Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *                   Takashi Iwai <tiwai@suse.de>
 * 
 *  Generic memory allocators
 */

#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dma-map-ops.h>
#include <linux/genalloc.h>
#include <linux/highmem.h>
#include <linux/vmalloc.h>
#ifdef CONFIG_X86
#include <asm/set_memory.h>
#endif
#include <sound/memalloc.h>
#include "memalloc_local.h"

#define DEFAULT_GFP \
	(GFP_KERNEL | \
	 __GFP_COMP |    /* compound page lets parts be mapped */ \
	 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
	 __GFP_NOWARN)   /* no stack trace print - this call is non-critical */

static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);

#ifdef CONFIG_SND_DMA_SGBUF
static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
#endif

static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
{
	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);

	if (WARN_ON_ONCE(!ops || !ops->alloc))
		return NULL;
	return ops->alloc(dmab, size);
}

/**
 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
 *	type and direction
 * @type: the DMA buffer type
 * @device: the device pointer
 * @dir: DMA direction
 * @size: the buffer size to allocate
 * @dmab: buffer allocation record to store the allocated data
 *
 * Calls the memory-allocator function for the corresponding
 * buffer type.
 *
 * Return: Zero if the buffer with the given size is allocated successfully,
 * otherwise a negative value on error.
 */
int snd_dma_alloc_dir_pages(int type, struct device *device,
			    enum dma_data_direction dir, size_t size,
			    struct snd_dma_buffer *dmab)
{
	if (WARN_ON(!size))
		return -ENXIO;
	if (WARN_ON(!dmab))
		return -ENXIO;

	size = PAGE_ALIGN(size);
	dmab->dev.type = type;
	dmab->dev.dev = device;
	dmab->dev.dir = dir;
	dmab->bytes = 0;
	dmab->addr = 0;
	dmab->private_data = NULL;
	dmab->area = __snd_dma_alloc_pages(dmab, size);
	if (!dmab->area)
		return -ENOMEM;
	dmab->bytes = size;
	return 0;
}
EXPORT_SYMBOL(snd_dma_alloc_dir_pages);

/**
 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 * @type: the DMA buffer type
 * @device: the device pointer
 * @size: the buffer size to allocate
 * @dmab: buffer allocation record to store the allocated data
 *
 * Calls the memory-allocator function for the corresponding
 * buffer type.  When no space is left, this function reduces the size and
 * tries to allocate again.  The size actually allocated is stored in
 * res_size argument.
 *
 * Return: Zero if the buffer with the given size is allocated successfully,
 * otherwise a negative value on error.
 */
int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
				 struct snd_dma_buffer *dmab)
{
	int err;

	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
		if (err != -ENOMEM)
			return err;
		if (size <= PAGE_SIZE)
			return -ENOMEM;
		size >>= 1;
		size = PAGE_SIZE << get_order(size);
	}
	if (! dmab->area)
		return -ENOMEM;
	return 0;
}
EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);

/**
 * snd_dma_free_pages - release the allocated buffer
 * @dmab: the buffer allocation record to release
 *
 * Releases the allocated buffer via snd_dma_alloc_pages().
 */
void snd_dma_free_pages(struct snd_dma_buffer *dmab)
{
	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);

	if (ops && ops->free)
		ops->free(dmab);
}
EXPORT_SYMBOL(snd_dma_free_pages);

/* called by devres */
static void __snd_release_pages(struct device *dev, void *res)
{
	snd_dma_free_pages(res);
}

/**
 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
 * @dev: the device pointer
 * @type: the DMA buffer type
 * @dir: DMA direction
 * @size: the buffer size to allocate
 *
 * Allocate buffer pages depending on the given type and manage using devres.
 * The pages will be released automatically at the device removal.
 *
 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
 * SNDRV_DMA_TYPE_VMALLOC type.
 *
 * Return: the snd_dma_buffer object at success, or NULL if failed
 */
struct snd_dma_buffer *
snd_devm_alloc_dir_pages(struct device *dev, int type,
			 enum dma_data_direction dir, size_t size)
{
	struct snd_dma_buffer *dmab;
	int err;

	if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
		    type == SNDRV_DMA_TYPE_VMALLOC))
		return NULL;

	dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
	if (!dmab)
		return NULL;

	err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
	if (err < 0) {
		devres_free(dmab);
		return NULL;
	}

	devres_add(dev, dmab);
	return dmab;
}
EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);

/**
 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
 * @dmab: buffer allocation information
 * @area: VM area information
 *
 * Return: zero if successful, or a negative error code
 */
int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
			struct vm_area_struct *area)
{
	const struct snd_malloc_ops *ops;

	if (!dmab)
		return -ENOENT;
	ops = snd_dma_get_ops(dmab);
	if (ops && ops->mmap)
		return ops->mmap(dmab, area);
	else
		return -ENOENT;
}
EXPORT_SYMBOL(snd_dma_buffer_mmap);

#ifdef CONFIG_HAS_DMA
/**
 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
 * @dmab: buffer allocation information
 * @mode: sync mode
 */
void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
			 enum snd_dma_sync_mode mode)
{
	const struct snd_malloc_ops *ops;

	if (!dmab || !dmab->dev.need_sync)
		return;
	ops = snd_dma_get_ops(dmab);
	if (ops && ops->sync)
		ops->sync(dmab, mode);
}
EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
#endif /* CONFIG_HAS_DMA */

/**
 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
 * @dmab: buffer allocation information
 * @offset: offset in the ring buffer
 *
 * Return: the physical address
 */
dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
{
	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);

	if (ops && ops->get_addr)
		return ops->get_addr(dmab, offset);
	else
		return dmab->addr + offset;
}
EXPORT_SYMBOL(snd_sgbuf_get_addr);

/**
 * snd_sgbuf_get_page - return the physical page at the corresponding offset
 * @dmab: buffer allocation information
 * @offset: offset in the ring buffer
 *
 * Return: the page pointer
 */
struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
{
	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);

	if (ops && ops->get_page)
		return ops->get_page(dmab, offset);
	else
		return virt_to_page(dmab->area + offset);
}
EXPORT_SYMBOL(snd_sgbuf_get_page);

/**
 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
 *	on sg-buffer
 * @dmab: buffer allocation information
 * @ofs: offset in the ring buffer
 * @size: the requested size
 *
 * Return: the chunk size
 */
unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
				      unsigned int ofs, unsigned int size)
{
	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);

	if (ops && ops->get_chunk_size)
		return ops->get_chunk_size(dmab, ofs, size);
	else
		return size;
}
EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);

/*
 * Continuous pages allocator
 */
static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
			    bool wc)
{
	void *p;
	gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;

 again:
	p = alloc_pages_exact(size, gfp);
	if (!p)
		return NULL;
	*addr = page_to_phys(virt_to_page(p));
	if (!dev)
		return p;
	if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
		if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
			gfp |= GFP_DMA32;
			goto again;
		}
		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
			goto again;
		}
	}
#ifdef CONFIG_X86
	if (wc)
		set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
#endif
	return p;
}

static void do_free_pages(void *p, size_t size, bool wc)
{
#ifdef CONFIG_X86
	if (wc)
		set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
#endif
	free_pages_exact(p, size);
}


static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
}

static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
{
	do_free_pages(dmab->area, dmab->bytes, false);
}

static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
				   struct vm_area_struct *area)
{
	return remap_pfn_range(area, area->vm_start,
			       dmab->addr >> PAGE_SHIFT,
			       area->vm_end - area->vm_start,
			       area->vm_page_prot);
}

static const struct snd_malloc_ops snd_dma_continuous_ops = {
	.alloc = snd_dma_continuous_alloc,
	.free = snd_dma_continuous_free,
	.mmap = snd_dma_continuous_mmap,
};

/*
 * VMALLOC allocator
 */
static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	return vmalloc(size);
}

static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
{
	vfree(dmab->area);
}

static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
				struct vm_area_struct *area)
{
	return remap_vmalloc_range(area, dmab->area, 0);
}

#define get_vmalloc_page_addr(dmab, offset) \
	page_to_phys(vmalloc_to_page((dmab)->area + (offset)))

static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
					   size_t offset)
{
	return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
}

static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
					     size_t offset)
{
	return vmalloc_to_page(dmab->area + offset);
}

static unsigned int
snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
			       unsigned int ofs, unsigned int size)
{
	unsigned int start, end;
	unsigned long addr;

	start = ALIGN_DOWN(ofs, PAGE_SIZE);
	end = ofs + size - 1; /* the last byte address */
	/* check page continuity */
	addr = get_vmalloc_page_addr(dmab, start);
	for (;;) {
		start += PAGE_SIZE;
		if (start > end)
			break;
		addr += PAGE_SIZE;
		if (get_vmalloc_page_addr(dmab, start) != addr)
			return start - ofs;
	}
	/* ok, all on continuous pages */
	return size;
}

static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
	.alloc = snd_dma_vmalloc_alloc,
	.free = snd_dma_vmalloc_free,
	.mmap = snd_dma_vmalloc_mmap,
	.get_addr = snd_dma_vmalloc_get_addr,
	.get_page = snd_dma_vmalloc_get_page,
	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
};

#ifdef CONFIG_HAS_DMA
/*
 * IRAM allocator
 */
#ifdef CONFIG_GENERIC_ALLOCATOR
static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	struct device *dev = dmab->dev.dev;
	struct gen_pool *pool;
	void *p;

	if (dev->of_node) {
		pool = of_gen_pool_get(dev->of_node, "iram", 0);
		/* Assign the pool into private_data field */
		dmab->private_data = pool;

		p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
		if (p)
			return p;
	}

	/* Internal memory might have limited size and no enough space,
	 * so if we fail to malloc, try to fetch memory traditionally.
	 */
	dmab->dev.type = SNDRV_DMA_TYPE_DEV;
	return __snd_dma_alloc_pages(dmab, size);
}

static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
{
	struct gen_pool *pool = dmab->private_data;

	if (pool && dmab->area)
		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
}

static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
			     struct vm_area_struct *area)
{
	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
	return remap_pfn_range(area, area->vm_start,
			       dmab->addr >> PAGE_SHIFT,
			       area->vm_end - area->vm_start,
			       area->vm_page_prot);
}

static const struct snd_malloc_ops snd_dma_iram_ops = {
	.alloc = snd_dma_iram_alloc,
	.free = snd_dma_iram_free,
	.mmap = snd_dma_iram_mmap,
};
#endif /* CONFIG_GENERIC_ALLOCATOR */

/*
 * Coherent device pages allocator
 */
static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
}

static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
{
	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
}

static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
			    struct vm_area_struct *area)
{
	return dma_mmap_coherent(dmab->dev.dev, area,
				 dmab->area, dmab->addr, dmab->bytes);
}

static const struct snd_malloc_ops snd_dma_dev_ops = {
	.alloc = snd_dma_dev_alloc,
	.free = snd_dma_dev_free,
	.mmap = snd_dma_dev_mmap,
};

/*
 * Write-combined pages
 */
/* x86-specific allocations */
#ifdef CONFIG_SND_DMA_SGBUF
static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
}

static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
{
	do_free_pages(dmab->area, dmab->bytes, true);
}

static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
			   struct vm_area_struct *area)
{
	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
	return snd_dma_continuous_mmap(dmab, area);
}
#else
static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
}

static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
{
	dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
}

static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
			   struct vm_area_struct *area)
{
	return dma_mmap_wc(dmab->dev.dev, area,
			   dmab->area, dmab->addr, dmab->bytes);
}
#endif /* CONFIG_SND_DMA_SGBUF */

static const struct snd_malloc_ops snd_dma_wc_ops = {
	.alloc = snd_dma_wc_alloc,
	.free = snd_dma_wc_free,
	.mmap = snd_dma_wc_mmap,
};

/*
 * Non-contiguous pages allocator
 */
static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	struct sg_table *sgt;
	void *p;

#ifdef CONFIG_SND_DMA_SGBUF
	if (cpu_feature_enabled(X86_FEATURE_XENPV))
		return snd_dma_sg_fallback_alloc(dmab, size);
#endif
	sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
				      DEFAULT_GFP, 0);
#ifdef CONFIG_SND_DMA_SGBUF
	if (!sgt && !get_dma_ops(dmab->dev.dev))
		return snd_dma_sg_fallback_alloc(dmab, size);
#endif
	if (!sgt)
		return NULL;

	dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
					    sg_dma_address(sgt->sgl));
	p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
	if (p) {
		dmab->private_data = sgt;
		/* store the first page address for convenience */
		dmab->addr = snd_sgbuf_get_addr(dmab, 0);
	} else {
		dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
	}
	return p;
}

static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
{
	dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
	dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
			       dmab->dev.dir);
}

static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
				  struct vm_area_struct *area)
{
	return dma_mmap_noncontiguous(dmab->dev.dev, area,
				      dmab->bytes, dmab->private_data);
}

static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
				   enum snd_dma_sync_mode mode)
{
	if (mode == SNDRV_DMA_SYNC_CPU) {
		if (dmab->dev.dir == DMA_TO_DEVICE)
			return;
		invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
		dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
					 dmab->dev.dir);
	} else {
		if (dmab->dev.dir == DMA_FROM_DEVICE)
			return;
		flush_kernel_vmap_range(dmab->area, dmab->bytes);
		dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
					    dmab->dev.dir);
	}
}

static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
					      struct sg_page_iter *piter,
					      size_t offset)
{
	struct sg_table *sgt = dmab->private_data;

	__sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
			     offset >> PAGE_SHIFT);
}

static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
					     size_t offset)
{
	struct sg_dma_page_iter iter;

	snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
	__sg_page_iter_dma_next(&iter);
	return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
}

static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
					       size_t offset)
{
	struct sg_page_iter iter;

	snd_dma_noncontig_iter_set(dmab, &iter, offset);
	__sg_page_iter_next(&iter);
	return sg_page_iter_page(&iter);
}

static unsigned int
snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
				 unsigned int ofs, unsigned int size)
{
	struct sg_dma_page_iter iter;
	unsigned int start, end;
	unsigned long addr;

	start = ALIGN_DOWN(ofs, PAGE_SIZE);
	end = ofs + size - 1; /* the last byte address */
	snd_dma_noncontig_iter_set(dmab, &iter.base, start);
	if (!__sg_page_iter_dma_next(&iter))
		return 0;
	/* check page continuity */
	addr = sg_page_iter_dma_address(&iter);
	for (;;) {
		start += PAGE_SIZE;
		if (start > end)
			break;
		addr += PAGE_SIZE;
		if (!__sg_page_iter_dma_next(&iter) ||
		    sg_page_iter_dma_address(&iter) != addr)
			return start - ofs;
	}
	/* ok, all on continuous pages */
	return size;
}

static const struct snd_malloc_ops snd_dma_noncontig_ops = {
	.alloc = snd_dma_noncontig_alloc,
	.free = snd_dma_noncontig_free,
	.mmap = snd_dma_noncontig_mmap,
	.sync = snd_dma_noncontig_sync,
	.get_addr = snd_dma_noncontig_get_addr,
	.get_page = snd_dma_noncontig_get_page,
	.get_chunk_size = snd_dma_noncontig_get_chunk_size,
};

/* x86-specific SG-buffer with WC pages */
#ifdef CONFIG_SND_DMA_SGBUF
#define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))

static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	void *p = snd_dma_noncontig_alloc(dmab, size);
	struct sg_table *sgt = dmab->private_data;
	struct sg_page_iter iter;

	if (!p)
		return NULL;
	if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
		return p;
	for_each_sgtable_page(sgt, &iter, 0)
		set_memory_wc(sg_wc_address(&iter), 1);
	return p;
}

static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
{
	struct sg_table *sgt = dmab->private_data;
	struct sg_page_iter iter;

	for_each_sgtable_page(sgt, &iter, 0)
		set_memory_wb(sg_wc_address(&iter), 1);
	snd_dma_noncontig_free(dmab);
}

static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
			      struct vm_area_struct *area)
{
	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
	return dma_mmap_noncontiguous(dmab->dev.dev, area,
				      dmab->bytes, dmab->private_data);
}

static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
	.alloc = snd_dma_sg_wc_alloc,
	.free = snd_dma_sg_wc_free,
	.mmap = snd_dma_sg_wc_mmap,
	.sync = snd_dma_noncontig_sync,
	.get_addr = snd_dma_noncontig_get_addr,
	.get_page = snd_dma_noncontig_get_page,
	.get_chunk_size = snd_dma_noncontig_get_chunk_size,
};

/* Fallback SG-buffer allocations for x86 */
struct snd_dma_sg_fallback {
	bool use_dma_alloc_coherent;
	size_t count;
	struct page **pages;
	/* DMA address array; the first page contains #pages in ~PAGE_MASK */
	dma_addr_t *addrs;
};

static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
				       struct snd_dma_sg_fallback *sgbuf)
{
	size_t i, size;

	if (sgbuf->pages && sgbuf->addrs) {
		i = 0;
		while (i < sgbuf->count) {
			if (!sgbuf->pages[i] || !sgbuf->addrs[i])
				break;
			size = sgbuf->addrs[i] & ~PAGE_MASK;
			if (WARN_ON(!size))
				break;
			if (sgbuf->use_dma_alloc_coherent)
				dma_free_coherent(dmab->dev.dev, size << PAGE_SHIFT,
						  page_address(sgbuf->pages[i]),
						  sgbuf->addrs[i] & PAGE_MASK);
			else
				do_free_pages(page_address(sgbuf->pages[i]),
					      size << PAGE_SHIFT, false);
			i += size;
		}
	}
	kvfree(sgbuf->pages);
	kvfree(sgbuf->addrs);
	kfree(sgbuf);
}

static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	struct snd_dma_sg_fallback *sgbuf;
	struct page **pagep, *curp;
	size_t chunk, npages;
	dma_addr_t *addrp;
	dma_addr_t addr;
	void *p;

	/* correct the type */
	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_SG)
		dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
	else if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
		dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;

	sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
	if (!sgbuf)
		return NULL;
	sgbuf->use_dma_alloc_coherent = cpu_feature_enabled(X86_FEATURE_XENPV);
	size = PAGE_ALIGN(size);
	sgbuf->count = size >> PAGE_SHIFT;
	sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
	sgbuf->addrs = kvcalloc(sgbuf->count, sizeof(*sgbuf->addrs), GFP_KERNEL);
	if (!sgbuf->pages || !sgbuf->addrs)
		goto error;

	pagep = sgbuf->pages;
	addrp = sgbuf->addrs;
	chunk = (PAGE_SIZE - 1) << PAGE_SHIFT; /* to fit in low bits in addrs */
	while (size > 0) {
		chunk = min(size, chunk);
		if (sgbuf->use_dma_alloc_coherent)
			p = dma_alloc_coherent(dmab->dev.dev, chunk, &addr, DEFAULT_GFP);
		else
			p = do_alloc_pages(dmab->dev.dev, chunk, &addr, false);
		if (!p) {
			if (chunk <= PAGE_SIZE)
				goto error;
			chunk >>= 1;
			chunk = PAGE_SIZE << get_order(chunk);
			continue;
		}

		size -= chunk;
		/* fill pages */
		npages = chunk >> PAGE_SHIFT;
		*addrp = npages; /* store in lower bits */
		curp = virt_to_page(p);
		while (npages--) {
			*pagep++ = curp++;
			*addrp++ |= addr;
			addr += PAGE_SIZE;
		}
	}

	p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
	if (!p)
		goto error;

	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
		set_pages_array_wc(sgbuf->pages, sgbuf->count);

	dmab->private_data = sgbuf;
	/* store the first page address for convenience */
	dmab->addr = sgbuf->addrs[0] & PAGE_MASK;
	return p;

 error:
	__snd_dma_sg_fallback_free(dmab, sgbuf);
	return NULL;
}

static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
{
	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;

	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
		set_pages_array_wb(sgbuf->pages, sgbuf->count);
	vunmap(dmab->area);
	__snd_dma_sg_fallback_free(dmab, dmab->private_data);
}

static dma_addr_t snd_dma_sg_fallback_get_addr(struct snd_dma_buffer *dmab,
					       size_t offset)
{
	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
	size_t index = offset >> PAGE_SHIFT;

	return (sgbuf->addrs[index] & PAGE_MASK) | (offset & ~PAGE_MASK);
}

static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
				    struct vm_area_struct *area)
{
	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;

	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
		area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
	return vm_map_pages(area, sgbuf->pages, sgbuf->count);
}

static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
	.alloc = snd_dma_sg_fallback_alloc,
	.free = snd_dma_sg_fallback_free,
	.mmap = snd_dma_sg_fallback_mmap,
	.get_addr = snd_dma_sg_fallback_get_addr,
	/* reuse vmalloc helpers */
	.get_page = snd_dma_vmalloc_get_page,
	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
};
#endif /* CONFIG_SND_DMA_SGBUF */

/*
 * Non-coherent pages allocator
 */
static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
{
	void *p;

	p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
				  dmab->dev.dir, DEFAULT_GFP);
	if (p)
		dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
	return p;
}

static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
{
	dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
			     dmab->addr, dmab->dev.dir);
}

static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
				    struct vm_area_struct *area)
{
	area->vm_page_prot = vm_get_page_prot(area->vm_flags);
	return dma_mmap_pages(dmab->dev.dev, area,
			      area->vm_end - area->vm_start,
			      virt_to_page(dmab->area));
}

static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
				     enum snd_dma_sync_mode mode)
{
	if (mode == SNDRV_DMA_SYNC_CPU) {
		if (dmab->dev.dir != DMA_TO_DEVICE)
			dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
						dmab->bytes, dmab->dev.dir);
	} else {
		if (dmab->dev.dir != DMA_FROM_DEVICE)
			dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
						   dmab->bytes, dmab->dev.dir);
	}
}

static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
	.alloc = snd_dma_noncoherent_alloc,
	.free = snd_dma_noncoherent_free,
	.mmap = snd_dma_noncoherent_mmap,
	.sync = snd_dma_noncoherent_sync,
};

#endif /* CONFIG_HAS_DMA */

/*
 * Entry points
 */
static const struct snd_malloc_ops *snd_dma_ops[] = {
	[SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
	[SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
#ifdef CONFIG_HAS_DMA
	[SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
	[SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
	[SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
	[SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
#ifdef CONFIG_SND_DMA_SGBUF
	[SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
#endif
#ifdef CONFIG_GENERIC_ALLOCATOR
	[SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
#endif /* CONFIG_GENERIC_ALLOCATOR */
#ifdef CONFIG_SND_DMA_SGBUF
	[SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
	[SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
#endif
#endif /* CONFIG_HAS_DMA */
};

static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
{
	if (WARN_ON_ONCE(!dmab))
		return NULL;
	if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
			 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
		return NULL;
	return snd_dma_ops[dmab->dev.type];
}