize; if (!is_zone_device_page(spage)) goto out_finalize; dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); if (!dpage) { ret = -1; goto out_finalize; } lock_page(dpage); pvt = spage->zone_device_data; pfn = page_to_pfn(dpage); /* * This function is used in two cases: * - When HV touches a secure page, for which we do UV_PAGE_OUT * - When a secure page is converted to shared page, we *get* * the page to essentially unmap the device page. In this * case we skip page-out. */ if (!pvt->skip_page_out) ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift); if (ret == U_SUCCESS) *mig.dst = migrate_pfn(pfn); else { unlock_page(dpage); __free_page(dpage); goto out_finalize; } migrate_vma_pages(&mig); out_finalize: migrate_vma_finalize(&mig); return ret; } static inline int kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long page_shift, struct kvm *kvm, unsigned long gpa, struct page *fault_page) { int ret; mutex_lock(&kvm->arch.uvmem_lock); ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, fault_page); mutex_unlock(&kvm->arch.uvmem_lock); return ret; } /* * Drop device pages that we maintain for the secure guest * * We first mark the pages to be skipped from UV_PAGE_OUT when there * is HV side fault on these pages. Next we *get* these pages, forcing * fault on them, do fault time migration to replace the device PTEs in * QEMU page table with normal PTEs from newly allocated pages. */ void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot, struct kvm *kvm, bool skip_page_out) { int i; struct kvmppc_uvmem_page_pvt *pvt; struct page *uvmem_page; struct vm_area_struct *vma = NULL; unsigned long uvmem_pfn, gfn; unsigned long addr; mmap_read_lock(kvm->mm); addr = slot->userspace_addr; gfn = slot->base_gfn; for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) { /* Fetch the VMA if addr is not in the latest fetched one */ if (!vma || addr >= vma->vm_end) { vma = vma_lookup(kvm->mm, addr); if (!vma) { pr_err("Can't find VMA for gfn:0x%lx\n", gfn); break; } } mutex_lock(&kvm->arch.uvmem_lock); if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { uvmem_page = pfn_to_page(uvmem_pfn); pvt = uvmem_page->zone_device_data; pvt->skip_page_out = skip_page_out; pvt->remove_gfn = true; if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE, PAGE_SHIFT, kvm, pvt->gpa, NULL)) pr_err("Can't page out gpa:0x%lx addr:0x%lx\n", pvt->gpa, addr); } else { /* Remove the shared flag if any */ kvmppc_gfn_remove(gfn, kvm); } mutex_unlock(&kvm->arch.uvmem_lock); } mmap_read_unlock(kvm->mm); } unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm) { int srcu_idx, bkt; struct kvm_memory_slot *memslot; /* * Expect to be called only after INIT_START and before INIT_DONE. * If INIT_DONE was completed, use normal VM termination sequence. */ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) return H_UNSUPPORTED; if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) return H_STATE; srcu_idx = srcu_read_lock(&kvm->srcu); kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm)) kvmppc_uvmem_drop_pages(memslot, kvm, false); srcu_read_unlock(&kvm->srcu, srcu_idx); kvm->arch.secure_guest = 0; uv_svm_terminate(kvm->arch.lpid); return H_PARAMETER; } /* * Get a free device PFN from the pool * * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device * PFN will be used to keep track of the secure page on HV side. * * Called with kvm->arch.uvmem_lock held */ static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) { struct page *dpage = NULL; unsigned long bit, uvmem_pfn; struct kvmppc_uvmem_page_pvt *pvt; unsigned long pfn_last, pfn_first; pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT; pfn_last = pfn_first + (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT); spin_lock(&kvmppc_uvmem_bitmap_lock); bit = find_first_zero_bit(kvmppc_uvmem_bitmap, pfn_last - pfn_first); if (bit >= (pfn_last - pfn_first)) goto out; bitmap_set(kvmppc_uvmem_bitmap, bit, 1); spin_unlock(&kvmppc_uvmem_bitmap_lock); pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); if (!pvt) goto out_clear; uvmem_pfn = bit + pfn_first; kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); pvt->gpa = gpa; pvt->kvm = kvm; dpage = pfn_to_page(uvmem_pfn); dpage->zone_device_data = pvt; zone_device_page_init(dpage); return dpage; out_clear: spin_lock(&kvmppc_uvmem_bitmap_lock); bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); out: spin_unlock(&kvmppc_uvmem_bitmap_lock); return NULL; } /* * Alloc a PFN from private device memory pool. If @pagein is true, * copy page from normal memory to secure memory using UV_PAGE_IN uvcall. */ static int kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long gpa, struct kvm *kvm, unsigned long page_shift, bool pagein) { unsigned long src_pfn, dst_pfn = 0; struct migrate_vma mig = { 0 }; struct page *spage; unsigned long pfn; struct page *dpage; int ret = 0; memset(&mig, 0, sizeof(mig)); mig.vma = vma; mig.start = start; mig.end = end; mig.src = &src_pfn; mig.dst = &dst_pfn; mig.flags = MIGRATE_VMA_SELECT_SYSTEM; ret = migrate_vma_setup(&mig); if (ret) return ret; if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { ret = -1; goto out_finalize; } dpage = kvmppc_uvmem_get_page(gpa, kvm); if (!dpage) { ret = -1; goto out_finalize; } if (pagein) { pfn = *mig.src >> MIGRATE_PFN_SHIFT; spage = migrate_pfn_to_page(*mig.src); if (spage) { ret = uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift); if (ret) goto out_finalize; } } *mig.dst = migrate_pfn(page_to_pfn(dpage)); migrate_vma_pages(&mig); out_finalize: migrate_vma_finalize(&mig); return ret; } static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot) { unsigned long gfn = memslot->base_gfn; struct vm_area_struct *vma; unsigned long start, end; int ret = 0; mmap_read_lock(kvm->mm); mutex_lock(&kvm->arch.uvmem_lock); while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) { ret = H_STATE; start = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(start)) break; end = start + (1UL << PAGE_SHIFT); vma = find_vma_intersection(kvm->mm, start, end); if (!vma || vma->vm_start > start || vma->vm_end < end) break; ret = kvmppc_svm_page_in(vma, start, end, (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false); if (ret) { ret = H_STATE; break; } /* relinquish the cpu if needed */ cond_resched(); } mutex_unlock(&kvm->arch.uvmem_lock); mmap_read_unlock(kvm->mm); return ret; } unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int srcu_idx, bkt; long ret = H_SUCCESS; if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) return H_UNSUPPORTED; /* migrate any unmoved normal pfn to device pfns*/ srcu_idx = srcu_read_lock(&kvm->srcu); slots = kvm_memslots(kvm); kvm_for_each_memslot(memslot, bkt, slots) { ret = kvmppc_uv_migrate_mem_slot(kvm, memslot); if (ret) { /* * The pages will remain transitioned. * Its the callers responsibility to * terminate the VM, which will undo * all state of the VM. Till then * this VM is in a erroneous state. * Its KVMPPC_SECURE_INIT_DONE will * remain unset. */ ret = H_STATE; goto out; } } kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; pr_info("LPID %d went secure\n", kvm->arch.lpid); out: srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } /* * Shares the page with HV, thus making it a normal page. * * - If the page is already secure, then provision a new page and share * - If the page is a normal page, share the existing page * * In the former case, uses dev_pagemap_ops.migrate_to_ram handler * to unmap the device page from QEMU's page tables. */ static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift) { int ret = H_PARAMETER; struct page *uvmem_page; struct kvmppc_uvmem_page_pvt *pvt; unsigned long pfn; unsigned long gfn = gpa >> page_shift; int srcu_idx; unsigned long uvmem_pfn; srcu_idx = srcu_read_lock(&kvm->srcu); mutex_lock(&kvm->arch.uvmem_lock); if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { uvmem_page = pfn_to_page(uvmem_pfn); pvt = uvmem_page->zone_device_data; pvt->skip_page_out = true; /* * do not drop the GFN. It is a valid GFN * that is transitioned to a shared GFN. */ pvt->remove_gfn = false; } retry: mutex_unlock(&kvm->arch.uvmem_lock); pfn = gfn_to_pfn(kvm, gfn); if (is_error_noslot_pfn(pfn)) goto out; mutex_lock(&kvm->arch.uvmem_lock); if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { uvmem_page = pfn_to_page(uvmem_pfn); pvt = uvmem_page->zone_device_data; pvt->skip_page_out = true; pvt->remove_gfn = false; /* it continues to be a valid GFN */ kvm_release_pfn_clean(pfn); goto retry; } if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift)) { kvmppc_gfn_shared(gfn, kvm); ret = H_SUCCESS; } kvm_release_pfn_clean(pfn); mutex_unlock(&kvm->arch.uvmem_lock); out: srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } /* * H_SVM_PAGE_IN: Move page from normal memory to secure memory. * * H_PAGE_IN_SHARED flag makes the page shared which means that the same * memory in is visible from both UV and HV. */ unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, unsigned long flags, unsigned long page_shift) { unsigned long start, end; struct vm_area_struct *vma; int srcu_idx; unsigned long gfn = gpa >> page_shift; int ret; if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) return H_UNSUPPORTED; if (page_shift != PAGE_SHIFT) return H_P3; if (flags & ~H_PAGE_IN_SHARED) return H_P2; if (flags & H_PAGE_IN_SHARED) return kvmppc_share_page(kvm, gpa, page_shift); ret = H_PARAMETER; srcu_idx = srcu_read_lock(&kvm->srcu); mmap_read_lock(kvm->mm); start = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(start)) goto out; mutex_lock(&kvm->arch.uvmem_lock); /* Fail the page-in request of an already paged-in page */ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) goto out_unlock; end = start + (1UL << page_shift); vma = find_vma_intersection(kvm->mm, start, end); if (!vma || vma->vm_start > start || vma->vm_end < end) goto out_unlock; if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, true)) goto out_unlock; ret = H_SUCCESS; out_unlock: mutex_unlock(&kvm->arch.uvmem_lock); out: mmap_read_unlock(kvm->mm); srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } /* * Fault handler callback that gets called when HV touches any page that * has been moved to secure memory, we ask UV to give back the page by * issuing UV_PAGE_OUT uvcall. * * This eventually results in dropping of device PFN and the newly * provisioned page/PFN gets populated in QEMU page tables. */ static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) { struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; if (kvmppc_svm_page_out(vmf->vma, vmf->address, vmf->address + PAGE_SIZE, PAGE_SHIFT, pvt->kvm, pvt->gpa, vmf->page)) return VM_FAULT_SIGBUS; else return 0; } /* * Release the device PFN back to the pool * * Gets called when secure GFN tranistions from a secure-PFN * to a normal PFN during H_SVM_PAGE_OUT. * Gets called with kvm->arch.uvmem_lock held. */ static void kvmppc_uvmem_page_free(struct page *page) { unsigned long pfn = page_to_pfn(page) - (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT); struct kvmppc_uvmem_page_pvt *pvt; spin_lock(&kvmppc_uvmem_bitmap_lock); bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); spin_unlock(&kvmppc_uvmem_bitmap_lock); pvt = page->zone_device_data; page->zone_device_data = NULL; if (pvt->remove_gfn) kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); else kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm); kfree(pvt); } static const struct dev_pagemap_ops kvmppc_uvmem_ops = { .page_free = kvmppc_uvmem_page_free, .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, }; /* * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. */ unsigned long kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, unsigned long flags, unsigned long page_shift) { unsigned long gfn = gpa >> page_shift; unsigned long start, end; struct vm_area_struct *vma; int srcu_idx; int ret; if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) return H_UNSUPPORTED; if (page_shift != PAGE_SHIFT) return H_P3; if (flags) return H_P2; ret = H_PARAMETER; srcu_idx = srcu_read_lock(&kvm->srcu); mmap_read_lock(kvm->mm); start = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(start)) goto out; end = start + (1UL << page_shift); vma = find_vma_intersection(kvm->mm, start, end); if (!vma || vma->vm_start > start || vma->vm_end < end) goto out; if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL)) ret = H_SUCCESS; out: mmap_read_unlock(kvm->mm); srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) { unsigned long pfn; int ret = U_SUCCESS; pfn = gfn_to_pfn(kvm, gfn); if (is_error_noslot_pfn(pfn)) return -EFAULT; mutex_lock(&kvm->arch.uvmem_lock); if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) goto out; ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, 0, PAGE_SHIFT); out: kvm_release_pfn_clean(pfn); mutex_unlock(&kvm->arch.uvmem_lock); return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; } int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new) { int ret = __kvmppc_uvmem_memslot_create(kvm, new); if (!ret) ret = kvmppc_uv_migrate_mem_slot(kvm, new); return ret; } void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old) { __kvmppc_uvmem_memslot_delete(kvm, old); } static u64 kvmppc_get_secmem_size(void) { struct device_node *np; int i, len; const __be32 *prop; u64 size = 0; /* * First try the new ibm,secure-memory nodes which supersede the * secure-memory-ranges property. * If we found some, no need to read the deprecated ones. */ for_each_compatible_node(np, NULL, "ibm,secure-memory") { prop = of_get_property(np, "reg", &len); if (!prop) continue; size += of_read_number(prop + 2, 2); } if (size) return size; np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); if (!np) goto out; prop = of_get_property(np, "secure-memory-ranges", &len); if (!prop) goto out_put; for (i = 0; i < len / (sizeof(*prop) * 4); i++) size += of_read_number(prop + (i * 4) + 2, 2); out_put: of_node_put(np); out: return size; } int kvmppc_uvmem_init(void) { int ret = 0; unsigned long size; struct resource *res; void *addr; unsigned long pfn_last, pfn_first; size = kvmppc_get_secmem_size(); if (!size) { /* * Don't fail the initialization of kvm-hv module if * the platform doesn't export ibm,uv-firmware node. * Let normal guests run on such PEF-disabled platform. */ pr_info("KVMPPC-UVMEM: No support for secure guests\n"); goto out; } res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); if (IS_ERR(res)) { ret = PTR_ERR(res); goto out; } kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; kvmppc_uvmem_pgmap.range.start = res->start; kvmppc_uvmem_pgmap.range.end = res->end; kvmppc_uvmem_pgmap.nr_range = 1; kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; /* just one global instance: */ kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap; addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); if (IS_ERR(addr)) { ret = PTR_ERR(addr); goto out_free_region; } pfn_first = res->start >> PAGE_SHIFT; pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first), sizeof(unsigned long), GFP_KERNEL); if (!kvmppc_uvmem_bitmap) { ret = -ENOMEM; goto out_unmap; } pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); return ret; out_unmap: memunmap_pages(&kvmppc_uvmem_pgmap); out_free_region: release_mem_region(res->start, size); out: return ret; } void kvmppc_uvmem_free(void) { if (!kvmppc_uvmem_bitmap) return; memunmap_pages(&kvmppc_uvmem_pgmap); release_mem_region(kvmppc_uvmem_pgmap.range.start, range_len(&kvmppc_uvmem_pgmap.range)); kfree(kvmppc_uvmem_bitmap); } |