Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 | // SPDX-License-Identifier: GPL-2.0-or-later /* * spu_switch.c * * (C) Copyright IBM Corp. 2005 * * Author: Mark Nutter <mnutter@us.ibm.com> * * Host-side part of SPU context switch sequence outlined in * Synergistic Processor Element, Book IV. * * A fully premptive switch of an SPE is very expensive in terms * of time and system resources. SPE Book IV indicates that SPE * allocation should follow a "serially reusable device" model, * in which the SPE is assigned a task until it completes. When * this is not possible, this sequence may be used to premptively * save, and then later (optionally) restore the context of a * program executing on an SPE. */ #include <linux/export.h> #include <linux/errno.h> #include <linux/hardirq.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/vmalloc.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <asm/io.h> #include <asm/spu.h> #include <asm/spu_priv1.h> #include <asm/spu_csa.h> #include <asm/mmu_context.h> #include "spufs.h" #include "spu_save_dump.h" #include "spu_restore_dump.h" #if 0 #define POLL_WHILE_TRUE(_c) { \ do { \ } while (_c); \ } #else #define RELAX_SPIN_COUNT 1000 #define POLL_WHILE_TRUE(_c) { \ do { \ int _i; \ for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \ cpu_relax(); \ } \ if (unlikely(_c)) yield(); \ else break; \ } while (_c); \ } #endif /* debug */ #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c)) static inline void acquire_spu_lock(struct spu *spu) { /* Save, Step 1: * Restore, Step 1: * Acquire SPU-specific mutual exclusion lock. * TBD. */ } static inline void release_spu_lock(struct spu *spu) { /* Restore, Step 76: * Release SPU-specific mutual exclusion lock. * TBD. */ } static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 isolate_state; /* Save, Step 2: * Save, Step 6: * If SPU_Status[E,L,IS] any field is '1', this * SPU is in isolate state and cannot be context * saved at this time. */ isolate_state = SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS; return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0; } static inline void disable_interrupts(struct spu_state *csa, struct spu *spu) { /* Save, Step 3: * Restore, Step 2: * Save INT_Mask_class0 in CSA. * Write INT_MASK_class0 with value of 0. * Save INT_Mask_class1 in CSA. * Write INT_MASK_class1 with value of 0. * Save INT_Mask_class2 in CSA. * Write INT_MASK_class2 with value of 0. * Synchronize all three interrupts to be sure * we no longer execute a handler on another CPU. */ spin_lock_irq(&spu->register_lock); if (csa) { csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0); csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1); csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2); } spu_int_mask_set(spu, 0, 0ul); spu_int_mask_set(spu, 1, 0ul); spu_int_mask_set(spu, 2, 0ul); eieio(); spin_unlock_irq(&spu->register_lock); /* * This flag needs to be set before calling synchronize_irq so * that the update will be visible to the relevant handlers * via a simple load. */ set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); synchronize_irq(spu->irqs[0]); synchronize_irq(spu->irqs[1]); synchronize_irq(spu->irqs[2]); } static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu) { /* Save, Step 4: * Restore, Step 25. * Set a software watchdog timer, which specifies the * maximum allowable time for a context save sequence. * * For present, this implementation will not set a global * watchdog timer, as virtualization & variable system load * may cause unpredictable execution times. */ } static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu) { /* Save, Step 5: * Restore, Step 3: * Inhibit user-space access (if provided) to this * SPU by unmapping the virtual pages assigned to * the SPU memory-mapped I/O (MMIO) for problem * state. TBD. */ } static inline void set_switch_pending(struct spu_state *csa, struct spu *spu) { /* Save, Step 7: * Restore, Step 5: * Set a software context switch pending flag. * Done above in Step 3 - disable_interrupts(). */ } static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 8: * Suspend DMA and save MFC_CNTL. */ switch (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) { case MFC_CNTL_SUSPEND_IN_PROGRESS: POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == MFC_CNTL_SUSPEND_COMPLETE); fallthrough; case MFC_CNTL_SUSPEND_COMPLETE: if (csa) csa->priv2.mfc_control_RW = in_be64(&priv2->mfc_control_RW) | MFC_CNTL_SUSPEND_DMA_QUEUE; break; case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION: out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == MFC_CNTL_SUSPEND_COMPLETE); if (csa) csa->priv2.mfc_control_RW = in_be64(&priv2->mfc_control_RW) & ~MFC_CNTL_SUSPEND_DMA_QUEUE & ~MFC_CNTL_SUSPEND_MASK; break; } } static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 9: * Save SPU_Runcntl in the CSA. This value contains * the "Application Desired State". */ csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW); } static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu) { /* Save, Step 10: * Save MFC_SR1 in the CSA. */ csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu); } static inline void save_spu_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 11: * Read SPU_Status[R], and save to CSA. */ if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) { csa->prob.spu_status_R = in_be32(&prob->spu_status_R); } else { u32 stopped; out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; if ((in_be32(&prob->spu_status_R) & stopped) == 0) csa->prob.spu_status_R = SPU_STATUS_RUNNING; else csa->prob.spu_status_R = in_be32(&prob->spu_status_R); } } static inline void save_mfc_stopped_status(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; const u64 mask = MFC_CNTL_DECREMENTER_RUNNING | MFC_CNTL_DMA_QUEUES_EMPTY; /* Save, Step 12: * Read MFC_CNTL[Ds]. Update saved copy of * CSA.MFC_CNTL[Ds]. * * update: do the same with MFC_CNTL[Q]. */ csa->priv2.mfc_control_RW &= ~mask; csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask; } static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 13: * Write MFC_CNTL[Dh] set to a '1' to halt * the decrementer. */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK); eieio(); } static inline void save_timebase(struct spu_state *csa, struct spu *spu) { /* Save, Step 14: * Read PPE Timebase High and Timebase low registers * and save in CSA. TBD. */ csa->suspend_time = get_cycles(); } static inline void remove_other_spu_access(struct spu_state *csa, struct spu *spu) { /* Save, Step 15: * Remove other SPU access to this SPU by unmapping * this SPU's pages from their address space. TBD. */ } static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 16: * Restore, Step 11. * Write SPU_MSSync register. Poll SPU_MSSync[P] * for a value of 0. */ out_be64(&prob->spc_mssync_RW, 1UL); POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING); } static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu) { /* Save, Step 17: * Restore, Step 12. * Restore, Step 48. * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register. * Then issue a PPE sync instruction. */ spu_tlb_invalidate(spu); mb(); } static inline void handle_pending_interrupts(struct spu_state *csa, struct spu *spu) { /* Save, Step 18: * Handle any pending interrupts from this SPU * here. This is OS or hypervisor specific. One * option is to re-enable interrupts to handle any * pending interrupts, with the interrupt handlers * recognizing the software Context Switch Pending * flag, to ensure the SPU execution or MFC command * queue is not restarted. TBD. */ } static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Save, Step 19: * If MFC_Cntl[Se]=0 then save * MFC command queues. */ if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) { for (i = 0; i < 8; i++) { csa->priv2.puq[i].mfc_cq_data0_RW = in_be64(&priv2->puq[i].mfc_cq_data0_RW); csa->priv2.puq[i].mfc_cq_data1_RW = in_be64(&priv2->puq[i].mfc_cq_data1_RW); csa->priv2.puq[i].mfc_cq_data2_RW = in_be64(&priv2->puq[i].mfc_cq_data2_RW); csa->priv2.puq[i].mfc_cq_data3_RW = in_be64(&priv2->puq[i].mfc_cq_data3_RW); } for (i = 0; i < 16; i++) { csa->priv2.spuq[i].mfc_cq_data0_RW = in_be64(&priv2->spuq[i].mfc_cq_data0_RW); csa->priv2.spuq[i].mfc_cq_data1_RW = in_be64(&priv2->spuq[i].mfc_cq_data1_RW); csa->priv2.spuq[i].mfc_cq_data2_RW = in_be64(&priv2->spuq[i].mfc_cq_data2_RW); csa->priv2.spuq[i].mfc_cq_data3_RW = in_be64(&priv2->spuq[i].mfc_cq_data3_RW); } } } static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 20: * Save the PPU_QueryMask register * in the CSA. */ csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW); } static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 21: * Save the PPU_QueryType register * in the CSA. */ csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW); } static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save the Prxy_TagStatus register in the CSA. * * It is unnecessary to restore dma_tagstatus_R, however, * dma_tagstatus_R in the CSA is accessed via backing_ops, so * we must save it. */ csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R); } static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 22: * Save the MFC_CSR_TSQ register * in the LSCSA. */ csa->priv2.spu_tag_status_query_RW = in_be64(&priv2->spu_tag_status_query_RW); } static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 23: * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2 * registers in the CSA. */ csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW); csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW); } static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 24: * Save the MFC_CSR_ATO register in * the CSA. */ csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW); } static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu) { /* Save, Step 25: * Save the MFC_TCLASS_ID register in * the CSA. */ csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu); } static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu) { /* Save, Step 26: * Restore, Step 23. * Write the MFC_TCLASS_ID register with * the value 0x10000000. */ spu_mfc_tclass_id_set(spu, 0x10000000); eieio(); } static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 27: * Restore, Step 14. * Write MFC_CNTL[Pc]=1 (purge queue). */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST | MFC_CNTL_SUSPEND_MASK); eieio(); } static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 28: * Poll MFC_CNTL[Ps] until value '11' is read * (purge complete). */ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_PURGE_DMA_STATUS_MASK) == MFC_CNTL_PURGE_DMA_COMPLETE); } static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu) { /* Save, Step 30: * Restore, Step 18: * Write MFC_SR1 with MFC_SR1[D=0,S=1] and * MFC_SR1[TL,R,Pr,T] set correctly for the * OS specific environment. * * Implementation note: The SPU-side code * for save/restore is privileged, so the * MFC_SR1[Pr] bit is not set. * */ spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK | MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK)); } static inline void save_spu_npc(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 31: * Save SPU_NPC in the CSA. */ csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW); } static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 32: * Save SPU_PrivCntl in the CSA. */ csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW); } static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 33: * Restore, Step 16: * Write SPU_PrivCntl[S,Le,A] fields reset to 0. */ out_be64(&priv2->spu_privcntl_RW, 0UL); eieio(); } static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 34: * Save SPU_LSLR in the CSA. */ csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW); } static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 35: * Restore, Step 17. * Reset SPU_LSLR. */ out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK); eieio(); } static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 36: * Save SPU_Cfg in the CSA. */ csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW); } static inline void save_pm_trace(struct spu_state *csa, struct spu *spu) { /* Save, Step 37: * Save PM_Trace_Tag_Wait_Mask in the CSA. * Not performed by this implementation. */ } static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu) { /* Save, Step 38: * Save RA_GROUP_ID register and the * RA_ENABLE reigster in the CSA. */ csa->priv1.resource_allocation_groupID_RW = spu_resource_allocation_groupID_get(spu); csa->priv1.resource_allocation_enable_RW = spu_resource_allocation_enable_get(spu); } static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 39: * Save MB_Stat register in the CSA. */ csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R); } static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 40: * Save the PPU_MB register in the CSA. */ csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R); } static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 41: * Save the PPUINT_MB register in the CSA. */ csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R); } static inline void save_ch_part1(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; int i; /* Save, Step 42: */ /* Save CH 1, without channel count */ out_be64(&priv2->spu_chnlcntptr_RW, 1); csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW); /* Save the following CH: [0,3,4,24,25,27] */ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW); csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW); out_be64(&priv2->spu_chnldata_RW, 0UL); out_be64(&priv2->spu_chnlcnt_RW, 0UL); eieio(); } } static inline void save_spu_mb(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Save, Step 43: * Save SPU Read Mailbox Channel. */ out_be64(&priv2->spu_chnlcntptr_RW, 29UL); eieio(); csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW); for (i = 0; i < 4; i++) { csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW); } out_be64(&priv2->spu_chnlcnt_RW, 0UL); eieio(); } static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 44: * Save MFC_CMD Channel. */ out_be64(&priv2->spu_chnlcntptr_RW, 21UL); eieio(); csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW); eieio(); } static inline void reset_ch(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL }; u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL }; u64 idx; int i; /* Save, Step 45: * Reset the following CH: [21, 23, 28, 30] */ for (i = 0; i < 4; i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); eieio(); } } static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Save, Step 46: * Restore, Step 25. * Write MFC_CNTL[Sc]=0 (resume queue processing). */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE); } static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu, unsigned int *code, int code_size) { /* Save, Step 47: * Restore, Step 30. * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All * register, then initialize SLB_VSID and SLB_ESID * to provide access to SPU context save code and * LSCSA. * * This implementation places both the context * switch code and LSCSA in kernel address space. * * Further this implementation assumes that the * MFC_SR1[R]=1 (in other words, assume that * translation is desired by OS environment). */ spu_invalidate_slbs(spu); spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size); } static inline void set_switch_active(struct spu_state *csa, struct spu *spu) { /* Save, Step 48: * Restore, Step 23. * Change the software context switch pending flag * to context switch active. This implementation does * not uses a switch active flag. * * Now that we have saved the mfc in the csa, we can add in the * restart command if an exception occurred. */ if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags)) csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND; clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); mb(); } static inline void enable_interrupts(struct spu_state *csa, struct spu *spu) { unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR | CLASS1_ENABLE_STORAGE_FAULT_INTR; /* Save, Step 49: * Restore, Step 22: * Reset and then enable interrupts, as * needed by OS. * * This implementation enables only class1 * (translation) interrupts. */ spin_lock_irq(&spu->register_lock); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); spu_int_mask_set(spu, 0, 0ul); spu_int_mask_set(spu, 1, class1_mask); spu_int_mask_set(spu, 2, 0ul); spin_unlock_irq(&spu->register_lock); } static inline int send_mfc_dma(struct spu *spu, unsigned long ea, unsigned int ls_offset, unsigned int size, unsigned int tag, unsigned int rclass, unsigned int cmd) { struct spu_problem __iomem *prob = spu->problem; union mfc_tag_size_class_cmd command; unsigned int transfer_size; volatile unsigned int status = 0x0; while (size > 0) { transfer_size = (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size; command.u.mfc_size = transfer_size; command.u.mfc_tag = tag; command.u.mfc_rclassid = rclass; command.u.mfc_cmd = cmd; do { out_be32(&prob->mfc_lsa_W, ls_offset); out_be64(&prob->mfc_ea_W, ea); out_be64(&prob->mfc_union_W.all64, command.all64); status = in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32); if (unlikely(status & 0x2)) { cpu_relax(); } } while (status & 0x3); size -= transfer_size; ea += transfer_size; ls_offset += transfer_size; } return 0; } static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; unsigned int ls_offset = 0x0; unsigned int size = 16384; unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_PUT_CMD; /* Save, Step 50: * Issue a DMA command to copy the first 16K bytes * of local storage to the CSA. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void set_spu_npc(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 51: * Restore, Step 31. * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry * point address of context save code in local * storage. * * This implementation uses SPU-side save/restore * programs with entry points at LSA of 0. */ out_be32(&prob->spu_npc_RW, 0); eieio(); } static inline void set_signot1(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; union { u64 ull; u32 ui[2]; } addr64; /* Save, Step 52: * Restore, Step 32: * Write SPU_Sig_Notify_1 register with upper 32-bits * of the CSA.LSCSA effective address. */ addr64.ull = (u64) csa->lscsa; out_be32(&prob->signal_notify1, addr64.ui[0]); eieio(); } static inline void set_signot2(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; union { u64 ull; u32 ui[2]; } addr64; /* Save, Step 53: * Restore, Step 33: * Write SPU_Sig_Notify_2 register with lower 32-bits * of the CSA.LSCSA effective address. */ addr64.ull = (u64) csa->lscsa; out_be32(&prob->signal_notify2, addr64.ui[1]); eieio(); } static inline void send_save_code(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&spu_save_code[0]; unsigned int ls_offset = 0x0; unsigned int size = sizeof(spu_save_code); unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_GETFS_CMD; /* Save, Step 54: * Issue a DMA command to copy context save code * to local storage and start SPU. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Save, Step 55: * Restore, Step 38. * Write PPU_QueryMask=1 (enable Tag Group 0) * and issue eieio instruction. */ out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0)); eieio(); } static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 mask = MFC_TAGID_TO_TAGMASK(0); unsigned long flags; /* Save, Step 56: * Restore, Step 39. * Restore, Step 39. * Restore, Step 46. * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete) * or write PPU_QueryType[TS]=01 and wait for Tag Group * Complete Interrupt. Write INT_Stat_Class0 or * INT_Stat_Class2 with value of 'handled'. */ POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask); local_irq_save(flags); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); local_irq_restore(flags); } static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; unsigned long flags; /* Save, Step 57: * Restore, Step 40. * Poll until SPU_Status[R]=0 or wait for SPU Class 0 * or SPU Class 2 interrupt. Write INT_Stat_class0 * or INT_Stat_class2 with value of handled. */ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); local_irq_save(flags); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); local_irq_restore(flags); } static inline int check_save_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 complete; /* Save, Step 54: * If SPU_Status[P]=1 and SPU_Status[SC] = "success", * context save succeeded, otherwise context save * failed. */ complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) | SPU_STATUS_STOPPED_BY_STOP); return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; } static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu) { /* Restore, Step 4: * If required, notify the "using application" that * the SPU task has been terminated. TBD. */ } static inline void suspend_mfc_and_halt_decr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 7: * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend * the queue and halt the decrementer. */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE | MFC_CNTL_DECREMENTER_HALTED); eieio(); } static inline void wait_suspend_mfc_complete(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 8: * Restore, Step 47. * Poll MFC_CNTL[Ss] until 11 is returned. */ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == MFC_CNTL_SUSPEND_COMPLETE); } static inline int suspend_spe(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 9: * If SPU_Status[R]=1, stop SPU execution * and wait for stop to complete. * * Returns 1 if SPU_Status[R]=1 on entry. * 0 otherwise */ if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) { if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_EXIT_STATUS) { POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } if ((in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_LOAD_STATUS) || (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE)) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); out_be32(&prob->spu_runcntl_RW, 0x2); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } if (in_be32(&prob->spu_status_R) & SPU_STATUS_WAITING_FOR_CHANNEL) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } return 1; } return 0; } static inline void clear_spu_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 10: * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1, * release SPU from isolate state. */ if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) { if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_EXIT_STATUS) { spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); eieio(); out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } if ((in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_LOAD_STATUS) || (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE)) { spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); eieio(); out_be32(&prob->spu_runcntl_RW, 0x2); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } } } static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; u64 idx; int i; /* Restore, Step 20: */ /* Reset CH 1 */ out_be64(&priv2->spu_chnlcntptr_RW, 1); out_be64(&priv2->spu_chnldata_RW, 0UL); /* Reset the following CH: [0,3,4,24,25,27] */ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnldata_RW, 0UL); out_be64(&priv2->spu_chnlcnt_RW, 0UL); eieio(); } } static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL }; u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL }; u64 idx; int i; /* Restore, Step 21: * Reset the following CH: [21, 23, 28, 29, 30] */ for (i = 0; i < 5; i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); eieio(); } } static inline void setup_spu_status_part1(struct spu_state *csa, struct spu *spu) { u32 status_P = SPU_STATUS_STOPPED_BY_STOP; u32 status_I = SPU_STATUS_INVALID_INSTR; u32 status_H = SPU_STATUS_STOPPED_BY_HALT; u32 status_S = SPU_STATUS_SINGLE_STEP; u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR; u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP; u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP; u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR; u32 status_code; /* Restore, Step 27: * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct * instruction sequence to the end of the SPU based restore * code (after the "context restored" stop and signal) to * restore the correct SPU status. * * NOTE: Rather than modifying the SPU executable, we * instead add a new 'stopped_status' field to the * LSCSA. The SPU-side restore reads this field and * takes the appropriate action when exiting. */ status_code = (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF; if ((csa->prob.spu_status_R & status_P_I) == status_P_I) { /* SPU_Status[P,I]=1 - Illegal Instruction followed * by Stop and Signal instruction, followed by 'br -4'. * */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) { /* SPU_Status[P,H]=1 - Halt Conditional, followed * by Stop and Signal instruction, followed by * 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) { /* SPU_Status[S,P]=1 - Stop and Signal instruction * followed by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) { /* SPU_Status[S,I]=1 - Illegal instruction followed * by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_P) == status_P) { /* SPU_Status[P]=1 - Stop and Signal instruction * followed by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P; csa->lscsa->stopped_status.slot[1] = status_code; } else if ((csa->prob.spu_status_R & status_H) == status_H) { /* SPU_Status[H]=1 - Halt Conditional, followed * by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H; } else if ((csa->prob.spu_status_R & status_S) == status_S) { /* SPU_Status[S]=1 - Two nop instructions. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S; } else if ((csa->prob.spu_status_R & status_I) == status_I) { /* SPU_Status[I]=1 - Illegal instruction followed * by 'br -4'. */ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I; } } static inline void setup_spu_status_part2(struct spu_state *csa, struct spu *spu) { u32 mask; /* Restore, Step 28: * If the CSA.SPU_Status[I,S,H,P,R]=0 then * add a 'br *' instruction to the end of * the SPU based restore code. * * NOTE: Rather than modifying the SPU executable, we * instead add a new 'stopped_status' field to the * LSCSA. The SPU-side restore reads this field and * takes the appropriate action when exiting. */ mask = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; if (!(csa->prob.spu_status_R & mask)) { csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R; } } static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu) { /* Restore, Step 29: * Restore RA_GROUP_ID register and the * RA_ENABLE reigster from the CSA. */ spu_resource_allocation_groupID_set(spu, csa->priv1.resource_allocation_groupID_RW); spu_resource_allocation_enable_set(spu, csa->priv1.resource_allocation_enable_RW); } static inline void send_restore_code(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&spu_restore_code[0]; unsigned int ls_offset = 0x0; unsigned int size = sizeof(spu_restore_code); unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_GETFS_CMD; /* Restore, Step 37: * Issue MFC DMA command to copy context * restore code to local storage. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void setup_decr(struct spu_state *csa, struct spu *spu) { /* Restore, Step 34: * If CSA.MFC_CNTL[Ds]=1 (decrementer was * running) then adjust decrementer, set * decrementer running status in LSCSA, * and set decrementer "wrapped" status * in LSCSA. */ if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) { cycles_t resume_time = get_cycles(); cycles_t delta_time = resume_time - csa->suspend_time; csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING; if (csa->lscsa->decr.slot[0] < delta_time) { csa->lscsa->decr_status.slot[0] |= SPU_DECR_STATUS_WRAPPED; } csa->lscsa->decr.slot[0] -= delta_time; } else { csa->lscsa->decr_status.slot[0] = 0; } } static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu) { /* Restore, Step 35: * Copy the CSA.PU_MB data into the LSCSA. */ csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R; } static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu) { /* Restore, Step 36: * Copy the CSA.PUINT_MB data into the LSCSA. */ csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R; } static inline int check_restore_status(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 complete; /* Restore, Step 40: * If SPU_Status[P]=1 and SPU_Status[SC] = "success", * context restore succeeded, otherwise context restore * failed. */ complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) | SPU_STATUS_STOPPED_BY_STOP); return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; } static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 41: * Restore SPU_PrivCntl from the CSA. */ out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW); eieio(); } static inline void restore_status_part1(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 mask; /* Restore, Step 42: * If any CSA.SPU_Status[I,S,H,P]=1, then * restore the error or single step state. */ mask = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; if (csa->prob.spu_status_R & mask) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } } static inline void restore_status_part2(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; u32 mask; /* Restore, Step 43: * If all CSA.SPU_Status[I,S,H,P,R]=0 then write * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1, * then write '00' to SPU_RunCntl[R0R1] and wait * for SPU_Status[R]=0. */ mask = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; if (!(csa->prob.spu_status_R & mask)) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); eieio(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); } } static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu) { unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; unsigned int ls_offset = 0x0; unsigned int size = 16384; unsigned int tag = 0; unsigned int rclass = 0; unsigned int cmd = MFC_GET_CMD; /* Restore, Step 44: * Issue a DMA command to restore the first * 16kb of local storage from CSA. */ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); } static inline void suspend_mfc(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 47. * Write MFC_Cntl[Sc,Sm]='1','0' to suspend * the queue. */ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); eieio(); } static inline void clear_interrupts(struct spu_state *csa, struct spu *spu) { /* Restore, Step 49: * Write INT_MASK_class0 with value of 0. * Write INT_MASK_class1 with value of 0. * Write INT_MASK_class2 with value of 0. * Write INT_STAT_class0 with value of -1. * Write INT_STAT_class1 with value of -1. * Write INT_STAT_class2 with value of -1. */ spin_lock_irq(&spu->register_lock); spu_int_mask_set(spu, 0, 0ul); spu_int_mask_set(spu, 1, 0ul); spu_int_mask_set(spu, 2, 0ul); spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); spin_unlock_irq(&spu->register_lock); } static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Restore, Step 50: * If MFC_Cntl[Se]!=0 then restore * MFC command queues. */ if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) { for (i = 0; i < 8; i++) { out_be64(&priv2->puq[i].mfc_cq_data0_RW, csa->priv2.puq[i].mfc_cq_data0_RW); out_be64(&priv2->puq[i].mfc_cq_data1_RW, csa->priv2.puq[i].mfc_cq_data1_RW); out_be64(&priv2->puq[i].mfc_cq_data2_RW, csa->priv2.puq[i].mfc_cq_data2_RW); out_be64(&priv2->puq[i].mfc_cq_data3_RW, csa->priv2.puq[i].mfc_cq_data3_RW); } for (i = 0; i < 16; i++) { out_be64(&priv2->spuq[i].mfc_cq_data0_RW, csa->priv2.spuq[i].mfc_cq_data0_RW); out_be64(&priv2->spuq[i].mfc_cq_data1_RW, csa->priv2.spuq[i].mfc_cq_data1_RW); out_be64(&priv2->spuq[i].mfc_cq_data2_RW, csa->priv2.spuq[i].mfc_cq_data2_RW); out_be64(&priv2->spuq[i].mfc_cq_data3_RW, csa->priv2.spuq[i].mfc_cq_data3_RW); } } eieio(); } static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 51: * Restore the PPU_QueryMask register from CSA. */ out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW); eieio(); } static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 52: * Restore the PPU_QueryType register from CSA. */ out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW); eieio(); } static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 53: * Restore the MFC_CSR_TSQ register from CSA. */ out_be64(&priv2->spu_tag_status_query_RW, csa->priv2.spu_tag_status_query_RW); eieio(); } static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 54: * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2 * registers from CSA. */ out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW); out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW); eieio(); } static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 55: * Restore the MFC_CSR_ATO register from CSA. */ out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW); } static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu) { /* Restore, Step 56: * Restore the MFC_TCLASS_ID register from CSA. */ spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW); eieio(); } static inline void set_llr_event(struct spu_state *csa, struct spu *spu) { u64 ch0_cnt, ch0_data; u64 ch1_data; /* Restore, Step 57: * Set the Lock Line Reservation Lost Event by: * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1. * 2. If CSA.SPU_Channel_0_Count=0 and * CSA.SPU_Wr_Event_Mask[Lr]=1 and * CSA.SPU_Event_Status[Lr]=0 then set * CSA.SPU_Event_Status_Count=1. */ ch0_cnt = csa->spu_chnlcnt_RW[0]; ch0_data = csa->spu_chnldata_RW[0]; ch1_data = csa->spu_chnldata_RW[1]; csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT; if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) && (ch1_data & MFC_LLR_LOST_EVENT)) { csa->spu_chnlcnt_RW[0] = 1; } } static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu) { /* Restore, Step 58: * If the status of the CSA software decrementer * "wrapped" flag is set, OR in a '1' to * CSA.SPU_Event_Status[Tm]. */ if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED)) return; if ((csa->spu_chnlcnt_RW[0] == 0) && (csa->spu_chnldata_RW[1] & 0x20) && !(csa->spu_chnldata_RW[0] & 0x20)) csa->spu_chnlcnt_RW[0] = 1; csa->spu_chnldata_RW[0] |= 0x20; } static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; int i; /* Restore, Step 59: * Restore the following CH: [0,3,4,24,25,27] */ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]); out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]); eieio(); } } static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; u64 ch_indices[3] = { 9UL, 21UL, 23UL }; u64 ch_counts[3] = { 1UL, 16UL, 1UL }; u64 idx; int i; /* Restore, Step 60: * Restore the following CH: [9,21,23]. */ ch_counts[0] = 1UL; ch_counts[1] = csa->spu_chnlcnt_RW[21]; ch_counts[2] = 1UL; for (i = 0; i < 3; i++) { idx = ch_indices[i]; out_be64(&priv2->spu_chnlcntptr_RW, idx); eieio(); out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); eieio(); } } static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 61: * Restore the SPU_LSLR register from CSA. */ out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW); eieio(); } static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 62: * Restore the SPU_Cfg register from CSA. */ out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW); eieio(); } static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu) { /* Restore, Step 63: * Restore PM_Trace_Tag_Wait_Mask from CSA. * Not performed by this implementation. */ } static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 64: * Restore SPU_NPC from CSA. */ out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW); eieio(); } static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; int i; /* Restore, Step 65: * Restore MFC_RdSPU_MB from CSA. */ out_be64(&priv2->spu_chnlcntptr_RW, 29UL); eieio(); out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]); for (i = 0; i < 4; i++) { out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]); } eieio(); } static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 66: * If CSA.MB_Stat[P]=0 (mailbox empty) then * read from the PPU_MB register. */ if ((csa->prob.mb_stat_R & 0xFF) == 0) { in_be32(&prob->pu_mb_R); eieio(); } } static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 66: * If CSA.MB_Stat[I]=0 (mailbox empty) then * read from the PPUINT_MB register. */ if ((csa->prob.mb_stat_R & 0xFF0000) == 0) { in_be64(&priv2->puint_mb_R); eieio(); spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR); eieio(); } } static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu) { /* Restore, Step 69: * Restore the MFC_SR1 register from CSA. */ spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW); eieio(); } static inline void set_int_route(struct spu_state *csa, struct spu *spu) { struct spu_context *ctx = spu->ctx; spu_cpu_affinity_set(spu, ctx->last_ran); } static inline void restore_other_spu_access(struct spu_state *csa, struct spu *spu) { /* Restore, Step 70: * Restore other SPU mappings to this SPU. TBD. */ } static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; /* Restore, Step 71: * If CSA.SPU_Status[R]=1 then write * SPU_RunCntl[R0R1]='01'. */ if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) { out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); eieio(); } } static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; /* Restore, Step 72: * Restore the MFC_CNTL register for the CSA. */ out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW); eieio(); /* * The queue is put back into the same state that was evident prior to * the context switch. The suspend flag is added to the saved state in * the csa, if the operational state was suspending or suspended. In * this case, the code that suspended the mfc is responsible for * continuing it. Note that SPE faults do not change the operational * state of the spu. */ } static inline void enable_user_access(struct spu_state *csa, struct spu *spu) { /* Restore, Step 73: * Enable user-space access (if provided) to this * SPU by mapping the virtual pages assigned to * the SPU memory-mapped I/O (MMIO) for problem * state. TBD. */ } static inline void reset_switch_active(struct spu_state *csa, struct spu *spu) { /* Restore, Step 74: * Reset the "context switch active" flag. * Not performed by this implementation. */ } static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu) { /* Restore, Step 75: * Re-enable SPU interrupts. */ spin_lock_irq(&spu->register_lock); spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW); spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW); spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW); spin_unlock_irq(&spu->register_lock); } static int quiece_spu(struct spu_state *prev, struct spu *spu) { /* * Combined steps 2-18 of SPU context save sequence, which * quiesce the SPU state (disable SPU execution, MFC command * queues, decrementer, SPU interrupts, etc.). * * Returns 0 on success. * 2 if failed step 2. * 6 if failed step 6. */ if (check_spu_isolate(prev, spu)) { /* Step 2. */ return 2; } disable_interrupts(prev, spu); /* Step 3. */ set_watchdog_timer(prev, spu); /* Step 4. */ inhibit_user_access(prev, spu); /* Step 5. */ if (check_spu_isolate(prev, spu)) { /* Step 6. */ return 6; } set_switch_pending(prev, spu); /* Step 7. */ save_mfc_cntl(prev, spu); /* Step 8. */ save_spu_runcntl(prev, spu); /* Step 9. */ save_mfc_sr1(prev, spu); /* Step 10. */ save_spu_status(prev, spu); /* Step 11. */ save_mfc_stopped_status(prev, spu); /* Step 12. */ halt_mfc_decr(prev, spu); /* Step 13. */ save_timebase(prev, spu); /* Step 14. */ remove_other_spu_access(prev, spu); /* Step 15. */ do_mfc_mssync(prev, spu); /* Step 16. */ issue_mfc_tlbie(prev, spu); /* Step 17. */ handle_pending_interrupts(prev, spu); /* Step 18. */ return 0; } static void save_csa(struct spu_state *prev, struct spu *spu) { /* * Combine steps 19-44 of SPU context save sequence, which * save regions of the privileged & problem state areas. */ save_mfc_queues(prev, spu); /* Step 19. */ save_ppu_querymask(prev, spu); /* Step 20. */ save_ppu_querytype(prev, spu); /* Step 21. */ save_ppu_tagstatus(prev, spu); /* NEW. */ save_mfc_csr_tsq(prev, spu); /* Step 22. */ save_mfc_csr_cmd(prev, spu); /* Step 23. */ save_mfc_csr_ato(prev, spu); /* Step 24. */ save_mfc_tclass_id(prev, spu); /* Step 25. */ set_mfc_tclass_id(prev, spu); /* Step 26. */ save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */ purge_mfc_queue(prev, spu); /* Step 27. */ wait_purge_complete(prev, spu); /* Step 28. */ setup_mfc_sr1(prev, spu); /* Step 30. */ save_spu_npc(prev, spu); /* Step 31. */ save_spu_privcntl(prev, spu); /* Step 32. */ reset_spu_privcntl(prev, spu); /* Step 33. */ save_spu_lslr(prev, spu); /* Step 34. */ reset_spu_lslr(prev, spu); /* Step 35. */ save_spu_cfg(prev, spu); /* Step 36. */ save_pm_trace(prev, spu); /* Step 37. */ save_mfc_rag(prev, spu); /* Step 38. */ save_ppu_mb_stat(prev, spu); /* Step 39. */ save_ppu_mb(prev, spu); /* Step 40. */ save_ppuint_mb(prev, spu); /* Step 41. */ save_ch_part1(prev, spu); /* Step 42. */ save_spu_mb(prev, spu); /* Step 43. */ reset_ch(prev, spu); /* Step 45. */ } static void save_lscsa(struct spu_state *prev, struct spu *spu) { /* * Perform steps 46-57 of SPU context save sequence, * which save regions of the local store and register * file. */ resume_mfc_queue(prev, spu); /* Step 46. */ /* Step 47. */ setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code)); set_switch_active(prev, spu); /* Step 48. */ enable_interrupts(prev, spu); /* Step 49. */ save_ls_16kb(prev, spu); /* Step 50. */ set_spu_npc(prev, spu); /* Step 51. */ set_signot1(prev, spu); /* Step 52. */ set_signot2(prev, spu); /* Step 53. */ send_save_code(prev, spu); /* Step 54. */ set_ppu_querymask(prev, spu); /* Step 55. */ wait_tag_complete(prev, spu); /* Step 56. */ wait_spu_stopped(prev, spu); /* Step 57. */ } static void force_spu_isolate_exit(struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; struct spu_priv2 __iomem *priv2 = spu->priv2; /* Stop SPE execution and wait for completion. */ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); iobarrier_rw(); POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); /* Restart SPE master runcntl. */ spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); iobarrier_w(); /* Initiate isolate exit request and wait for completion. */ out_be64(&priv2->spu_privcntl_RW, 4LL); iobarrier_w(); out_be32(&prob->spu_runcntl_RW, 2); iobarrier_rw(); POLL_WHILE_FALSE((in_be32(&prob->spu_status_R) & SPU_STATUS_STOPPED_BY_STOP)); /* Reset load request to normal. */ out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL); iobarrier_w(); } /** * stop_spu_isolate * Check SPU run-control state and force isolated * exit function as necessary. */ static void stop_spu_isolate(struct spu *spu) { struct spu_problem __iomem *prob = spu->problem; if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) { /* The SPU is in isolated state; the only way * to get it out is to perform an isolated * exit (clean) operation. */ force_spu_isolate_exit(spu); } } static void harvest(struct spu_state *prev, struct spu *spu) { /* * Perform steps 2-25 of SPU context restore sequence, * which resets an SPU either after a failed save, or * when using SPU for first time. */ disable_interrupts(prev, spu); /* Step 2. */ inhibit_user_access(prev, spu); /* Step 3. */ terminate_spu_app(prev, spu); /* Step 4. */ set_switch_pending(prev, spu); /* Step 5. */ stop_spu_isolate(spu); /* NEW. */ remove_other_spu_access(prev, spu); /* Step 6. */ suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */ wait_suspend_mfc_complete(prev, spu); /* Step 8. */ if (!suspend_spe(prev, spu)) /* Step 9. */ clear_spu_status(prev, spu); /* Step 10. */ do_mfc_mssync(prev, spu); /* Step 11. */ issue_mfc_tlbie(prev, spu); /* Step 12. */ handle_pending_interrupts(prev, spu); /* Step 13. */ purge_mfc_queue(prev, spu); /* Step 14. */ wait_purge_complete(prev, spu); /* Step 15. */ reset_spu_privcntl(prev, spu); /* Step 16. */ reset_spu_lslr(prev, spu); /* Step 17. */ setup_mfc_sr1(prev, spu); /* Step 18. */ spu_invalidate_slbs(spu); /* Step 19. */ reset_ch_part1(prev, spu); /* Step 20. */ reset_ch_part2(prev, spu); /* Step 21. */ enable_interrupts(prev, spu); /* Step 22. */ set_switch_active(prev, spu); /* Step 23. */ set_mfc_tclass_id(prev, spu); /* Step 24. */ resume_mfc_queue(prev, spu); /* Step 25. */ } static void restore_lscsa(struct spu_state *next, struct spu *spu) { /* * Perform steps 26-40 of SPU context restore sequence, * which restores regions of the local store and register * file. */ set_watchdog_timer(next, spu); /* Step 26. */ setup_spu_status_part1(next, spu); /* Step 27. */ setup_spu_status_part2(next, spu); /* Step 28. */ restore_mfc_rag(next, spu); /* Step 29. */ /* Step 30. */ setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code)); set_spu_npc(next, spu); /* Step 31. */ set_signot1(next, spu); /* Step 32. */ set_signot2(next, spu); /* Step 33. */ setup_decr(next, spu); /* Step 34. */ setup_ppu_mb(next, spu); /* Step 35. */ setup_ppuint_mb(next, spu); /* Step 36. */ send_restore_code(next, spu); /* Step 37. */ set_ppu_querymask(next, spu); /* Step 38. */ wait_tag_complete(next, spu); /* Step 39. */ wait_spu_stopped(next, spu); /* Step 40. */ } static void restore_csa(struct spu_state *next, struct spu *spu) { /* * Combine steps 41-76 of SPU context restore sequence, which * restore regions of the privileged & problem state areas. */ restore_spu_privcntl(next, spu); /* Step 41. */ restore_status_part1(next, spu); /* Step 42. */ restore_status_part2(next, spu); /* Step 43. */ restore_ls_16kb(next, spu); /* Step 44. */ wait_tag_complete(next, spu); /* Step 45. */ suspend_mfc(next, spu); /* Step 46. */ wait_suspend_mfc_complete(next, spu); /* Step 47. */ issue_mfc_tlbie(next, spu); /* Step 48. */ clear_interrupts(next, spu); /* Step 49. */ restore_mfc_queues(next, spu); /* Step 50. */ restore_ppu_querymask(next, spu); /* Step 51. */ restore_ppu_querytype(next, spu); /* Step 52. */ restore_mfc_csr_tsq(next, spu); /* Step 53. */ restore_mfc_csr_cmd(next, spu); /* Step 54. */ restore_mfc_csr_ato(next, spu); /* Step 55. */ restore_mfc_tclass_id(next, spu); /* Step 56. */ set_llr_event(next, spu); /* Step 57. */ restore_decr_wrapped(next, spu); /* Step 58. */ restore_ch_part1(next, spu); /* Step 59. */ restore_ch_part2(next, spu); /* Step 60. */ restore_spu_lslr(next, spu); /* Step 61. */ restore_spu_cfg(next, spu); /* Step 62. */ restore_pm_trace(next, spu); /* Step 63. */ restore_spu_npc(next, spu); /* Step 64. */ restore_spu_mb(next, spu); /* Step 65. */ check_ppu_mb_stat(next, spu); /* Step 66. */ check_ppuint_mb_stat(next, spu); /* Step 67. */ spu_invalidate_slbs(spu); /* Modified Step 68. */ restore_mfc_sr1(next, spu); /* Step 69. */ set_int_route(next, spu); /* NEW */ restore_other_spu_access(next, spu); /* Step 70. */ restore_spu_runcntl(next, spu); /* Step 71. */ restore_mfc_cntl(next, spu); /* Step 72. */ enable_user_access(next, spu); /* Step 73. */ reset_switch_active(next, spu); /* Step 74. */ reenable_interrupts(next, spu); /* Step 75. */ } static int __do_spu_save(struct spu_state *prev, struct spu *spu) { int rc; /* * SPU context save can be broken into three phases: * * (a) quiesce [steps 2-16]. * (b) save of CSA, performed by PPE [steps 17-42] * (c) save of LSCSA, mostly performed by SPU [steps 43-52]. * * Returns 0 on success. * 2,6 if failed to quiece SPU * 53 if SPU-side of save failed. */ rc = quiece_spu(prev, spu); /* Steps 2-16. */ switch (rc) { default: case 2: case 6: harvest(prev, spu); return rc; break; case 0: break; } save_csa(prev, spu); /* Steps 17-43. */ save_lscsa(prev, spu); /* Steps 44-53. */ return check_save_status(prev, spu); /* Step 54. */ } static int __do_spu_restore(struct spu_state *next, struct spu *spu) { int rc; /* * SPU context restore can be broken into three phases: * * (a) harvest (or reset) SPU [steps 2-24]. * (b) restore LSCSA [steps 25-40], mostly performed by SPU. * (c) restore CSA [steps 41-76], performed by PPE. * * The 'harvest' step is not performed here, but rather * as needed below. */ restore_lscsa(next, spu); /* Steps 24-39. */ rc = check_restore_status(next, spu); /* Step 40. */ switch (rc) { default: /* Failed. Return now. */ return rc; break; case 0: /* Fall through to next step. */ break; } restore_csa(next, spu); return 0; } /** * spu_save - SPU context save, with locking. * @prev: pointer to SPU context save area, to be saved. * @spu: pointer to SPU iomem structure. * * Acquire locks, perform the save operation then return. */ int spu_save(struct spu_state *prev, struct spu *spu) { int rc; acquire_spu_lock(spu); /* Step 1. */ rc = __do_spu_save(prev, spu); /* Steps 2-53. */ release_spu_lock(spu); if (rc != 0 && rc != 2 && rc != 6) { panic("%s failed on SPU[%d], rc=%d.\n", __func__, spu->number, rc); } return 0; } EXPORT_SYMBOL_GPL(spu_save); /** * spu_restore - SPU context restore, with harvest and locking. * @new: pointer to SPU context save area, to be restored. * @spu: pointer to SPU iomem structure. * * Perform harvest + restore, as we may not be coming * from a previous successful save operation, and the * hardware state is unknown. */ int spu_restore(struct spu_state *new, struct spu *spu) { int rc; acquire_spu_lock(spu); harvest(NULL, spu); spu->slb_replace = 0; rc = __do_spu_restore(new, spu); release_spu_lock(spu); if (rc) { panic("%s failed on SPU[%d] rc=%d.\n", __func__, spu->number, rc); } return rc; } EXPORT_SYMBOL_GPL(spu_restore); static void init_prob(struct spu_state *csa) { csa->spu_chnlcnt_RW[9] = 1; csa->spu_chnlcnt_RW[21] = 16; csa->spu_chnlcnt_RW[23] = 1; csa->spu_chnlcnt_RW[28] = 1; csa->spu_chnlcnt_RW[30] = 1; csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP; csa->prob.mb_stat_R = 0x000400; } static void init_priv1(struct spu_state *csa) { /* Enable decode, relocate, tlbie response, master runcntl. */ csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK | MFC_STATE1_MASTER_RUN_CONTROL_MASK | MFC_STATE1_PROBLEM_STATE_MASK | MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK; /* Enable OS-specific set of interrupts. */ csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR | CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR | CLASS0_ENABLE_SPU_ERROR_INTR; csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR | CLASS1_ENABLE_STORAGE_FAULT_INTR; csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR | CLASS2_ENABLE_SPU_HALT_INTR | CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR; } static void init_priv2(struct spu_state *csa) { csa->priv2.spu_lslr_RW = LS_ADDR_MASK; csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE | MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION | MFC_CNTL_DMA_QUEUES_EMPTY_MASK; } /** * spu_alloc_csa - allocate and initialize an SPU context save area. * * Allocate and initialize the contents of an SPU context save area. * This includes enabling address translation, interrupt masks, etc., * as appropriate for the given OS environment. * * Note that storage for the 'lscsa' is allocated separately, * as it is by far the largest of the context save regions, * and may need to be pinned or otherwise specially aligned. */ int spu_init_csa(struct spu_state *csa) { int rc; if (!csa) return -EINVAL; memset(csa, 0, sizeof(struct spu_state)); rc = spu_alloc_lscsa(csa); if (rc) return rc; spin_lock_init(&csa->register_lock); init_prob(csa); init_priv1(csa); init_priv2(csa); return 0; } void spu_fini_csa(struct spu_state *csa) { spu_free_lscsa(csa); } |