Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 | // SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/string_helpers.h> #include "i915_drv.h" #include "intel_engine_regs.h" #include "intel_gt_regs.h" #include "intel_sseu.h" void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices, u8 max_subslices, u8 max_eus_per_subslice) { sseu->max_slices = max_slices; sseu->max_subslices = max_subslices; sseu->max_eus_per_subslice = max_eus_per_subslice; } unsigned int intel_sseu_subslice_total(const struct sseu_dev_info *sseu) { unsigned int i, total = 0; if (sseu->has_xehp_dss) return bitmap_weight(sseu->subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->subslice_mask)); for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++) total += hweight8(sseu->subslice_mask.hsw[i]); return total; } unsigned int intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice) { WARN_ON(sseu->has_xehp_dss); if (WARN_ON(slice >= sseu->max_slices)) return 0; return sseu->subslice_mask.hsw[slice]; } static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, int subslice) { if (sseu->has_xehp_dss) { WARN_ON(slice > 0); return sseu->eu_mask.xehp[subslice]; } else { return sseu->eu_mask.hsw[slice][subslice]; } } static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, u16 eu_mask) { GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice); if (sseu->has_xehp_dss) { GEM_WARN_ON(slice > 0); sseu->eu_mask.xehp[subslice] = eu_mask; } else { sseu->eu_mask.hsw[slice][subslice] = eu_mask; } } static u16 compute_eu_total(const struct sseu_dev_info *sseu) { int s, ss, total = 0; for (s = 0; s < sseu->max_slices; s++) for (ss = 0; ss < sseu->max_subslices; ss++) if (sseu->has_xehp_dss) total += hweight16(sseu->eu_mask.xehp[ss]); else total += hweight16(sseu->eu_mask.hsw[s][ss]); return total; } /** * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer * @to: Pointer to userspace buffer to copy to * @sseu: SSEU structure containing EU mask to copy * * Copies the EU mask to a userspace buffer in the format expected by * the query ioctl's topology queries. * * Returns the result of the copy_to_user() operation. */ int intel_sseu_copy_eumask_to_user(void __user *to, const struct sseu_dev_info *sseu) { u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {}; int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); int len = sseu->max_slices * sseu->max_subslices * eu_stride; int s, ss, i; for (s = 0; s < sseu->max_slices; s++) { for (ss = 0; ss < sseu->max_subslices; ss++) { int uapi_offset = s * sseu->max_subslices * eu_stride + ss * eu_stride; u16 mask = sseu_get_eus(sseu, s, ss); for (i = 0; i < eu_stride; i++) eu_mask[uapi_offset + i] = (mask >> (BITS_PER_BYTE * i)) & 0xff; } } return copy_to_user(to, eu_mask, len); } /** * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer * @to: Pointer to userspace buffer to copy to * @sseu: SSEU structure containing subslice mask to copy * * Copies the subslice mask to a userspace buffer in the format expected by * the query ioctl's topology queries. * * Returns the result of the copy_to_user() operation. */ int intel_sseu_copy_ssmask_to_user(void __user *to, const struct sseu_dev_info *sseu) { u8 ss_mask[GEN_SS_MASK_SIZE] = {}; int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices); int len = sseu->max_slices * ss_stride; int s, ss, i; for (s = 0; s < sseu->max_slices; s++) { for (ss = 0; ss < sseu->max_subslices; ss++) { i = s * ss_stride * BITS_PER_BYTE + ss; if (!intel_sseu_has_subslice(sseu, s, ss)) continue; ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); } } return copy_to_user(to, ss_mask, len); } static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, u32 ss_en, u16 eu_en) { u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0); int ss; sseu->slice_mask |= BIT(0); sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask; for (ss = 0; ss < sseu->max_subslices; ss++) if (intel_sseu_has_subslice(sseu, 0, ss)) sseu_set_eus(sseu, 0, ss, eu_en); sseu->eu_per_subslice = hweight16(eu_en); sseu->eu_total = compute_eu_total(sseu); } static void xehp_compute_sseu_info(struct sseu_dev_info *sseu, u16 eu_en) { int ss; sseu->slice_mask |= BIT(0); bitmap_or(sseu->subslice_mask.xehp, sseu->compute_subslice_mask.xehp, sseu->geometry_subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->subslice_mask)); for (ss = 0; ss < sseu->max_subslices; ss++) if (intel_sseu_has_subslice(sseu, 0, ss)) sseu_set_eus(sseu, 0, ss, eu_en); sseu->eu_per_subslice = hweight16(eu_en); sseu->eu_total = compute_eu_total(sseu); } static void xehp_load_dss_mask(struct intel_uncore *uncore, intel_sseu_ss_mask_t *ssmask, int numregs, ...) { va_list argp; u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {}; int i; if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS)) numregs = I915_MAX_SS_FUSE_REGS; va_start(argp, numregs); for (i = 0; i < numregs; i++) fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t)); va_end(argp); bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32); } static void xehp_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u16 eu_en = 0; u8 eu_en_fuse; int num_compute_regs, num_geometry_regs; int eu; if (IS_PONTEVECCHIO(gt->i915)) { num_geometry_regs = 0; num_compute_regs = 2; } else { num_geometry_regs = 1; num_compute_regs = 1; } /* * The concept of slice has been removed in Xe_HP. To be compatible * with prior generations, assume a single slice across the entire * device. Then calculate out the DSS for each workload type within * that software slice. */ intel_sseu_set_info(sseu, 1, 32 * max(num_geometry_regs, num_compute_regs), HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16); sseu->has_xehp_dss = 1; xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask, num_geometry_regs, GEN12_GT_GEOMETRY_DSS_ENABLE); xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask, num_compute_regs, GEN12_GT_COMPUTE_DSS_ENABLE, XEHPC_GT_COMPUTE_DSS_ENABLE_EXT); eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK; if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915)) eu_en = eu_en_fuse; else for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) if (eu_en_fuse & BIT(eu)) eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); xehp_compute_sseu_info(sseu, eu_en); } static void gen12_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u32 g_dss_en; u16 eu_en = 0; u8 eu_en_fuse; u8 s_en; int eu; /* * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. * Instead of splitting these, provide userspace with an array * of DSS to more closely represent the hardware resource. */ intel_sseu_set_info(sseu, 1, 6, 16); /* * Although gen12 architecture supported multiple slices, TGL, RKL, * DG1, and ADL only had a single slice. */ s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; drm_WARN_ON(>->i915->drm, s_en != 0x1); g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE); /* one bit per pair of EUs */ eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) if (eu_en_fuse & BIT(eu)) eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); gen11_compute_sseu_info(sseu, g_dss_en, eu_en); /* TGL only supports slice-level power gating */ sseu->has_slice_pg = 1; } static void gen11_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u32 ss_en; u8 eu_en; u8 s_en; if (IS_JSL_EHL(gt->i915)) intel_sseu_set_info(sseu, 1, 4, 8); else intel_sseu_set_info(sseu, 1, 8, 8); /* * Although gen11 architecture supported multiple slices, ICL and * EHL/JSL only had a single slice in practice. */ s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; drm_WARN_ON(>->i915->drm, s_en != 0x1); ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE); eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); gen11_compute_sseu_info(sseu, ss_en, eu_en); /* ICL has no power gating restrictions. */ sseu->has_slice_pg = 1; sseu->has_subslice_pg = 1; sseu->has_eu_pg = 1; } static void cherryview_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; u32 fuse; fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT); sseu->slice_mask = BIT(0); intel_sseu_set_info(sseu, 1, 2, 8); if (!(fuse & CHV_FGT_DISABLE_SS0)) { u8 disabled_mask = ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> CHV_FGT_EU_DIS_SS0_R0_SHIFT) | (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); sseu->subslice_mask.hsw[0] |= BIT(0); sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF); } if (!(fuse & CHV_FGT_DISABLE_SS1)) { u8 disabled_mask = ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> CHV_FGT_EU_DIS_SS1_R0_SHIFT) | (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); sseu->subslice_mask.hsw[0] |= BIT(1); sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF); } sseu->eu_total = compute_eu_total(sseu); /* * CHV expected to always have a uniform distribution of EU * across subslices. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? sseu->eu_total / intel_sseu_subslice_total(sseu) : 0; /* * CHV supports subslice power gating on devices with more than * one subslice, and supports EU power gating on devices with * more than one EU pair per subslice. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = (sseu->eu_per_subslice > 2); } static void gen9_sseu_info_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u32 fuse2, eu_disable, subslice_mask; const u8 eu_mask = 0xff; int s, ss; fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; /* BXT has a single slice and at most 3 subslices. */ intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3, IS_GEN9_LP(i915) ? 3 : 4, 8); /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ subslice_mask = (1 << sseu->max_subslices) - 1; subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> GEN9_F2_SS_DIS_SHIFT); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < sseu->max_slices; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; sseu->subslice_mask.hsw[s] = subslice_mask; eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s)); for (ss = 0; ss < sseu->max_subslices; ss++) { int eu_per_ss; u8 eu_disabled_mask; if (!intel_sseu_has_subslice(sseu, s, ss)) /* skip disabled subslice */ continue; eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask); eu_per_ss = sseu->max_eus_per_subslice - hweight8(eu_disabled_mask); /* * Record which subslice(s) has(have) 7 EUs. we * can tune the hash used to spread work among * subslices if they are unbalanced. */ if (eu_per_ss == 7) sseu->subslice_7eu[s] |= BIT(ss); } } sseu->eu_total = compute_eu_total(sseu); /* * SKL is expected to always have a uniform distribution * of EU across subslices with the exception that any one * EU in any one subslice may be fused off for die * recovery. BXT is expected to be perfectly uniform in EU * distribution. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* * SKL+ supports slice power gating on devices with more than * one slice, and supports EU power gating on devices with * more than one EU pair per subslice. BXT+ supports subslice * power gating on devices with more than one subslice, and * supports EU power gating on devices with more than one EU * pair per subslice. */ sseu->has_slice_pg = !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = sseu->eu_per_subslice > 2; if (IS_GEN9_LP(i915)) { #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss))) RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3; sseu->min_eu_in_pool = 0; if (HAS_POOLED_EU(i915)) { if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) sseu->min_eu_in_pool = 3; else if (IS_SS_DISABLED(1)) sseu->min_eu_in_pool = 6; else sseu->min_eu_in_pool = 9; } #undef IS_SS_DISABLED } } static void bdw_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; int s, ss; u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ u32 eu_disable0, eu_disable1, eu_disable2; fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; intel_sseu_set_info(sseu, 3, 3, 8); /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ subslice_mask = GENMASK(sseu->max_subslices - 1, 0); subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> GEN8_F2_SS_DIS_SHIFT); eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0); eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1); eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2); eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK; eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) | ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) << (32 - GEN8_EU_DIS0_S1_SHIFT)); eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) | ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) << (32 - GEN8_EU_DIS1_S2_SHIFT)); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < sseu->max_slices; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; sseu->subslice_mask.hsw[s] = subslice_mask; for (ss = 0; ss < sseu->max_subslices; ss++) { u8 eu_disabled_mask; u32 n_disabled; if (!intel_sseu_has_subslice(sseu, s, ss)) /* skip disabled subslice */ continue; eu_disabled_mask = eu_disable[s] >> (ss * sseu->max_eus_per_subslice); sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF); n_disabled = hweight8(eu_disabled_mask); /* * Record which subslices have 7 EUs. */ if (sseu->max_eus_per_subslice - n_disabled == 7) sseu->subslice_7eu[s] |= 1 << ss; } } sseu->eu_total = compute_eu_total(sseu); /* * BDW is expected to always have a uniform distribution of EU across * subslices with the exception that any one EU in any one subslice may * be fused off for die recovery. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* * BDW supports slice power gating on devices with more than * one slice. */ sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } static void hsw_sseu_info_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct sseu_dev_info *sseu = >->info.sseu; u32 fuse1; u8 subslice_mask = 0; int s, ss; /* * There isn't a register to tell us how many slices/subslices. We * work off the PCI-ids here. */ switch (INTEL_INFO(i915)->gt) { default: MISSING_CASE(INTEL_INFO(i915)->gt); fallthrough; case 1: sseu->slice_mask = BIT(0); subslice_mask = BIT(0); break; case 2: sseu->slice_mask = BIT(0); subslice_mask = BIT(0) | BIT(1); break; case 3: sseu->slice_mask = BIT(0) | BIT(1); subslice_mask = BIT(0) | BIT(1); break; } fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) { default: MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)); fallthrough; case HSW_F1_EU_DIS_10EUS: sseu->eu_per_subslice = 10; break; case HSW_F1_EU_DIS_8EUS: sseu->eu_per_subslice = 8; break; case HSW_F1_EU_DIS_6EUS: sseu->eu_per_subslice = 6; break; } intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), hweight8(subslice_mask), sseu->eu_per_subslice); for (s = 0; s < sseu->max_slices; s++) { sseu->subslice_mask.hsw[s] = subslice_mask; for (ss = 0; ss < sseu->max_subslices; ss++) { sseu_set_eus(sseu, s, ss, (1UL << sseu->eu_per_subslice) - 1); } } sseu->eu_total = compute_eu_total(sseu); /* No powergating for you. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } void intel_sseu_info_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) xehp_sseu_info_init(gt); else if (GRAPHICS_VER(i915) >= 12) gen12_sseu_info_init(gt); else if (GRAPHICS_VER(i915) >= 11) gen11_sseu_info_init(gt); else if (GRAPHICS_VER(i915) >= 9) gen9_sseu_info_init(gt); else if (IS_BROADWELL(i915)) bdw_sseu_info_init(gt); else if (IS_CHERRYVIEW(i915)) cherryview_sseu_info_init(gt); else if (IS_HASWELL(i915)) hsw_sseu_info_init(gt); } u32 intel_sseu_make_rpcs(struct intel_gt *gt, const struct intel_sseu *req_sseu) { struct drm_i915_private *i915 = gt->i915; const struct sseu_dev_info *sseu = >->info.sseu; bool subslice_pg = sseu->has_subslice_pg; u8 slices, subslices; u32 rpcs = 0; /* * No explicit RPCS request is needed to ensure full * slice/subslice/EU enablement prior to Gen9. */ if (GRAPHICS_VER(i915) < 9) return 0; /* * If i915/perf is active, we want a stable powergating configuration * on the system. Use the configuration pinned by i915/perf. */ if (i915->perf.exclusive_stream) req_sseu = &i915->perf.sseu; slices = hweight8(req_sseu->slice_mask); subslices = hweight8(req_sseu->subslice_mask); /* * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits * wide and Icelake has up to eight subslices, specfial programming is * needed in order to correctly enable all subslices. * * According to documentation software must consider the configuration * as 2x4x8 and hardware will translate this to 1x8x8. * * Furthemore, even though SScount is three bits, maximum documented * value for it is four. From this some rules/restrictions follow: * * 1. * If enabled subslice count is greater than four, two whole slices must * be enabled instead. * * 2. * When more than one slice is enabled, hardware ignores the subslice * count altogether. * * From these restrictions it follows that it is not possible to enable * a count of subslices between the SScount maximum of four restriction, * and the maximum available number on a particular SKU. Either all * subslices are enabled, or a count between one and four on the first * slice. */ if (GRAPHICS_VER(i915) == 11 && slices == 1 && subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) { GEM_BUG_ON(subslices & 1); subslice_pg = false; slices *= 2; } /* * Starting in Gen9, render power gating can leave * slice/subslice/EU in a partially enabled state. We * must make an explicit request through RPCS for full * enablement. */ if (sseu->has_slice_pg) { u32 mask, val = slices; if (GRAPHICS_VER(i915) >= 11) { mask = GEN11_RPCS_S_CNT_MASK; val <<= GEN11_RPCS_S_CNT_SHIFT; } else { mask = GEN8_RPCS_S_CNT_MASK; val <<= GEN8_RPCS_S_CNT_SHIFT; } GEM_BUG_ON(val & ~mask); val &= mask; rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val; } if (subslice_pg) { u32 val = subslices; val <<= GEN8_RPCS_SS_CNT_SHIFT; GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK); val &= GEN8_RPCS_SS_CNT_MASK; rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val; } if (sseu->has_eu_pg) { u32 val; val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK); val &= GEN8_RPCS_EU_MIN_MASK; rpcs |= val; val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK); val &= GEN8_RPCS_EU_MAX_MASK; rpcs |= val; rpcs |= GEN8_RPCS_ENABLE; } return rpcs; } void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) { int s; if (sseu->has_xehp_dss) { drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); drm_printf(p, "geometry dss mask=%*pb\n", XEHP_BITMAP_BITS(sseu->geometry_subslice_mask), sseu->geometry_subslice_mask.xehp); drm_printf(p, "compute dss mask=%*pb\n", XEHP_BITMAP_BITS(sseu->compute_subslice_mask), sseu->compute_subslice_mask.xehp); } else { drm_printf(p, "slice total: %u, mask=%04x\n", hweight8(sseu->slice_mask), sseu->slice_mask); drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); for (s = 0; s < sseu->max_slices; s++) { u8 ss_mask = sseu->subslice_mask.hsw[s]; drm_printf(p, "slice%d: %u subslices, mask=%08x\n", s, hweight8(ss_mask), ss_mask); } } drm_printf(p, "EU total: %u\n", sseu->eu_total); drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); drm_printf(p, "has slice power gating: %s\n", str_yes_no(sseu->has_slice_pg)); drm_printf(p, "has subslice power gating: %s\n", str_yes_no(sseu->has_subslice_pg)); drm_printf(p, "has EU power gating: %s\n", str_yes_no(sseu->has_eu_pg)); } static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu, struct drm_printer *p) { int s, ss; for (s = 0; s < sseu->max_slices; s++) { u8 ss_mask = sseu->subslice_mask.hsw[s]; drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", s, hweight8(ss_mask), ss_mask); for (ss = 0; ss < sseu->max_subslices; ss++) { u16 enabled_eus = sseu_get_eus(sseu, s, ss); drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", ss, hweight16(enabled_eus), enabled_eus); } } } static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu, struct drm_printer *p) { int dss; for (dss = 0; dss < sseu->max_subslices; dss++) { u16 enabled_eus = sseu_get_eus(sseu, 0, dss); drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss, str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)), str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)), hweight16(enabled_eus), enabled_eus); } } void intel_sseu_print_topology(struct drm_i915_private *i915, const struct sseu_dev_info *sseu, struct drm_printer *p) { if (sseu->max_slices == 0) { drm_printf(p, "Unavailable\n"); } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { sseu_print_xehp_topology(sseu, p); } else { sseu_print_hsw_topology(sseu, p); } } void intel_sseu_print_ss_info(const char *type, const struct sseu_dev_info *sseu, struct seq_file *m) { int s; if (sseu->has_xehp_dss) { seq_printf(m, " %s Geometry DSS: %u\n", type, bitmap_weight(sseu->geometry_subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->geometry_subslice_mask))); seq_printf(m, " %s Compute DSS: %u\n", type, bitmap_weight(sseu->compute_subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->compute_subslice_mask))); } else { for (s = 0; s < fls(sseu->slice_mask); s++) seq_printf(m, " %s Slice%i subslices: %u\n", type, s, hweight8(sseu->subslice_mask.hsw[s])); } } u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask, int dss_per_slice) { intel_sseu_ss_mask_t per_slice_mask = {}; unsigned long slice_mask = 0; int i; WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) > 8 * sizeof(slice_mask)); bitmap_fill(per_slice_mask.xehp, dss_per_slice); for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) { if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice)) slice_mask |= BIT(i); bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice, XEHP_BITMAP_BITS(dss_mask)); } return slice_mask; } |