Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | // SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2020, Sandipan Das, IBM Corp. * * Test if applying execute protection on pages using memory * protection keys works as expected. */ #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <string.h> #include <signal.h> #include <unistd.h> #include "pkeys.h" #define PPC_INST_NOP 0x60000000 #define PPC_INST_TRAP 0x7fe00008 #define PPC_INST_BLR 0x4e800020 static volatile sig_atomic_t fault_pkey, fault_code, fault_type; static volatile sig_atomic_t remaining_faults; static volatile unsigned int *fault_addr; static unsigned long pgsize, numinsns; static unsigned int *insns; static void trap_handler(int signum, siginfo_t *sinfo, void *ctx) { /* Check if this fault originated from the expected address */ if (sinfo->si_addr != (void *) fault_addr) sigsafe_err("got a fault for an unexpected address\n"); _exit(1); } static void segv_handler(int signum, siginfo_t *sinfo, void *ctx) { int signal_pkey; signal_pkey = siginfo_pkey(sinfo); fault_code = sinfo->si_code; /* Check if this fault originated from the expected address */ if (sinfo->si_addr != (void *) fault_addr) { sigsafe_err("got a fault for an unexpected address\n"); _exit(1); } /* Check if too many faults have occurred for a single test case */ if (!remaining_faults) { sigsafe_err("got too many faults for the same address\n"); _exit(1); } /* Restore permissions in order to continue */ switch (fault_code) { case SEGV_ACCERR: if (mprotect(insns, pgsize, PROT_READ | PROT_WRITE)) { sigsafe_err("failed to set access permissions\n"); _exit(1); } break; case SEGV_PKUERR: if (signal_pkey != fault_pkey) { sigsafe_err("got a fault for an unexpected pkey\n"); _exit(1); } switch (fault_type) { case PKEY_DISABLE_ACCESS: pkey_set_rights(fault_pkey, 0); break; case PKEY_DISABLE_EXECUTE: /* * Reassociate the exec-only pkey with the region * to be able to continue. Unlike AMR, we cannot * set IAMR directly from userspace to restore the * permissions. */ if (mprotect(insns, pgsize, PROT_EXEC)) { sigsafe_err("failed to set execute permissions\n"); _exit(1); } break; default: sigsafe_err("got a fault with an unexpected type\n"); _exit(1); } break; default: sigsafe_err("got a fault with an unexpected code\n"); _exit(1); } remaining_faults--; } static int test(void) { struct sigaction segv_act, trap_act; unsigned long rights; int pkey, ret, i; ret = pkeys_unsupported(); if (ret) return ret; /* Setup SIGSEGV handler */ segv_act.sa_handler = 0; segv_act.sa_sigaction = segv_handler; FAIL_IF(sigprocmask(SIG_SETMASK, 0, &segv_act.sa_mask) != 0); segv_act.sa_flags = SA_SIGINFO; segv_act.sa_restorer = 0; FAIL_IF(sigaction(SIGSEGV, &segv_act, NULL) != 0); /* Setup SIGTRAP handler */ trap_act.sa_handler = 0; trap_act.sa_sigaction = trap_handler; FAIL_IF(sigprocmask(SIG_SETMASK, 0, &trap_act.sa_mask) != 0); trap_act.sa_flags = SA_SIGINFO; trap_act.sa_restorer = 0; FAIL_IF(sigaction(SIGTRAP, &trap_act, NULL) != 0); /* Setup executable region */ pgsize = getpagesize(); numinsns = pgsize / sizeof(unsigned int); insns = (unsigned int *) mmap(NULL, pgsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); FAIL_IF(insns == MAP_FAILED); /* Write the instruction words */ for (i = 1; i < numinsns - 1; i++) insns[i] = PPC_INST_NOP; /* * Set the first instruction as an unconditional trap. If * the last write to this address succeeds, this should * get overwritten by a no-op. */ insns[0] = PPC_INST_TRAP; /* * Later, to jump to the executable region, we use a branch * and link instruction (bctrl) which sets the return address * automatically in LR. Use that to return back. */ insns[numinsns - 1] = PPC_INST_BLR; /* Allocate a pkey that restricts execution */ rights = PKEY_DISABLE_EXECUTE; pkey = sys_pkey_alloc(0, rights); FAIL_IF(pkey < 0); /* * Pick the first instruction's address from the executable * region. */ fault_addr = insns; /* The following two cases will avoid SEGV_PKUERR */ fault_type = -1; fault_pkey = -1; /* * Read an instruction word from the address when AMR bits * are not set i.e. the pkey permits both read and write * access. * * This should not generate a fault as having PROT_EXEC * implies PROT_READ on GNU systems. The pkey currently * restricts execution only based on the IAMR bits. The * AMR bits are cleared. */ remaining_faults = 0; FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0); printf("read from %p, pkey permissions are %s\n", fault_addr, pkey_rights(rights)); i = *fault_addr; FAIL_IF(remaining_faults != 0); /* * Write an instruction word to the address when AMR bits * are not set i.e. the pkey permits both read and write * access. * * This should generate an access fault as having just * PROT_EXEC also restricts writes. The pkey currently * restricts execution only based on the IAMR bits. The * AMR bits are cleared. */ remaining_faults = 1; FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0); printf("write to %p, pkey permissions are %s\n", fault_addr, pkey_rights(rights)); *fault_addr = PPC_INST_TRAP; FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR); /* The following three cases will generate SEGV_PKUERR */ rights |= PKEY_DISABLE_ACCESS; fault_type = PKEY_DISABLE_ACCESS; fault_pkey = pkey; /* * Read an instruction word from the address when AMR bits * are set i.e. the pkey permits neither read nor write * access. * * This should generate a pkey fault based on AMR bits only * as having PROT_EXEC implicitly allows reads. */ remaining_faults = 1; FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0); pkey_set_rights(pkey, rights); printf("read from %p, pkey permissions are %s\n", fault_addr, pkey_rights(rights)); i = *fault_addr; FAIL_IF(remaining_faults != 0 || fault_code != SEGV_PKUERR); /* * Write an instruction word to the address when AMR bits * are set i.e. the pkey permits neither read nor write * access. * * This should generate two faults. First, a pkey fault * based on AMR bits and then an access fault since * PROT_EXEC does not allow writes. */ remaining_faults = 2; FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0); pkey_set_rights(pkey, rights); printf("write to %p, pkey permissions are %s\n", fault_addr, pkey_rights(rights)); *fault_addr = PPC_INST_NOP; FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR); /* Free the current pkey */ sys_pkey_free(pkey); rights = 0; do { /* * Allocate pkeys with all valid combinations of read, * write and execute restrictions. */ pkey = sys_pkey_alloc(0, rights); FAIL_IF(pkey < 0); /* * Jump to the executable region. AMR bits may or may not * be set but they should not affect execution. * * This should generate pkey faults based on IAMR bits which * may be set to restrict execution. * * The first iteration also checks if the overwrite of the * first instruction word from a trap to a no-op succeeded. */ fault_pkey = pkey; fault_type = -1; remaining_faults = 0; if (rights & PKEY_DISABLE_EXECUTE) { fault_type = PKEY_DISABLE_EXECUTE; remaining_faults = 1; } FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0); printf("execute at %p, pkey permissions are %s\n", fault_addr, pkey_rights(rights)); asm volatile("mtctr %0; bctrl" : : "r"(insns)); FAIL_IF(remaining_faults != 0); if (rights & PKEY_DISABLE_EXECUTE) FAIL_IF(fault_code != SEGV_PKUERR); /* Free the current pkey */ sys_pkey_free(pkey); /* Find next valid combination of pkey rights */ rights = next_pkey_rights(rights); } while (rights); /* Cleanup */ munmap((void *) insns, pgsize); return 0; } int main(void) { return test_harness(test, "pkey_exec_prot"); } |