Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) #include <linux/bpf_trace.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/filter.h> #include <linux/irq.h> #include <linux/pci.h> #include <linux/skbuff.h> #include "funeth_txrx.h" #include "funeth.h" #include "fun_queue.h" #define CREATE_TRACE_POINTS #include "funeth_trace.h" /* Given the device's max supported MTU and pages of at least 4KB a packet can * be scattered into at most 4 buffers. */ #define RX_MAX_FRAGS 4 /* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */ #define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) /* We try to reuse pages for our buffers. To avoid frequent page ref writes we * take EXTRA_PAGE_REFS references at once and then hand them out one per packet * occupying the buffer. */ #define EXTRA_PAGE_REFS 1000000 #define MIN_PAGE_REFS 1000 enum { FUN_XDP_FLUSH_REDIR = 1, FUN_XDP_FLUSH_TX = 2, }; /* See if a page is running low on refs we are holding and if so take more. */ static void refresh_refs(struct funeth_rxbuf *buf) { if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) { buf->pg_refs += EXTRA_PAGE_REFS; page_ref_add(buf->page, EXTRA_PAGE_REFS); } } /* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its * page is worth retaining and there's room for it. Otherwise the page is * unmapped and our references released. */ static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf) { struct funeth_rx_cache *c = &q->cache; if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) { c->bufs[c->prod_cnt & c->mask] = *buf; c->prod_cnt++; } else { dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); __page_frag_cache_drain(buf->page, buf->pg_refs); } } /* Get a page from the Rx buffer cache. We only consider the next available * page and return it if we own all its references. */ static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb) { struct funeth_rx_cache *c = &q->cache; struct funeth_rxbuf *buf; if (c->prod_cnt == c->cons_cnt) return false; /* empty cache */ buf = &c->bufs[c->cons_cnt & c->mask]; if (page_ref_count(buf->page) == buf->pg_refs) { dma_sync_single_for_device(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); *rb = *buf; buf->page = NULL; refresh_refs(rb); c->cons_cnt++; return true; } /* Page can't be reused. If the cache is full drop this page. */ if (c->prod_cnt - c->cons_cnt > c->mask) { dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); __page_frag_cache_drain(buf->page, buf->pg_refs); buf->page = NULL; c->cons_cnt++; } return false; } /* Allocate and DMA-map a page for receive. */ static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb, int node, gfp_t gfp) { struct page *p; if (cache_get(q, rb)) return 0; p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0); if (unlikely(!p)) return -ENOMEM; rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) { FUN_QSTAT_INC(q, rx_map_err); __free_page(p); return -ENOMEM; } FUN_QSTAT_INC(q, rx_page_alloc); rb->page = p; rb->pg_refs = 1; refresh_refs(rb); rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p); return 0; } static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb) { if (rb->page) { dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); __page_frag_cache_drain(rb->page, rb->pg_refs); rb->page = NULL; } } /* Run the XDP program assigned to an Rx queue. * Return %NULL if the buffer is consumed, or the virtual address of the packet * to turn into an skb. */ static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va, int ref_ok, struct funeth_txq *xdp_q) { struct bpf_prog *xdp_prog; struct xdp_frame *xdpf; struct xdp_buff xdp; u32 act; /* VA includes the headroom, frag size includes headroom + tailroom */ xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN), &q->xdp_rxq); xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) - (FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false); xdp_prog = READ_ONCE(q->xdp_prog); act = bpf_prog_run_xdp(xdp_prog, &xdp); switch (act) { case XDP_PASS: /* remove headroom, which may not be FUN_XDP_HEADROOM now */ skb_frag_size_set(frags, xdp.data_end - xdp.data); skb_frag_off_add(frags, xdp.data - xdp.data_hard_start); goto pass; case XDP_TX: if (unlikely(!ref_ok)) goto pass; xdpf = xdp_convert_buff_to_frame(&xdp); if (!xdpf || !fun_xdp_tx(xdp_q, xdpf)) goto xdp_error; FUN_QSTAT_INC(q, xdp_tx); q->xdp_flush |= FUN_XDP_FLUSH_TX; break; case XDP_REDIRECT: if (unlikely(!ref_ok)) goto pass; if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog))) goto xdp_error; FUN_QSTAT_INC(q, xdp_redir); q->xdp_flush |= FUN_XDP_FLUSH_REDIR; break; default: bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(q->netdev, xdp_prog, act); xdp_error: q->cur_buf->pg_refs++; /* return frags' page reference */ FUN_QSTAT_INC(q, xdp_err); break; case XDP_DROP: q->cur_buf->pg_refs++; FUN_QSTAT_INC(q, xdp_drops); break; } return NULL; pass: return xdp.data; } /* A CQE contains a fixed completion structure along with optional metadata and * even packet data. Given the start address of a CQE return the start of the * contained fixed structure, which lies at the end. */ static const void *cqe_to_info(const void *cqe) { return cqe + FUNETH_CQE_INFO_OFFSET; } /* The inverse of cqe_to_info(). */ static const void *info_to_cqe(const void *cqe_info) { return cqe_info - FUNETH_CQE_INFO_OFFSET; } /* Return the type of hash provided by the device based on the L3 and L4 * protocols it parsed for the packet. */ static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse) { static const enum pkt_hash_types htype_map[] = { PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3, PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4, PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3, PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3 }; u16 key; /* Build the key from the TCP/UDP and IP/IPv6 bits */ key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) | ((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1); return htype_map[key]; } /* Each received packet can be scattered across several Rx buffers or can * share a buffer with previously received packets depending on the buffer * and packet sizes and the room available in the most recently used buffer. * * The rules are: * - If the buffer at the head of an RQ has not been used it gets (part of) the * next incoming packet. * - Otherwise, if the packet fully fits in the buffer's remaining space the * packet is written there. * - Otherwise, the packet goes into the next Rx buffer. * * This function returns the Rx buffer for a packet or fragment thereof of the * given length. If it isn't @buf it either recycles or frees that buffer * before advancing the queue to the next buffer. * * If called repeatedly with the remaining length of a packet it will walk * through all the buffers containing the packet. */ static struct funeth_rxbuf * get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len) { if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset) return buf; /* @buf holds (part of) the packet */ /* The packet occupies part of the next buffer. Move there after * replenishing the current buffer slot either with the spare page or * by reusing the slot's existing page. Note that if a spare page isn't * available and the current packet occupies @buf it is a multi-frag * packet that will be dropped leaving @buf available for reuse. */ if ((page_ref_count(buf->page) == buf->pg_refs && buf->node == numa_mem_id()) || !q->spare_buf.page) { dma_sync_single_for_device(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); refresh_refs(buf); } else { cache_offer(q, buf); *buf = q->spare_buf; q->spare_buf.page = NULL; q->rqes[q->rq_cons & q->rq_mask] = FUN_EPRQ_RQBUF_INIT(buf->dma_addr); } q->buf_offset = 0; q->rq_cons++; return &q->bufs[q->rq_cons & q->rq_mask]; } /* Gather the page fragments making up the first Rx packet on @q. Its total * length @tot_len includes optional head- and tail-rooms. * * Return 0 if the device retains ownership of at least some of the pages. * In this case the caller may only copy the packet. * * A non-zero return value gives the caller permission to use references to the * pages, e.g., attach them to skbs. Additionally, if the value is <0 at least * one of the pages is PF_MEMALLOC. * * Regardless of outcome the caller is granted a reference to each of the pages. */ static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len, skb_frag_t *frags) { struct funeth_rxbuf *buf = q->cur_buf; unsigned int frag_len; int ref_ok = 1; for (;;) { buf = get_buf(q, buf, tot_len); /* We always keep the RQ full of buffers so before we can give * one of our pages to the stack we require that we can obtain * a replacement page. If we can't the packet will either be * copied or dropped so we can retain ownership of the page and * reuse it. */ if (!q->spare_buf.page && funeth_alloc_page(q, &q->spare_buf, numa_mem_id(), GFP_ATOMIC | __GFP_MEMALLOC)) ref_ok = 0; frag_len = min_t(unsigned int, tot_len, PAGE_SIZE - q->buf_offset); dma_sync_single_for_cpu(q->dma_dev, buf->dma_addr + q->buf_offset, frag_len, DMA_FROM_DEVICE); buf->pg_refs--; if (ref_ok) ref_ok |= buf->node; __skb_frag_set_page(frags, buf->page); skb_frag_off_set(frags, q->buf_offset); skb_frag_size_set(frags++, frag_len); tot_len -= frag_len; if (!tot_len) break; q->buf_offset = PAGE_SIZE; } q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN); q->cur_buf = buf; return ref_ok; } static bool rx_hwtstamp_enabled(const struct net_device *dev) { const struct funeth_priv *d = netdev_priv(dev); return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL; } /* Advance the CQ pointers and phase tag to the next CQE. */ static void advance_cq(struct funeth_rxq *q) { if (unlikely(q->cq_head == q->cq_mask)) { q->cq_head = 0; q->phase ^= 1; q->next_cqe_info = cqe_to_info(q->cqes); } else { q->cq_head++; q->next_cqe_info += FUNETH_CQE_SIZE; } prefetch(q->next_cqe_info); } /* Process the packet represented by the head CQE of @q. Gather the packet's * fragments, run it through the optional XDP program, and if needed construct * an skb and pass it to the stack. */ static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q) { const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info); unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len); struct net_device *ndev = q->netdev; skb_frag_t frags[RX_MAX_FRAGS]; struct skb_shared_info *si; unsigned int headroom; gro_result_t gro_res; struct sk_buff *skb; int ref_ok; void *va; u16 cv; u64_stats_update_begin(&q->syncp); q->stats.rx_pkts++; q->stats.rx_bytes += pkt_len; u64_stats_update_end(&q->syncp); advance_cq(q); /* account for head- and tail-room, present only for 1-buffer packets */ tot_len = pkt_len; headroom = be16_to_cpu(rxreq->headroom); if (likely(headroom)) tot_len += FUN_RX_TAILROOM + headroom; ref_ok = fun_gather_pkt(q, tot_len, frags); va = skb_frag_address(frags); if (xdp_q && headroom == FUN_XDP_HEADROOM) { va = fun_run_xdp(q, frags, va, ref_ok, xdp_q); if (!va) return; headroom = 0; /* XDP_PASS trims it */ } if (unlikely(!ref_ok)) goto no_mem; if (likely(headroom)) { /* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */ prefetch(va + headroom); skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN)); if (unlikely(!skb)) goto no_mem; skb_reserve(skb, headroom); __skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); } else { prefetch(va); skb = napi_get_frags(q->napi); if (unlikely(!skb)) goto no_mem; if (ref_ok < 0) skb->pfmemalloc = 1; si = skb_shinfo(skb); si->nr_frags = rxreq->nsgl; for (i = 0; i < si->nr_frags; i++) si->frags[i] = frags[i]; skb->len = pkt_len; skb->data_len = pkt_len; skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN); } skb_record_rx_queue(skb, q->qidx); cv = be16_to_cpu(rxreq->pkt_cv); if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash)) skb_set_hash(skb, be32_to_cpu(rxreq->hash), cqe_to_pkt_hash_type(cv)); if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) { FUN_QSTAT_INC(q, rx_cso); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = be16_to_cpu(rxreq->csum) - 1; } if (unlikely(rx_hwtstamp_enabled(q->netdev))) skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp); trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv); gro_res = skb->data_len ? napi_gro_frags(q->napi) : napi_gro_receive(q->napi, skb); if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE) FUN_QSTAT_INC(q, gro_merged); else if (gro_res == GRO_HELD) FUN_QSTAT_INC(q, gro_pkts); return; no_mem: FUN_QSTAT_INC(q, rx_mem_drops); /* Release the references we've been granted for the frag pages. * We return the ref of the last frag and free the rest. */ q->cur_buf->pg_refs++; for (i = 0; i < rxreq->nsgl - 1; i++) __free_page(skb_frag_page(frags + i)); } /* Return 0 if the phase tag of the CQE at the CQ's head matches expectations * indicating the CQE is new. */ static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase) { u16 sf_p = be16_to_cpu(ci->sf_p); return (sf_p & 1) ^ phase; } /* Walk through a CQ identifying and processing fresh CQEs up to the given * budget. Return the remaining budget. */ static int fun_process_cqes(struct funeth_rxq *q, int budget) { struct funeth_priv *fp = netdev_priv(q->netdev); struct funeth_txq **xdpqs, *xdp_q = NULL; xdpqs = rcu_dereference_bh(fp->xdpqs); if (xdpqs) xdp_q = xdpqs[smp_processor_id()]; while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) { /* access other descriptor fields after the phase check */ dma_rmb(); fun_handle_cqe_pkt(q, xdp_q); budget--; } if (unlikely(q->xdp_flush)) { if (q->xdp_flush & FUN_XDP_FLUSH_TX) fun_txq_wr_db(xdp_q); if (q->xdp_flush & FUN_XDP_FLUSH_REDIR) xdp_do_flush(); q->xdp_flush = 0; } return budget; } /* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ * doorbells as needed. */ int fun_rxq_napi_poll(struct napi_struct *napi, int budget) { struct fun_irq *irq = container_of(napi, struct fun_irq, napi); struct funeth_rxq *q = irq->rxq; int work_done = budget - fun_process_cqes(q, budget); u32 cq_db_val = q->cq_head; if (unlikely(work_done >= budget)) FUN_QSTAT_INC(q, rx_budget); else if (napi_complete_done(napi, work_done)) cq_db_val |= q->irq_db_val; /* check whether to post new Rx buffers */ if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) { u64_stats_update_begin(&q->syncp); q->stats.rx_bufs += q->rq_cons - q->rq_cons_db; u64_stats_update_end(&q->syncp); q->rq_cons_db = q->rq_cons; writel((q->rq_cons - 1) & q->rq_mask, q->rq_db); } writel(cq_db_val, q->cq_db); return work_done; } /* Free the Rx buffers of an Rx queue. */ static void fun_rxq_free_bufs(struct funeth_rxq *q) { struct funeth_rxbuf *b = q->bufs; unsigned int i; for (i = 0; i <= q->rq_mask; i++, b++) funeth_free_page(q, b); funeth_free_page(q, &q->spare_buf); q->cur_buf = NULL; } /* Initially provision an Rx queue with Rx buffers. */ static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node) { struct funeth_rxbuf *b = q->bufs; unsigned int i; for (i = 0; i <= q->rq_mask; i++, b++) { if (funeth_alloc_page(q, b, node, GFP_KERNEL)) { fun_rxq_free_bufs(q); return -ENOMEM; } q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr); } q->cur_buf = q->bufs; return 0; } /* Initialize a used-buffer cache of the given depth. */ static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth, int node) { c->mask = depth - 1; c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node); return c->bufs ? 0 : -ENOMEM; } /* Deallocate an Rx queue's used-buffer cache and its contents. */ static void fun_rxq_free_cache(struct funeth_rxq *q) { struct funeth_rxbuf *b = q->cache.bufs; unsigned int i; for (i = 0; i <= q->cache.mask; i++, b++) funeth_free_page(q, b); kvfree(q->cache.bufs); q->cache.bufs = NULL; } int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog) { struct funeth_priv *fp = netdev_priv(q->netdev); struct fun_admin_epcq_req cmd; u16 headroom; int err; headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM; if (headroom != q->headroom) { cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ, sizeof(cmd)); cmd.u.modify = FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY, 0, q->hw_cqid, headroom); err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0, 0); if (err) return err; q->headroom = headroom; } WRITE_ONCE(q->xdp_prog, prog); return 0; } /* Create an Rx queue, allocating the host memory it needs. */ static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev, unsigned int qidx, unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq) { struct funeth_priv *fp = netdev_priv(dev); struct funeth_rxq *q; int err = -ENOMEM; int numa_node; numa_node = fun_irq_node(irq); q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node); if (!q) goto err; q->qidx = qidx; q->netdev = dev; q->cq_mask = ncqe - 1; q->rq_mask = nrqe - 1; q->numa_node = numa_node; q->rq_db_thres = nrqe / 4; u64_stats_init(&q->syncp); q->dma_dev = &fp->pdev->dev; q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), sizeof(*q->bufs), false, numa_node, &q->rq_dma_addr, (void **)&q->bufs, NULL); if (!q->rqes) goto free_q; q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0, false, numa_node, &q->cq_dma_addr, NULL, NULL); if (!q->cqes) goto free_rqes; err = fun_rxq_init_cache(&q->cache, nrqe, numa_node); if (err) goto free_cqes; err = fun_rxq_alloc_bufs(q, numa_node); if (err) goto free_cache; q->stats.rx_bufs = q->rq_mask; q->init_state = FUN_QSTATE_INIT_SW; return q; free_cache: fun_rxq_free_cache(q); free_cqes: dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes, q->cq_dma_addr); free_rqes: fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes, q->rq_dma_addr, q->bufs); free_q: kfree(q); err: netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx); return ERR_PTR(err); } static void fun_rxq_free_sw(struct funeth_rxq *q) { struct funeth_priv *fp = netdev_priv(q->netdev); fun_rxq_free_cache(q); fun_rxq_free_bufs(q); fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false, q->rqes, q->rq_dma_addr, q->bufs); dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE, q->cqes, q->cq_dma_addr); /* Before freeing the queue transfer key counters to the device. */ fp->rx_packets += q->stats.rx_pkts; fp->rx_bytes += q->stats.rx_bytes; fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops; kfree(q); } /* Create an Rx queue's resources on the device. */ int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq) { struct funeth_priv *fp = netdev_priv(q->netdev); unsigned int ncqe = q->cq_mask + 1; unsigned int nrqe = q->rq_mask + 1; int err; err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx, irq->napi.napi_id); if (err) goto out; err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err) goto xdp_unreg; q->phase = 1; q->irq_cnt = 0; q->cq_head = 0; q->rq_cons = 0; q->rq_cons_db = 0; q->buf_offset = 0; q->napi = &irq->napi; q->irq_db_val = fp->cq_irq_db; q->next_cqe_info = cqe_to_info(q->cqes); q->xdp_prog = fp->xdp_prog; q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM; err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR | FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0, FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0, 0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT, &q->hw_sqid, &q->rq_db); if (err) goto xdp_unreg; err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR | FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0, q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe, q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0, irq->irq_idx, 0, fp->fdev->kern_end_qid, &q->hw_cqid, &q->cq_db); if (err) goto free_rq; irq->rxq = q; writel(q->rq_mask, q->rq_db); q->init_state = FUN_QSTATE_INIT_FULL; netif_info(fp, ifup, q->netdev, "Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n", q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx, q->numa_node, q->headroom); return 0; free_rq: fun_destroy_sq(fp->fdev, q->hw_sqid); xdp_unreg: xdp_rxq_info_unreg(&q->xdp_rxq); out: netdev_err(q->netdev, "Failed to create Rx queue %u on device, error %d\n", q->qidx, err); return err; } static void fun_rxq_free_dev(struct funeth_rxq *q) { struct funeth_priv *fp = netdev_priv(q->netdev); struct fun_irq *irq; if (q->init_state < FUN_QSTATE_INIT_FULL) return; irq = container_of(q->napi, struct fun_irq, napi); netif_info(fp, ifdown, q->netdev, "Freeing Rx queue %u (id %u/%u), IRQ %u\n", q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx); irq->rxq = NULL; xdp_rxq_info_unreg(&q->xdp_rxq); fun_destroy_sq(fp->fdev, q->hw_sqid); fun_destroy_cq(fp->fdev, q->hw_cqid); q->init_state = FUN_QSTATE_INIT_SW; } /* Create or advance an Rx queue, allocating all the host and device resources * needed to reach the target state. */ int funeth_rxq_create(struct net_device *dev, unsigned int qidx, unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq, int state, struct funeth_rxq **qp) { struct funeth_rxq *q = *qp; int err; if (!q) { q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq); if (IS_ERR(q)) return PTR_ERR(q); } if (q->init_state >= state) goto out; err = fun_rxq_create_dev(q, irq); if (err) { if (!*qp) fun_rxq_free_sw(q); return err; } out: *qp = q; return 0; } /* Free Rx queue resources until it reaches the target state. */ struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state) { if (state < FUN_QSTATE_INIT_FULL) fun_rxq_free_dev(q); if (state == FUN_QSTATE_DESTROYED) { fun_rxq_free_sw(q); q = NULL; } return q; } |