Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | // SPDX-License-Identifier: GPL-2.0 /* * KUnit test for the linear_ranges helper. * * Copyright (C) 2020, ROHM Semiconductors. * Author: Matti Vaittinen <matti.vaittien@fi.rohmeurope.com> */ #include <kunit/test.h> #include <linux/linear_range.h> /* First things first. I deeply dislike unit-tests. I have seen all the hell * breaking loose when people who think the unit tests are "the silver bullet" * to kill bugs get to decide how a company should implement testing strategy... * * Believe me, it may get _really_ ridiculous. It is tempting to think that * walking through all the possible execution branches will nail down 100% of * bugs. This may lead to ideas about demands to get certain % of "test * coverage" - measured as line coverage. And that is one of the worst things * you can do. * * Ask people to provide line coverage and they do. I've seen clever tools * which generate test cases to test the existing functions - and by default * these tools expect code to be correct and just generate checks which are * passing when ran against current code-base. Run this generator and you'll get * tests that do not test code is correct but just verify nothing changes. * Problem is that testing working code is pointless. And if it is not * working, your test must not assume it is working. You won't catch any bugs * by such tests. What you can do is to generate a huge amount of tests. * Especially if you were are asked to proivde 100% line-coverage x_x. So what * does these tests - which are not finding any bugs now - do? * * They add inertia to every future development. I think it was Terry Pratchet * who wrote someone having same impact as thick syrup has to chronometre. * Excessive amount of unit-tests have this effect to development. If you do * actually find _any_ bug from code in such environment and try fixing it... * ...chances are you also need to fix the test cases. In sunny day you fix one * test. But I've done refactoring which resulted 500+ broken tests (which had * really zero value other than proving to managers that we do do "quality")... * * After this being said - there are situations where UTs can be handy. If you * have algorithms which take some input and should produce output - then you * can implement few, carefully selected simple UT-cases which test this. I've * previously used this for example for netlink and device-tree data parsing * functions. Feed some data examples to functions and verify the output is as * expected. I am not covering all the cases but I will see the logic should be * working. * * Here we also do some minor testing. I don't want to go through all branches * or test more or less obvious things - but I want to see the main logic is * working. And I definitely don't want to add 500+ test cases that break when * some simple fix is done x_x. So - let's only add few, well selected tests * which ensure as much logic is good as possible. */ /* * Test Range 1: * selectors: 2 3 4 5 6 * values (5): 10 20 30 40 50 * * Test Range 2: * selectors: 7 8 9 10 * values (4): 100 150 200 250 */ #define RANGE1_MIN 10 #define RANGE1_MIN_SEL 2 #define RANGE1_STEP 10 /* 2, 3, 4, 5, 6 */ static const unsigned int range1_sels[] = { RANGE1_MIN_SEL, RANGE1_MIN_SEL + 1, RANGE1_MIN_SEL + 2, RANGE1_MIN_SEL + 3, RANGE1_MIN_SEL + 4 }; /* 10, 20, 30, 40, 50 */ static const unsigned int range1_vals[] = { RANGE1_MIN, RANGE1_MIN + RANGE1_STEP, RANGE1_MIN + RANGE1_STEP * 2, RANGE1_MIN + RANGE1_STEP * 3, RANGE1_MIN + RANGE1_STEP * 4 }; #define RANGE2_MIN 100 #define RANGE2_MIN_SEL 7 #define RANGE2_STEP 50 /* 7, 8, 9, 10 */ static const unsigned int range2_sels[] = { RANGE2_MIN_SEL, RANGE2_MIN_SEL + 1, RANGE2_MIN_SEL + 2, RANGE2_MIN_SEL + 3 }; /* 100, 150, 200, 250 */ static const unsigned int range2_vals[] = { RANGE2_MIN, RANGE2_MIN + RANGE2_STEP, RANGE2_MIN + RANGE2_STEP * 2, RANGE2_MIN + RANGE2_STEP * 3 }; #define RANGE1_NUM_VALS (ARRAY_SIZE(range1_vals)) #define RANGE2_NUM_VALS (ARRAY_SIZE(range2_vals)) #define RANGE_NUM_VALS (RANGE1_NUM_VALS + RANGE2_NUM_VALS) #define RANGE1_MAX_SEL (RANGE1_MIN_SEL + RANGE1_NUM_VALS - 1) #define RANGE1_MAX_VAL (range1_vals[RANGE1_NUM_VALS - 1]) #define RANGE2_MAX_SEL (RANGE2_MIN_SEL + RANGE2_NUM_VALS - 1) #define RANGE2_MAX_VAL (range2_vals[RANGE2_NUM_VALS - 1]) #define SMALLEST_SEL RANGE1_MIN_SEL #define SMALLEST_VAL RANGE1_MIN static struct linear_range testr[] = { { .min = RANGE1_MIN, .min_sel = RANGE1_MIN_SEL, .max_sel = RANGE1_MAX_SEL, .step = RANGE1_STEP, }, { .min = RANGE2_MIN, .min_sel = RANGE2_MIN_SEL, .max_sel = RANGE2_MAX_SEL, .step = RANGE2_STEP }, }; static void range_test_get_value(struct kunit *test) { int ret, i; unsigned int sel, val; for (i = 0; i < RANGE1_NUM_VALS; i++) { sel = range1_sels[i]; ret = linear_range_get_value_array(&testr[0], 2, sel, &val); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_EQ(test, val, range1_vals[i]); } for (i = 0; i < RANGE2_NUM_VALS; i++) { sel = range2_sels[i]; ret = linear_range_get_value_array(&testr[0], 2, sel, &val); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_EQ(test, val, range2_vals[i]); } ret = linear_range_get_value_array(&testr[0], 2, sel + 1, &val); KUNIT_EXPECT_NE(test, 0, ret); } static void range_test_get_selector_high(struct kunit *test) { int ret, i; unsigned int sel; bool found; for (i = 0; i < RANGE1_NUM_VALS; i++) { ret = linear_range_get_selector_high(&testr[0], range1_vals[i], &sel, &found); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_EQ(test, sel, range1_sels[i]); KUNIT_EXPECT_TRUE(test, found); } ret = linear_range_get_selector_high(&testr[0], RANGE1_MAX_VAL + 1, &sel, &found); KUNIT_EXPECT_LE(test, ret, 0); ret = linear_range_get_selector_high(&testr[0], RANGE1_MIN - 1, &sel, &found); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_FALSE(test, found); KUNIT_EXPECT_EQ(test, sel, range1_sels[0]); } static void range_test_get_value_amount(struct kunit *test) { int ret; ret = linear_range_values_in_range_array(&testr[0], 2); KUNIT_EXPECT_EQ(test, (int)RANGE_NUM_VALS, ret); } static void range_test_get_selector_low(struct kunit *test) { int i, ret; unsigned int sel; bool found; for (i = 0; i < RANGE1_NUM_VALS; i++) { ret = linear_range_get_selector_low_array(&testr[0], 2, range1_vals[i], &sel, &found); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_EQ(test, sel, range1_sels[i]); KUNIT_EXPECT_TRUE(test, found); } for (i = 0; i < RANGE2_NUM_VALS; i++) { ret = linear_range_get_selector_low_array(&testr[0], 2, range2_vals[i], &sel, &found); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_EQ(test, sel, range2_sels[i]); KUNIT_EXPECT_TRUE(test, found); } /* * Seek value greater than range max => get_selector_*_low should * return Ok - but set found to false as value is not in range */ ret = linear_range_get_selector_low_array(&testr[0], 2, range2_vals[RANGE2_NUM_VALS - 1] + 1, &sel, &found); KUNIT_EXPECT_EQ(test, 0, ret); KUNIT_EXPECT_EQ(test, sel, range2_sels[RANGE2_NUM_VALS - 1]); KUNIT_EXPECT_FALSE(test, found); } static struct kunit_case range_test_cases[] = { KUNIT_CASE(range_test_get_value_amount), KUNIT_CASE(range_test_get_selector_high), KUNIT_CASE(range_test_get_selector_low), KUNIT_CASE(range_test_get_value), {}, }; static struct kunit_suite range_test_module = { .name = "linear-ranges-test", .test_cases = range_test_cases, }; kunit_test_suites(&range_test_module); MODULE_LICENSE("GPL"); |