Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | // SPDX-License-Identifier: GPL-2.0 /* * Virtual I/O topology * * The Virtual I/O Translation Table (VIOT) describes the topology of * para-virtual IOMMUs and the endpoints they manage. The OS uses it to * initialize devices in the right order, preventing endpoints from issuing DMA * before their IOMMU is ready. * * When binding a driver to a device, before calling the device driver's probe() * method, the driver infrastructure calls dma_configure(). At that point the * VIOT driver looks for an IOMMU associated to the device in the VIOT table. * If an IOMMU exists and has been initialized, the VIOT driver initializes the * device's IOMMU fwspec, allowing the DMA infrastructure to invoke the IOMMU * ops when the device driver configures DMA mappings. If an IOMMU exists and * hasn't yet been initialized, VIOT returns -EPROBE_DEFER to postpone probing * the device until the IOMMU is available. */ #define pr_fmt(fmt) "ACPI: VIOT: " fmt #include <linux/acpi_viot.h> #include <linux/fwnode.h> #include <linux/iommu.h> #include <linux/list.h> #include <linux/pci.h> #include <linux/platform_device.h> struct viot_iommu { /* Node offset within the table */ unsigned int offset; struct fwnode_handle *fwnode; struct list_head list; }; struct viot_endpoint { union { /* PCI range */ struct { u16 segment_start; u16 segment_end; u16 bdf_start; u16 bdf_end; }; /* MMIO */ u64 address; }; u32 endpoint_id; struct viot_iommu *viommu; struct list_head list; }; static struct acpi_table_viot *viot; static LIST_HEAD(viot_iommus); static LIST_HEAD(viot_pci_ranges); static LIST_HEAD(viot_mmio_endpoints); static int __init viot_check_bounds(const struct acpi_viot_header *hdr) { struct acpi_viot_header *start, *end, *hdr_end; start = ACPI_ADD_PTR(struct acpi_viot_header, viot, max_t(size_t, sizeof(*viot), viot->node_offset)); end = ACPI_ADD_PTR(struct acpi_viot_header, viot, viot->header.length); hdr_end = ACPI_ADD_PTR(struct acpi_viot_header, hdr, sizeof(*hdr)); if (hdr < start || hdr_end > end) { pr_err(FW_BUG "Node pointer overflows\n"); return -EOVERFLOW; } if (hdr->length < sizeof(*hdr)) { pr_err(FW_BUG "Empty node\n"); return -EINVAL; } return 0; } static int __init viot_get_pci_iommu_fwnode(struct viot_iommu *viommu, u16 segment, u16 bdf) { struct pci_dev *pdev; struct fwnode_handle *fwnode; pdev = pci_get_domain_bus_and_slot(segment, PCI_BUS_NUM(bdf), bdf & 0xff); if (!pdev) { pr_err("Could not find PCI IOMMU\n"); return -ENODEV; } fwnode = dev_fwnode(&pdev->dev); if (!fwnode) { /* * PCI devices aren't necessarily described by ACPI. Create a * fwnode so the IOMMU subsystem can identify this device. */ fwnode = acpi_alloc_fwnode_static(); if (!fwnode) { pci_dev_put(pdev); return -ENOMEM; } set_primary_fwnode(&pdev->dev, fwnode); } viommu->fwnode = dev_fwnode(&pdev->dev); pci_dev_put(pdev); return 0; } static int __init viot_get_mmio_iommu_fwnode(struct viot_iommu *viommu, u64 address) { struct acpi_device *adev; struct resource res = { .start = address, .end = address, .flags = IORESOURCE_MEM, }; adev = acpi_resource_consumer(&res); if (!adev) { pr_err("Could not find MMIO IOMMU\n"); return -EINVAL; } viommu->fwnode = &adev->fwnode; return 0; } static struct viot_iommu * __init viot_get_iommu(unsigned int offset) { int ret; struct viot_iommu *viommu; struct acpi_viot_header *hdr = ACPI_ADD_PTR(struct acpi_viot_header, viot, offset); union { struct acpi_viot_virtio_iommu_pci pci; struct acpi_viot_virtio_iommu_mmio mmio; } *node = (void *)hdr; list_for_each_entry(viommu, &viot_iommus, list) if (viommu->offset == offset) return viommu; if (viot_check_bounds(hdr)) return NULL; viommu = kzalloc(sizeof(*viommu), GFP_KERNEL); if (!viommu) return NULL; viommu->offset = offset; switch (hdr->type) { case ACPI_VIOT_NODE_VIRTIO_IOMMU_PCI: if (hdr->length < sizeof(node->pci)) goto err_free; ret = viot_get_pci_iommu_fwnode(viommu, node->pci.segment, node->pci.bdf); break; case ACPI_VIOT_NODE_VIRTIO_IOMMU_MMIO: if (hdr->length < sizeof(node->mmio)) goto err_free; ret = viot_get_mmio_iommu_fwnode(viommu, node->mmio.base_address); break; default: ret = -EINVAL; } if (ret) goto err_free; list_add(&viommu->list, &viot_iommus); return viommu; err_free: kfree(viommu); return NULL; } static int __init viot_parse_node(const struct acpi_viot_header *hdr) { int ret = -EINVAL; struct list_head *list; struct viot_endpoint *ep; union { struct acpi_viot_mmio mmio; struct acpi_viot_pci_range pci; } *node = (void *)hdr; if (viot_check_bounds(hdr)) return -EINVAL; if (hdr->type == ACPI_VIOT_NODE_VIRTIO_IOMMU_PCI || hdr->type == ACPI_VIOT_NODE_VIRTIO_IOMMU_MMIO) return 0; ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; switch (hdr->type) { case ACPI_VIOT_NODE_PCI_RANGE: if (hdr->length < sizeof(node->pci)) { pr_err(FW_BUG "Invalid PCI node size\n"); goto err_free; } ep->segment_start = node->pci.segment_start; ep->segment_end = node->pci.segment_end; ep->bdf_start = node->pci.bdf_start; ep->bdf_end = node->pci.bdf_end; ep->endpoint_id = node->pci.endpoint_start; ep->viommu = viot_get_iommu(node->pci.output_node); list = &viot_pci_ranges; break; case ACPI_VIOT_NODE_MMIO: if (hdr->length < sizeof(node->mmio)) { pr_err(FW_BUG "Invalid MMIO node size\n"); goto err_free; } ep->address = node->mmio.base_address; ep->endpoint_id = node->mmio.endpoint; ep->viommu = viot_get_iommu(node->mmio.output_node); list = &viot_mmio_endpoints; break; default: pr_warn("Unsupported node %x\n", hdr->type); ret = 0; goto err_free; } if (!ep->viommu) { pr_warn("No IOMMU node found\n"); /* * A future version of the table may use the node for other * purposes. Keep parsing. */ ret = 0; goto err_free; } list_add(&ep->list, list); return 0; err_free: kfree(ep); return ret; } /** * acpi_viot_early_init - Test the presence of VIOT and enable ACS * * If the VIOT does exist, ACS must be enabled. This cannot be * done in acpi_viot_init() which is called after the bus scan */ void __init acpi_viot_early_init(void) { #ifdef CONFIG_PCI acpi_status status; struct acpi_table_header *hdr; status = acpi_get_table(ACPI_SIG_VIOT, 0, &hdr); if (ACPI_FAILURE(status)) return; pci_request_acs(); acpi_put_table(hdr); #endif } /** * acpi_viot_init - Parse the VIOT table * * Parse the VIOT table, prepare the list of endpoints to be used during DMA * setup of devices. */ void __init acpi_viot_init(void) { int i; acpi_status status; struct acpi_table_header *hdr; struct acpi_viot_header *node; status = acpi_get_table(ACPI_SIG_VIOT, 0, &hdr); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) { const char *msg = acpi_format_exception(status); pr_err("Failed to get table, %s\n", msg); } return; } viot = (void *)hdr; node = ACPI_ADD_PTR(struct acpi_viot_header, viot, viot->node_offset); for (i = 0; i < viot->node_count; i++) { if (viot_parse_node(node)) return; node = ACPI_ADD_PTR(struct acpi_viot_header, node, node->length); } acpi_put_table(hdr); } static int viot_dev_iommu_init(struct device *dev, struct viot_iommu *viommu, u32 epid) { const struct iommu_ops *ops; if (!viommu) return -ENODEV; /* We're not translating ourself */ if (device_match_fwnode(dev, viommu->fwnode)) return -EINVAL; ops = iommu_ops_from_fwnode(viommu->fwnode); if (!ops) return IS_ENABLED(CONFIG_VIRTIO_IOMMU) ? -EPROBE_DEFER : -ENODEV; return acpi_iommu_fwspec_init(dev, epid, viommu->fwnode, ops); } static int viot_pci_dev_iommu_init(struct pci_dev *pdev, u16 dev_id, void *data) { u32 epid; struct viot_endpoint *ep; u32 domain_nr = pci_domain_nr(pdev->bus); list_for_each_entry(ep, &viot_pci_ranges, list) { if (domain_nr >= ep->segment_start && domain_nr <= ep->segment_end && dev_id >= ep->bdf_start && dev_id <= ep->bdf_end) { epid = ((domain_nr - ep->segment_start) << 16) + dev_id - ep->bdf_start + ep->endpoint_id; return viot_dev_iommu_init(&pdev->dev, ep->viommu, epid); } } return -ENODEV; } static int viot_mmio_dev_iommu_init(struct platform_device *pdev) { struct resource *mem; struct viot_endpoint *ep; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) return -ENODEV; list_for_each_entry(ep, &viot_mmio_endpoints, list) { if (ep->address == mem->start) return viot_dev_iommu_init(&pdev->dev, ep->viommu, ep->endpoint_id); } return -ENODEV; } /** * viot_iommu_configure - Setup IOMMU ops for an endpoint described by VIOT * @dev: the endpoint * * Return: 0 on success, <0 on failure */ int viot_iommu_configure(struct device *dev) { if (dev_is_pci(dev)) return pci_for_each_dma_alias(to_pci_dev(dev), viot_pci_dev_iommu_init, NULL); else if (dev_is_platform(dev)) return viot_mmio_dev_iommu_init(to_platform_device(dev)); return -ENODEV; } |