Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)

#include <linux/bpf_trace.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include "funeth_txrx.h"
#include "funeth.h"
#include "fun_queue.h"

#define CREATE_TRACE_POINTS
#include "funeth_trace.h"

/* Given the device's max supported MTU and pages of at least 4KB a packet can
 * be scattered into at most 4 buffers.
 */
#define RX_MAX_FRAGS 4

/* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */
#define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)

/* We try to reuse pages for our buffers. To avoid frequent page ref writes we
 * take EXTRA_PAGE_REFS references at once and then hand them out one per packet
 * occupying the buffer.
 */
#define EXTRA_PAGE_REFS 1000000
#define MIN_PAGE_REFS 1000

enum {
	FUN_XDP_FLUSH_REDIR = 1,
	FUN_XDP_FLUSH_TX = 2,
};

/* See if a page is running low on refs we are holding and if so take more. */
static void refresh_refs(struct funeth_rxbuf *buf)
{
	if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) {
		buf->pg_refs += EXTRA_PAGE_REFS;
		page_ref_add(buf->page, EXTRA_PAGE_REFS);
	}
}

/* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its
 * page is worth retaining and there's room for it. Otherwise the page is
 * unmapped and our references released.
 */
static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf)
{
	struct funeth_rx_cache *c = &q->cache;

	if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) {
		c->bufs[c->prod_cnt & c->mask] = *buf;
		c->prod_cnt++;
	} else {
		dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
		__page_frag_cache_drain(buf->page, buf->pg_refs);
	}
}

/* Get a page from the Rx buffer cache. We only consider the next available
 * page and return it if we own all its references.
 */
static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb)
{
	struct funeth_rx_cache *c = &q->cache;
	struct funeth_rxbuf *buf;

	if (c->prod_cnt == c->cons_cnt)
		return false;             /* empty cache */

	buf = &c->bufs[c->cons_cnt & c->mask];
	if (page_ref_count(buf->page) == buf->pg_refs) {
		dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
					   PAGE_SIZE, DMA_FROM_DEVICE);
		*rb = *buf;
		buf->page = NULL;
		refresh_refs(rb);
		c->cons_cnt++;
		return true;
	}

	/* Page can't be reused. If the cache is full drop this page. */
	if (c->prod_cnt - c->cons_cnt > c->mask) {
		dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
		__page_frag_cache_drain(buf->page, buf->pg_refs);
		buf->page = NULL;
		c->cons_cnt++;
	}
	return false;
}

/* Allocate and DMA-map a page for receive. */
static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb,
			     int node, gfp_t gfp)
{
	struct page *p;

	if (cache_get(q, rb))
		return 0;

	p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0);
	if (unlikely(!p))
		return -ENOMEM;

	rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE,
				    DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) {
		FUN_QSTAT_INC(q, rx_map_err);
		__free_page(p);
		return -ENOMEM;
	}

	FUN_QSTAT_INC(q, rx_page_alloc);

	rb->page = p;
	rb->pg_refs = 1;
	refresh_refs(rb);
	rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p);
	return 0;
}

static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb)
{
	if (rb->page) {
		dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__page_frag_cache_drain(rb->page, rb->pg_refs);
		rb->page = NULL;
	}
}

/* Run the XDP program assigned to an Rx queue.
 * Return %NULL if the buffer is consumed, or the virtual address of the packet
 * to turn into an skb.
 */
static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va,
			 int ref_ok, struct funeth_txq *xdp_q)
{
	struct bpf_prog *xdp_prog;
	struct xdp_frame *xdpf;
	struct xdp_buff xdp;
	u32 act;

	/* VA includes the headroom, frag size includes headroom + tailroom */
	xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN),
		      &q->xdp_rxq);
	xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) -
			 (FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false);

	xdp_prog = READ_ONCE(q->xdp_prog);
	act = bpf_prog_run_xdp(xdp_prog, &xdp);

	switch (act) {
	case XDP_PASS:
		/* remove headroom, which may not be FUN_XDP_HEADROOM now */
		skb_frag_size_set(frags, xdp.data_end - xdp.data);
		skb_frag_off_add(frags, xdp.data - xdp.data_hard_start);
		goto pass;
	case XDP_TX:
		if (unlikely(!ref_ok))
			goto pass;

		xdpf = xdp_convert_buff_to_frame(&xdp);
		if (!xdpf || !fun_xdp_tx(xdp_q, xdpf))
			goto xdp_error;
		FUN_QSTAT_INC(q, xdp_tx);
		q->xdp_flush |= FUN_XDP_FLUSH_TX;
		break;
	case XDP_REDIRECT:
		if (unlikely(!ref_ok))
			goto pass;
		if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog)))
			goto xdp_error;
		FUN_QSTAT_INC(q, xdp_redir);
		q->xdp_flush |= FUN_XDP_FLUSH_REDIR;
		break;
	default:
		bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act);
		fallthrough;
	case XDP_ABORTED:
		trace_xdp_exception(q->netdev, xdp_prog, act);
xdp_error:
		q->cur_buf->pg_refs++; /* return frags' page reference */
		FUN_QSTAT_INC(q, xdp_err);
		break;
	case XDP_DROP:
		q->cur_buf->pg_refs++;
		FUN_QSTAT_INC(q, xdp_drops);
		break;
	}
	return NULL;

pass:
	return xdp.data;
}

/* A CQE contains a fixed completion structure along with optional metadata and
 * even packet data. Given the start address of a CQE return the start of the
 * contained fixed structure, which lies at the end.
 */
static const void *cqe_to_info(const void *cqe)
{
	return cqe + FUNETH_CQE_INFO_OFFSET;
}

/* The inverse of cqe_to_info(). */
static const void *info_to_cqe(const void *cqe_info)
{
	return cqe_info - FUNETH_CQE_INFO_OFFSET;
}

/* Return the type of hash provided by the device based on the L3 and L4
 * protocols it parsed for the packet.
 */
static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse)
{
	static const enum pkt_hash_types htype_map[] = {
		PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
		PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4,
		PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
		PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3
	};
	u16 key;

	/* Build the key from the TCP/UDP and IP/IPv6 bits */
	key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) |
	      ((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1);

	return htype_map[key];
}

/* Each received packet can be scattered across several Rx buffers or can
 * share a buffer with previously received packets depending on the buffer
 * and packet sizes and the room available in the most recently used buffer.
 *
 * The rules are:
 * - If the buffer at the head of an RQ has not been used it gets (part of) the
 *   next incoming packet.
 * - Otherwise, if the packet fully fits in the buffer's remaining space the
 *   packet is written there.
 * - Otherwise, the packet goes into the next Rx buffer.
 *
 * This function returns the Rx buffer for a packet or fragment thereof of the
 * given length. If it isn't @buf it either recycles or frees that buffer
 * before advancing the queue to the next buffer.
 *
 * If called repeatedly with the remaining length of a packet it will walk
 * through all the buffers containing the packet.
 */
static struct funeth_rxbuf *
get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len)
{
	if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset)
		return buf;            /* @buf holds (part of) the packet */

	/* The packet occupies part of the next buffer. Move there after
	 * replenishing the current buffer slot either with the spare page or
	 * by reusing the slot's existing page. Note that if a spare page isn't
	 * available and the current packet occupies @buf it is a multi-frag
	 * packet that will be dropped leaving @buf available for reuse.
	 */
	if ((page_ref_count(buf->page) == buf->pg_refs &&
	     buf->node == numa_mem_id()) || !q->spare_buf.page) {
		dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
					   PAGE_SIZE, DMA_FROM_DEVICE);
		refresh_refs(buf);
	} else {
		cache_offer(q, buf);
		*buf = q->spare_buf;
		q->spare_buf.page = NULL;
		q->rqes[q->rq_cons & q->rq_mask] =
			FUN_EPRQ_RQBUF_INIT(buf->dma_addr);
	}
	q->buf_offset = 0;
	q->rq_cons++;
	return &q->bufs[q->rq_cons & q->rq_mask];
}

/* Gather the page fragments making up the first Rx packet on @q. Its total
 * length @tot_len includes optional head- and tail-rooms.
 *
 * Return 0 if the device retains ownership of at least some of the pages.
 * In this case the caller may only copy the packet.
 *
 * A non-zero return value gives the caller permission to use references to the
 * pages, e.g., attach them to skbs. Additionally, if the value is <0 at least
 * one of the pages is PF_MEMALLOC.
 *
 * Regardless of outcome the caller is granted a reference to each of the pages.
 */
static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len,
			  skb_frag_t *frags)
{
	struct funeth_rxbuf *buf = q->cur_buf;
	unsigned int frag_len;
	int ref_ok = 1;

	for (;;) {
		buf = get_buf(q, buf, tot_len);

		/* We always keep the RQ full of buffers so before we can give
		 * one of our pages to the stack we require that we can obtain
		 * a replacement page. If we can't the packet will either be
		 * copied or dropped so we can retain ownership of the page and
		 * reuse it.
		 */
		if (!q->spare_buf.page &&
		    funeth_alloc_page(q, &q->spare_buf, numa_mem_id(),
				      GFP_ATOMIC | __GFP_MEMALLOC))
			ref_ok = 0;

		frag_len = min_t(unsigned int, tot_len,
				 PAGE_SIZE - q->buf_offset);
		dma_sync_single_for_cpu(q->dma_dev,
					buf->dma_addr + q->buf_offset,
					frag_len, DMA_FROM_DEVICE);
		buf->pg_refs--;
		if (ref_ok)
			ref_ok |= buf->node;

		__skb_frag_set_page(frags, buf->page);
		skb_frag_off_set(frags, q->buf_offset);
		skb_frag_size_set(frags++, frag_len);

		tot_len -= frag_len;
		if (!tot_len)
			break;

		q->buf_offset = PAGE_SIZE;
	}
	q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN);
	q->cur_buf = buf;
	return ref_ok;
}

static bool rx_hwtstamp_enabled(const struct net_device *dev)
{
	const struct funeth_priv *d = netdev_priv(dev);

	return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL;
}

/* Advance the CQ pointers and phase tag to the next CQE. */
static void advance_cq(struct funeth_rxq *q)
{
	if (unlikely(q->cq_head == q->cq_mask)) {
		q->cq_head = 0;
		q->phase ^= 1;
		q->next_cqe_info = cqe_to_info(q->cqes);
	} else {
		q->cq_head++;
		q->next_cqe_info += FUNETH_CQE_SIZE;
	}
	prefetch(q->next_cqe_info);
}

/* Process the packet represented by the head CQE of @q. Gather the packet's
 * fragments, run it through the optional XDP program, and if needed construct
 * an skb and pass it to the stack.
 */
static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q)
{
	const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info);
	unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len);
	struct net_device *ndev = q->netdev;
	skb_frag_t frags[RX_MAX_FRAGS];
	struct skb_shared_info *si;
	unsigned int headroom;
	gro_result_t gro_res;
	struct sk_buff *skb;
	int ref_ok;
	void *va;
	u16 cv;

	u64_stats_update_begin(&q->syncp);
	q->stats.rx_pkts++;
	q->stats.rx_bytes += pkt_len;
	u64_stats_update_end(&q->syncp);

	advance_cq(q);

	/* account for head- and tail-room, present only for 1-buffer packets */
	tot_len = pkt_len;
	headroom = be16_to_cpu(rxreq->headroom);
	if (likely(headroom))
		tot_len += FUN_RX_TAILROOM + headroom;

	ref_ok = fun_gather_pkt(q, tot_len, frags);
	va = skb_frag_address(frags);
	if (xdp_q && headroom == FUN_XDP_HEADROOM) {
		va = fun_run_xdp(q, frags, va, ref_ok, xdp_q);
		if (!va)
			return;
		headroom = 0;   /* XDP_PASS trims it */
	}
	if (unlikely(!ref_ok))
		goto no_mem;

	if (likely(headroom)) {
		/* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */
		prefetch(va + headroom);
		skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN));
		if (unlikely(!skb))
			goto no_mem;

		skb_reserve(skb, headroom);
		__skb_put(skb, pkt_len);
		skb->protocol = eth_type_trans(skb, ndev);
	} else {
		prefetch(va);
		skb = napi_get_frags(q->napi);
		if (unlikely(!skb))
			goto no_mem;

		if (ref_ok < 0)
			skb->pfmemalloc = 1;

		si = skb_shinfo(skb);
		si->nr_frags = rxreq->nsgl;
		for (i = 0; i < si->nr_frags; i++)
			si->frags[i] = frags[i];

		skb->len = pkt_len;
		skb->data_len = pkt_len;
		skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN);
	}

	skb_record_rx_queue(skb, q->qidx);
	cv = be16_to_cpu(rxreq->pkt_cv);
	if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash))
		skb_set_hash(skb, be32_to_cpu(rxreq->hash),
			     cqe_to_pkt_hash_type(cv));
	if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) {
		FUN_QSTAT_INC(q, rx_cso);
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = be16_to_cpu(rxreq->csum) - 1;
	}
	if (unlikely(rx_hwtstamp_enabled(q->netdev)))
		skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp);

	trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv);

	gro_res = skb->data_len ? napi_gro_frags(q->napi) :
				  napi_gro_receive(q->napi, skb);
	if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE)
		FUN_QSTAT_INC(q, gro_merged);
	else if (gro_res == GRO_HELD)
		FUN_QSTAT_INC(q, gro_pkts);
	return;

no_mem:
	FUN_QSTAT_INC(q, rx_mem_drops);

	/* Release the references we've been granted for the frag pages.
	 * We return the ref of the last frag and free the rest.
	 */
	q->cur_buf->pg_refs++;
	for (i = 0; i < rxreq->nsgl - 1; i++)
		__free_page(skb_frag_page(frags + i));
}

/* Return 0 if the phase tag of the CQE at the CQ's head matches expectations
 * indicating the CQE is new.
 */
static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase)
{
	u16 sf_p = be16_to_cpu(ci->sf_p);

	return (sf_p & 1) ^ phase;
}

/* Walk through a CQ identifying and processing fresh CQEs up to the given
 * budget. Return the remaining budget.
 */
static int fun_process_cqes(struct funeth_rxq *q, int budget)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);
	struct funeth_txq **xdpqs, *xdp_q = NULL;

	xdpqs = rcu_dereference_bh(fp->xdpqs);
	if (xdpqs)
		xdp_q = xdpqs[smp_processor_id()];

	while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) {
		/* access other descriptor fields after the phase check */
		dma_rmb();

		fun_handle_cqe_pkt(q, xdp_q);
		budget--;
	}

	if (unlikely(q->xdp_flush)) {
		if (q->xdp_flush & FUN_XDP_FLUSH_TX)
			fun_txq_wr_db(xdp_q);
		if (q->xdp_flush & FUN_XDP_FLUSH_REDIR)
			xdp_do_flush();
		q->xdp_flush = 0;
	}

	return budget;
}

/* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ
 * doorbells as needed.
 */
int fun_rxq_napi_poll(struct napi_struct *napi, int budget)
{
	struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
	struct funeth_rxq *q = irq->rxq;
	int work_done = budget - fun_process_cqes(q, budget);
	u32 cq_db_val = q->cq_head;

	if (unlikely(work_done >= budget))
		FUN_QSTAT_INC(q, rx_budget);
	else if (napi_complete_done(napi, work_done))
		cq_db_val |= q->irq_db_val;

	/* check whether to post new Rx buffers */
	if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) {
		u64_stats_update_begin(&q->syncp);
		q->stats.rx_bufs += q->rq_cons - q->rq_cons_db;
		u64_stats_update_end(&q->syncp);
		q->rq_cons_db = q->rq_cons;
		writel((q->rq_cons - 1) & q->rq_mask, q->rq_db);
	}

	writel(cq_db_val, q->cq_db);
	return work_done;
}

/* Free the Rx buffers of an Rx queue. */
static void fun_rxq_free_bufs(struct funeth_rxq *q)
{
	struct funeth_rxbuf *b = q->bufs;
	unsigned int i;

	for (i = 0; i <= q->rq_mask; i++, b++)
		funeth_free_page(q, b);

	funeth_free_page(q, &q->spare_buf);
	q->cur_buf = NULL;
}

/* Initially provision an Rx queue with Rx buffers. */
static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node)
{
	struct funeth_rxbuf *b = q->bufs;
	unsigned int i;

	for (i = 0; i <= q->rq_mask; i++, b++) {
		if (funeth_alloc_page(q, b, node, GFP_KERNEL)) {
			fun_rxq_free_bufs(q);
			return -ENOMEM;
		}
		q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr);
	}
	q->cur_buf = q->bufs;
	return 0;
}

/* Initialize a used-buffer cache of the given depth. */
static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth,
			      int node)
{
	c->mask = depth - 1;
	c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node);
	return c->bufs ? 0 : -ENOMEM;
}

/* Deallocate an Rx queue's used-buffer cache and its contents. */
static void fun_rxq_free_cache(struct funeth_rxq *q)
{
	struct funeth_rxbuf *b = q->cache.bufs;
	unsigned int i;

	for (i = 0; i <= q->cache.mask; i++, b++)
		funeth_free_page(q, b);

	kvfree(q->cache.bufs);
	q->cache.bufs = NULL;
}

int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);
	struct fun_admin_epcq_req cmd;
	u16 headroom;
	int err;

	headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
	if (headroom != q->headroom) {
		cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ,
							sizeof(cmd));
		cmd.u.modify =
			FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY,
						       0, q->hw_cqid, headroom);
		err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0,
						0);
		if (err)
			return err;
		q->headroom = headroom;
	}

	WRITE_ONCE(q->xdp_prog, prog);
	return 0;
}

/* Create an Rx queue, allocating the host memory it needs. */
static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev,
					    unsigned int qidx,
					    unsigned int ncqe,
					    unsigned int nrqe,
					    struct fun_irq *irq)
{
	struct funeth_priv *fp = netdev_priv(dev);
	struct funeth_rxq *q;
	int err = -ENOMEM;
	int numa_node;

	numa_node = fun_irq_node(irq);
	q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
	if (!q)
		goto err;

	q->qidx = qidx;
	q->netdev = dev;
	q->cq_mask = ncqe - 1;
	q->rq_mask = nrqe - 1;
	q->numa_node = numa_node;
	q->rq_db_thres = nrqe / 4;
	u64_stats_init(&q->syncp);
	q->dma_dev = &fp->pdev->dev;

	q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes),
				     sizeof(*q->bufs), false, numa_node,
				     &q->rq_dma_addr, (void **)&q->bufs, NULL);
	if (!q->rqes)
		goto free_q;

	q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0,
				     false, numa_node, &q->cq_dma_addr, NULL,
				     NULL);
	if (!q->cqes)
		goto free_rqes;

	err = fun_rxq_init_cache(&q->cache, nrqe, numa_node);
	if (err)
		goto free_cqes;

	err = fun_rxq_alloc_bufs(q, numa_node);
	if (err)
		goto free_cache;

	q->stats.rx_bufs = q->rq_mask;
	q->init_state = FUN_QSTATE_INIT_SW;
	return q;

free_cache:
	fun_rxq_free_cache(q);
free_cqes:
	dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes,
			  q->cq_dma_addr);
free_rqes:
	fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes,
			  q->rq_dma_addr, q->bufs);
free_q:
	kfree(q);
err:
	netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx);
	return ERR_PTR(err);
}

static void fun_rxq_free_sw(struct funeth_rxq *q)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);

	fun_rxq_free_cache(q);
	fun_rxq_free_bufs(q);
	fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false,
			  q->rqes, q->rq_dma_addr, q->bufs);
	dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE,
			  q->cqes, q->cq_dma_addr);

	/* Before freeing the queue transfer key counters to the device. */
	fp->rx_packets += q->stats.rx_pkts;
	fp->rx_bytes   += q->stats.rx_bytes;
	fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops;

	kfree(q);
}

/* Create an Rx queue's resources on the device. */
int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);
	unsigned int ncqe = q->cq_mask + 1;
	unsigned int nrqe = q->rq_mask + 1;
	int err;

	err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx,
			       irq->napi.napi_id);
	if (err)
		goto out;

	err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED,
					 NULL);
	if (err)
		goto xdp_unreg;

	q->phase = 1;
	q->irq_cnt = 0;
	q->cq_head = 0;
	q->rq_cons = 0;
	q->rq_cons_db = 0;
	q->buf_offset = 0;
	q->napi = &irq->napi;
	q->irq_db_val = fp->cq_irq_db;
	q->next_cqe_info = cqe_to_info(q->cqes);

	q->xdp_prog = fp->xdp_prog;
	q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;

	err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
			    FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0,
			    FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0,
			    0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT,
			    &q->hw_sqid, &q->rq_db);
	if (err)
		goto xdp_unreg;

	err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
			    FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0,
			    q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe,
			    q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0,
			    irq->irq_idx, 0, fp->fdev->kern_end_qid,
			    &q->hw_cqid, &q->cq_db);
	if (err)
		goto free_rq;

	irq->rxq = q;
	writel(q->rq_mask, q->rq_db);
	q->init_state = FUN_QSTATE_INIT_FULL;

	netif_info(fp, ifup, q->netdev,
		   "Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n",
		   q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx,
		   q->numa_node, q->headroom);
	return 0;

free_rq:
	fun_destroy_sq(fp->fdev, q->hw_sqid);
xdp_unreg:
	xdp_rxq_info_unreg(&q->xdp_rxq);
out:
	netdev_err(q->netdev,
		   "Failed to create Rx queue %u on device, error %d\n",
		   q->qidx, err);
	return err;
}

static void fun_rxq_free_dev(struct funeth_rxq *q)
{
	struct funeth_priv *fp = netdev_priv(q->netdev);
	struct fun_irq *irq;

	if (q->init_state < FUN_QSTATE_INIT_FULL)
		return;

	irq = container_of(q->napi, struct fun_irq, napi);
	netif_info(fp, ifdown, q->netdev,
		   "Freeing Rx queue %u (id %u/%u), IRQ %u\n",
		   q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx);

	irq->rxq = NULL;
	xdp_rxq_info_unreg(&q->xdp_rxq);
	fun_destroy_sq(fp->fdev, q->hw_sqid);
	fun_destroy_cq(fp->fdev, q->hw_cqid);
	q->init_state = FUN_QSTATE_INIT_SW;
}

/* Create or advance an Rx queue, allocating all the host and device resources
 * needed to reach the target state.
 */
int funeth_rxq_create(struct net_device *dev, unsigned int qidx,
		      unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq,
		      int state, struct funeth_rxq **qp)
{
	struct funeth_rxq *q = *qp;
	int err;

	if (!q) {
		q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq);
		if (IS_ERR(q))
			return PTR_ERR(q);
	}

	if (q->init_state >= state)
		goto out;

	err = fun_rxq_create_dev(q, irq);
	if (err) {
		if (!*qp)
			fun_rxq_free_sw(q);
		return err;
	}

out:
	*qp = q;
	return 0;
}

/* Free Rx queue resources until it reaches the target state. */
struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state)
{
	if (state < FUN_QSTATE_INIT_FULL)
		fun_rxq_free_dev(q);

	if (state == FUN_QSTATE_DESTROYED) {
		fun_rxq_free_sw(q);
		q = NULL;
	}

	return q;
}