Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Thomas Gleixner. * Copyright (C) 2016-2017 Christoph Hellwig. */ #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/sort.h> static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, unsigned int cpus_per_vec) { const struct cpumask *siblmsk; int cpu, sibl; for ( ; cpus_per_vec > 0; ) { cpu = cpumask_first(nmsk); /* Should not happen, but I'm too lazy to think about it */ if (cpu >= nr_cpu_ids) return; cpumask_clear_cpu(cpu, nmsk); cpumask_set_cpu(cpu, irqmsk); cpus_per_vec--; /* If the cpu has siblings, use them first */ siblmsk = topology_sibling_cpumask(cpu); for (sibl = -1; cpus_per_vec > 0; ) { sibl = cpumask_next(sibl, siblmsk); if (sibl >= nr_cpu_ids) break; if (!cpumask_test_and_clear_cpu(sibl, nmsk)) continue; cpumask_set_cpu(sibl, irqmsk); cpus_per_vec--; } } } static cpumask_var_t *alloc_node_to_cpumask(void) { cpumask_var_t *masks; int node; masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); if (!masks) return NULL; for (node = 0; node < nr_node_ids; node++) { if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) goto out_unwind; } return masks; out_unwind: while (--node >= 0) free_cpumask_var(masks[node]); kfree(masks); return NULL; } static void free_node_to_cpumask(cpumask_var_t *masks) { int node; for (node = 0; node < nr_node_ids; node++) free_cpumask_var(masks[node]); kfree(masks); } static void build_node_to_cpumask(cpumask_var_t *masks) { int cpu; for_each_possible_cpu(cpu) cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); } static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, const struct cpumask *mask, nodemask_t *nodemsk) { int n, nodes = 0; /* Calculate the number of nodes in the supplied affinity mask */ for_each_node(n) { if (cpumask_intersects(mask, node_to_cpumask[n])) { node_set(n, *nodemsk); nodes++; } } return nodes; } struct node_vectors { unsigned id; union { unsigned nvectors; unsigned ncpus; }; }; static int ncpus_cmp_func(const void *l, const void *r) { const struct node_vectors *ln = l; const struct node_vectors *rn = r; return ln->ncpus - rn->ncpus; } /* * Allocate vector number for each node, so that for each node: * * 1) the allocated number is >= 1 * * 2) the allocated numbver is <= active CPU number of this node * * The actual allocated total vectors may be less than @numvecs when * active total CPU number is less than @numvecs. * * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' * for each node. */ static void alloc_nodes_vectors(unsigned int numvecs, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, const nodemask_t nodemsk, struct cpumask *nmsk, struct node_vectors *node_vectors) { unsigned n, remaining_ncpus = 0; for (n = 0; n < nr_node_ids; n++) { node_vectors[n].id = n; node_vectors[n].ncpus = UINT_MAX; } for_each_node_mask(n, nodemsk) { unsigned ncpus; cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue; remaining_ncpus += ncpus; node_vectors[n].ncpus = ncpus; } numvecs = min_t(unsigned, remaining_ncpus, numvecs); sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]), ncpus_cmp_func, NULL); /* * Allocate vectors for each node according to the ratio of this * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is * bigger than number of active numa nodes. Always start the * allocation from the node with minimized nr_cpus. * * This way guarantees that each active node gets allocated at * least one vector, and the theory is simple: over-allocation * is only done when this node is assigned by one vector, so * other nodes will be allocated >= 1 vector, since 'numvecs' is * bigger than number of numa nodes. * * One perfect invariant is that number of allocated vectors for * each node is <= CPU count of this node: * * 1) suppose there are two nodes: A and B * ncpu(X) is CPU count of node X * vecs(X) is the vector count allocated to node X via this * algorithm * * ncpu(A) <= ncpu(B) * ncpu(A) + ncpu(B) = N * vecs(A) + vecs(B) = V * * vecs(A) = max(1, round_down(V * ncpu(A) / N)) * vecs(B) = V - vecs(A) * * both N and V are integer, and 2 <= V <= N, suppose * V = N - delta, and 0 <= delta <= N - 2 * * 2) obviously vecs(A) <= ncpu(A) because: * * if vecs(A) is 1, then vecs(A) <= ncpu(A) given * ncpu(A) >= 1 * * otherwise, * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N * * 3) prove how vecs(B) <= ncpu(B): * * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be * over-allocated, so vecs(B) <= ncpu(B), * * otherwise: * * vecs(A) = * round_down(V * ncpu(A) / N) = * round_down((N - delta) * ncpu(A) / N) = * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= * round_down((N * ncpu(A) - delta * N) / N) = * cpu(A) - delta * * then: * * vecs(A) - V >= ncpu(A) - delta - V * => * V - vecs(A) <= V + delta - ncpu(A) * => * vecs(B) <= N - ncpu(A) * => * vecs(B) <= cpu(B) * * For nodes >= 3, it can be thought as one node and another big * node given that is exactly what this algorithm is implemented, * and we always re-calculate 'remaining_ncpus' & 'numvecs', and * finally for each node X: vecs(X) <= ncpu(X). * */ for (n = 0; n < nr_node_ids; n++) { unsigned nvectors, ncpus; if (node_vectors[n].ncpus == UINT_MAX) continue; WARN_ON_ONCE(numvecs == 0); ncpus = node_vectors[n].ncpus; nvectors = max_t(unsigned, 1, numvecs * ncpus / remaining_ncpus); WARN_ON_ONCE(nvectors > ncpus); node_vectors[n].nvectors = nvectors; remaining_ncpus -= ncpus; numvecs -= nvectors; } } static int __irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs, unsigned int firstvec, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, struct cpumask *nmsk, struct irq_affinity_desc *masks) { unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0; unsigned int last_affv = firstvec + numvecs; unsigned int curvec = startvec; nodemask_t nodemsk = NODE_MASK_NONE; struct node_vectors *node_vectors; if (cpumask_empty(cpu_mask)) return 0; nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); /* * If the number of nodes in the mask is greater than or equal the * number of vectors we just spread the vectors across the nodes. */ if (numvecs <= nodes) { for_each_node_mask(n, nodemsk) { /* Ensure that only CPUs which are in both masks are set */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk); if (++curvec == last_affv) curvec = firstvec; } return numvecs; } node_vectors = kcalloc(nr_node_ids, sizeof(struct node_vectors), GFP_KERNEL); if (!node_vectors) return -ENOMEM; /* allocate vector number for each node */ alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask, nodemsk, nmsk, node_vectors); for (i = 0; i < nr_node_ids; i++) { unsigned int ncpus, v; struct node_vectors *nv = &node_vectors[i]; if (nv->nvectors == UINT_MAX) continue; /* Get the cpus on this node which are in the mask */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); ncpus = cpumask_weight(nmsk); if (!ncpus) continue; WARN_ON_ONCE(nv->nvectors > ncpus); /* Account for rounding errors */ extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors); /* Spread allocated vectors on CPUs of the current node */ for (v = 0; v < nv->nvectors; v++, curvec++) { cpus_per_vec = ncpus / nv->nvectors; /* Account for extra vectors to compensate rounding errors */ if (extra_vecs) { cpus_per_vec++; --extra_vecs; } /* * wrapping has to be considered given 'startvec' * may start anywhere */ if (curvec >= last_affv) curvec = firstvec; irq_spread_init_one(&masks[curvec].mask, nmsk, cpus_per_vec); } done += nv->nvectors; } kfree(node_vectors); return done; } /* * build affinity in two stages: * 1) spread present CPU on these vectors * 2) spread other possible CPUs on these vectors */ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs, unsigned int firstvec, struct irq_affinity_desc *masks) { unsigned int curvec = startvec, nr_present = 0, nr_others = 0; cpumask_var_t *node_to_cpumask; cpumask_var_t nmsk, npresmsk; int ret = -ENOMEM; if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) return ret; if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) goto fail_nmsk; node_to_cpumask = alloc_node_to_cpumask(); if (!node_to_cpumask) goto fail_npresmsk; /* Stabilize the cpumasks */ cpus_read_lock(); build_node_to_cpumask(node_to_cpumask); /* Spread on present CPUs starting from affd->pre_vectors */ ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, node_to_cpumask, cpu_present_mask, nmsk, masks); if (ret < 0) goto fail_build_affinity; nr_present = ret; /* * Spread on non present CPUs starting from the next vector to be * handled. If the spreading of present CPUs already exhausted the * vector space, assign the non present CPUs to the already spread * out vectors. */ if (nr_present >= numvecs) curvec = firstvec; else curvec = firstvec + nr_present; cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, node_to_cpumask, npresmsk, nmsk, masks); if (ret >= 0) nr_others = ret; fail_build_affinity: cpus_read_unlock(); if (ret >= 0) WARN_ON(nr_present + nr_others < numvecs); free_node_to_cpumask(node_to_cpumask); fail_npresmsk: free_cpumask_var(npresmsk); fail_nmsk: free_cpumask_var(nmsk); return ret < 0 ? ret : 0; } static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs) { affd->nr_sets = 1; affd->set_size[0] = affvecs; } /** * irq_create_affinity_masks - Create affinity masks for multiqueue spreading * @nvecs: The total number of vectors * @affd: Description of the affinity requirements * * Returns the irq_affinity_desc pointer or NULL if allocation failed. */ struct irq_affinity_desc * irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd) { unsigned int affvecs, curvec, usedvecs, i; struct irq_affinity_desc *masks = NULL; /* * Determine the number of vectors which need interrupt affinities * assigned. If the pre/post request exhausts the available vectors * then nothing to do here except for invoking the calc_sets() * callback so the device driver can adjust to the situation. */ if (nvecs > affd->pre_vectors + affd->post_vectors) affvecs = nvecs - affd->pre_vectors - affd->post_vectors; else affvecs = 0; /* * Simple invocations do not provide a calc_sets() callback. Install * the generic one. */ if (!affd->calc_sets) affd->calc_sets = default_calc_sets; /* Recalculate the sets */ affd->calc_sets(affd, affvecs); if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS)) return NULL; /* Nothing to assign? */ if (!affvecs) return NULL; masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); if (!masks) return NULL; /* Fill out vectors at the beginning that don't need affinity */ for (curvec = 0; curvec < affd->pre_vectors; curvec++) cpumask_copy(&masks[curvec].mask, irq_default_affinity); /* * Spread on present CPUs starting from affd->pre_vectors. If we * have multiple sets, build each sets affinity mask separately. */ for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) { unsigned int this_vecs = affd->set_size[i]; int ret; ret = irq_build_affinity_masks(curvec, this_vecs, curvec, masks); if (ret) { kfree(masks); return NULL; } curvec += this_vecs; usedvecs += this_vecs; } /* Fill out vectors at the end that don't need affinity */ if (usedvecs >= affvecs) curvec = affd->pre_vectors + affvecs; else curvec = affd->pre_vectors + usedvecs; for (; curvec < nvecs; curvec++) cpumask_copy(&masks[curvec].mask, irq_default_affinity); /* Mark the managed interrupts */ for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++) masks[i].is_managed = 1; return masks; } /** * irq_calc_affinity_vectors - Calculate the optimal number of vectors * @minvec: The minimum number of vectors available * @maxvec: The maximum number of vectors available * @affd: Description of the affinity requirements */ unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, const struct irq_affinity *affd) { unsigned int resv = affd->pre_vectors + affd->post_vectors; unsigned int set_vecs; if (resv > minvec) return 0; if (affd->calc_sets) { set_vecs = maxvec - resv; } else { cpus_read_lock(); set_vecs = cpumask_weight(cpu_possible_mask); cpus_read_unlock(); } return resv + min(set_vecs, maxvec - resv); } |