Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 | // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/fast_commit.c * * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> * * Ext4 fast commits routines. */ #include "ext4.h" #include "ext4_jbd2.h" #include "ext4_extents.h" #include "mballoc.h" /* * Ext4 Fast Commits * ----------------- * * Ext4 fast commits implement fine grained journalling for Ext4. * * Fast commits are organized as a log of tag-length-value (TLV) structs. (See * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by * TLV during the recovery phase. For the scenarios for which we currently * don't have replay code, fast commit falls back to full commits. * Fast commits record delta in one of the following three categories. * * (A) Directory entry updates: * * - EXT4_FC_TAG_UNLINK - records directory entry unlink * - EXT4_FC_TAG_LINK - records directory entry link * - EXT4_FC_TAG_CREAT - records inode and directory entry creation * * (B) File specific data range updates: * * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode * * (C) Inode metadata (mtime / ctime etc): * * - EXT4_FC_TAG_INODE - record the inode that should be replayed * during recovery. Note that iblocks field is * not replayed and instead derived during * replay. * Commit Operation * ---------------- * With fast commits, we maintain all the directory entry operations in the * order in which they are issued in an in-memory queue. This queue is flushed * to disk during the commit operation. We also maintain a list of inodes * that need to be committed during a fast commit in another in memory queue of * inodes. During the commit operation, we commit in the following order: * * [1] Lock inodes for any further data updates by setting COMMITTING state * [2] Submit data buffers of all the inodes * [3] Wait for [2] to complete * [4] Commit all the directory entry updates in the fast commit space * [5] Commit all the changed inode structures * [6] Write tail tag (this tag ensures the atomicity, please read the following * section for more details). * [7] Wait for [4], [5] and [6] to complete. * * All the inode updates must call ext4_fc_start_update() before starting an * update. If such an ongoing update is present, fast commit waits for it to * complete. The completion of such an update is marked by * ext4_fc_stop_update(). * * Fast Commit Ineligibility * ------------------------- * * Not all operations are supported by fast commits today (e.g extended * attributes). Fast commit ineligibility is marked by calling * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back * to full commit. * * Atomicity of commits * -------------------- * In order to guarantee atomicity during the commit operation, fast commit * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail * tag contains CRC of the contents and TID of the transaction after which * this fast commit should be applied. Recovery code replays fast commit * logs only if there's at least 1 valid tail present. For every fast commit * operation, there is 1 tail. This means, we may end up with multiple tails * in the fast commit space. Here's an example: * * - Create a new file A and remove existing file B * - fsync() * - Append contents to file A * - Truncate file A * - fsync() * * The fast commit space at the end of above operations would look like this: * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| * * Replay code should thus check for all the valid tails in the FC area. * * Fast Commit Replay Idempotence * ------------------------------ * * Fast commits tags are idempotent in nature provided the recovery code follows * certain rules. The guiding principle that the commit path follows while * committing is that it stores the result of a particular operation instead of * storing the procedure. * * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' * was associated with inode 10. During fast commit, instead of storing this * operation as a procedure "rename a to b", we store the resulting file system * state as a "series" of outcomes: * * - Link dirent b to inode 10 * - Unlink dirent a * - Inode <10> with valid refcount * * Now when recovery code runs, it needs "enforce" this state on the file * system. This is what guarantees idempotence of fast commit replay. * * Let's take an example of a procedure that is not idempotent and see how fast * commits make it idempotent. Consider following sequence of operations: * * rm A; mv B A; read A * (x) (y) (z) * * (x), (y) and (z) are the points at which we can crash. If we store this * sequence of operations as is then the replay is not idempotent. Let's say * while in replay, we crash at (z). During the second replay, file A (which was * actually created as a result of "mv B A" operation) would get deleted. Thus, * file named A would be absent when we try to read A. So, this sequence of * operations is not idempotent. However, as mentioned above, instead of storing * the procedure fast commits store the outcome of each procedure. Thus the fast * commit log for above procedure would be as follows: * * (Let's assume dirent A was linked to inode 10 and dirent B was linked to * inode 11 before the replay) * * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] * (w) (x) (y) (z) * * If we crash at (z), we will have file A linked to inode 11. During the second * replay, we will remove file A (inode 11). But we will create it back and make * it point to inode 11. We won't find B, so we'll just skip that step. At this * point, the refcount for inode 11 is not reliable, but that gets fixed by the * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled * similarly. Thus, by converting a non-idempotent procedure into a series of * idempotent outcomes, fast commits ensured idempotence during the replay. * * TODOs * ----- * * 0) Fast commit replay path hardening: Fast commit replay code should use * journal handles to make sure all the updates it does during the replay * path are atomic. With that if we crash during fast commit replay, after * trying to do recovery again, we will find a file system where fast commit * area is invalid (because new full commit would be found). In order to deal * with that, fast commit replay code should ensure that the "FC_REPLAY" * superblock state is persisted before starting the replay, so that after * the crash, fast commit recovery code can look at that flag and perform * fast commit recovery even if that area is invalidated by later full * commits. * * 1) Fast commit's commit path locks the entire file system during fast * commit. This has significant performance penalty. Instead of that, we * should use ext4_fc_start/stop_update functions to start inode level * updates from ext4_journal_start/stop. Once we do that we can drop file * system locking during commit path. * * 2) Handle more ineligible cases. */ #include <trace/events/ext4.h> static struct kmem_cache *ext4_fc_dentry_cachep; static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) { BUFFER_TRACE(bh, ""); if (uptodate) { ext4_debug("%s: Block %lld up-to-date", __func__, bh->b_blocknr); set_buffer_uptodate(bh); } else { ext4_debug("%s: Block %lld not up-to-date", __func__, bh->b_blocknr); clear_buffer_uptodate(bh); } unlock_buffer(bh); } static inline void ext4_fc_reset_inode(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); ei->i_fc_lblk_start = 0; ei->i_fc_lblk_len = 0; } void ext4_fc_init_inode(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_fc_reset_inode(inode); ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); INIT_LIST_HEAD(&ei->i_fc_list); INIT_LIST_HEAD(&ei->i_fc_dilist); init_waitqueue_head(&ei->i_fc_wait); atomic_set(&ei->i_fc_updates, 0); } /* This function must be called with sbi->s_fc_lock held. */ static void ext4_fc_wait_committing_inode(struct inode *inode) __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) { wait_queue_head_t *wq; struct ext4_inode_info *ei = EXT4_I(inode); #if (BITS_PER_LONG < 64) DEFINE_WAIT_BIT(wait, &ei->i_state_flags, EXT4_STATE_FC_COMMITTING); wq = bit_waitqueue(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING); #else DEFINE_WAIT_BIT(wait, &ei->i_flags, EXT4_STATE_FC_COMMITTING); wq = bit_waitqueue(&ei->i_flags, EXT4_STATE_FC_COMMITTING); #endif lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); schedule(); finish_wait(wq, &wait.wq_entry); } static bool ext4_fc_disabled(struct super_block *sb) { return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); } /* * Inform Ext4's fast about start of an inode update * * This function is called by the high level call VFS callbacks before * performing any inode update. This function blocks if there's an ongoing * fast commit on the inode in question. */ void ext4_fc_start_update(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); if (ext4_fc_disabled(inode->i_sb)) return; restart: spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); if (list_empty(&ei->i_fc_list)) goto out; if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { ext4_fc_wait_committing_inode(inode); goto restart; } out: atomic_inc(&ei->i_fc_updates); spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); } /* * Stop inode update and wake up waiting fast commits if any. */ void ext4_fc_stop_update(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); if (ext4_fc_disabled(inode->i_sb)) return; if (atomic_dec_and_test(&ei->i_fc_updates)) wake_up_all(&ei->i_fc_wait); } /* * Remove inode from fast commit list. If the inode is being committed * we wait until inode commit is done. */ void ext4_fc_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_fc_dentry_update *fc_dentry; if (ext4_fc_disabled(inode->i_sb)) return; restart: spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); return; } if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { ext4_fc_wait_committing_inode(inode); goto restart; } if (!list_empty(&ei->i_fc_list)) list_del_init(&ei->i_fc_list); /* * Since this inode is getting removed, let's also remove all FC * dentry create references, since it is not needed to log it anyways. */ if (list_empty(&ei->i_fc_dilist)) { spin_unlock(&sbi->s_fc_lock); return; } fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); list_del_init(&fc_dentry->fcd_list); list_del_init(&fc_dentry->fcd_dilist); WARN_ON(!list_empty(&ei->i_fc_dilist)); spin_unlock(&sbi->s_fc_lock); if (fc_dentry->fcd_name.name && fc_dentry->fcd_name.len > DNAME_INLINE_LEN) kfree(fc_dentry->fcd_name.name); kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); return; } /* * Mark file system as fast commit ineligible, and record latest * ineligible transaction tid. This means until the recorded * transaction, commit operation would result in a full jbd2 commit. */ void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) { struct ext4_sb_info *sbi = EXT4_SB(sb); tid_t tid; if (ext4_fc_disabled(sb)) return; ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); if (handle && !IS_ERR(handle)) tid = handle->h_transaction->t_tid; else { read_lock(&sbi->s_journal->j_state_lock); tid = sbi->s_journal->j_running_transaction ? sbi->s_journal->j_running_transaction->t_tid : 0; read_unlock(&sbi->s_journal->j_state_lock); } spin_lock(&sbi->s_fc_lock); if (sbi->s_fc_ineligible_tid < tid) sbi->s_fc_ineligible_tid = tid; spin_unlock(&sbi->s_fc_lock); WARN_ON(reason >= EXT4_FC_REASON_MAX); sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; } /* * Generic fast commit tracking function. If this is the first time this we are * called after a full commit, we initialize fast commit fields and then call * __fc_track_fn() with update = 0. If we have already been called after a full * commit, we pass update = 1. Based on that, the track function can determine * if it needs to track a field for the first time or if it needs to just * update the previously tracked value. * * If enqueue is set, this function enqueues the inode in fast commit list. */ static int ext4_fc_track_template( handle_t *handle, struct inode *inode, int (*__fc_track_fn)(struct inode *, void *, bool), void *args, int enqueue) { bool update = false; struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); tid_t tid = 0; int ret; tid = handle->h_transaction->t_tid; mutex_lock(&ei->i_fc_lock); if (tid == ei->i_sync_tid) { update = true; } else { ext4_fc_reset_inode(inode); ei->i_sync_tid = tid; } ret = __fc_track_fn(inode, args, update); mutex_unlock(&ei->i_fc_lock); if (!enqueue) return ret; spin_lock(&sbi->s_fc_lock); if (list_empty(&EXT4_I(inode)->i_fc_list)) list_add_tail(&EXT4_I(inode)->i_fc_list, (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? &sbi->s_fc_q[FC_Q_STAGING] : &sbi->s_fc_q[FC_Q_MAIN]); spin_unlock(&sbi->s_fc_lock); return ret; } struct __track_dentry_update_args { struct dentry *dentry; int op; }; /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ static int __track_dentry_update(struct inode *inode, void *arg, bool update) { struct ext4_fc_dentry_update *node; struct ext4_inode_info *ei = EXT4_I(inode); struct __track_dentry_update_args *dentry_update = (struct __track_dentry_update_args *)arg; struct dentry *dentry = dentry_update->dentry; struct inode *dir = dentry->d_parent->d_inode; struct super_block *sb = inode->i_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); mutex_unlock(&ei->i_fc_lock); if (IS_ENCRYPTED(dir)) { ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, NULL); mutex_lock(&ei->i_fc_lock); return -EOPNOTSUPP; } node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); if (!node) { ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); mutex_lock(&ei->i_fc_lock); return -ENOMEM; } node->fcd_op = dentry_update->op; node->fcd_parent = dir->i_ino; node->fcd_ino = inode->i_ino; if (dentry->d_name.len > DNAME_INLINE_LEN) { node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); if (!node->fcd_name.name) { kmem_cache_free(ext4_fc_dentry_cachep, node); ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); mutex_lock(&ei->i_fc_lock); return -ENOMEM; } memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, dentry->d_name.len); } else { memcpy(node->fcd_iname, dentry->d_name.name, dentry->d_name.len); node->fcd_name.name = node->fcd_iname; } node->fcd_name.len = dentry->d_name.len; INIT_LIST_HEAD(&node->fcd_dilist); spin_lock(&sbi->s_fc_lock); if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_STAGING]); else list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); /* * This helps us keep a track of all fc_dentry updates which is part of * this ext4 inode. So in case the inode is getting unlinked, before * even we get a chance to fsync, we could remove all fc_dentry * references while evicting the inode in ext4_fc_del(). * Also with this, we don't need to loop over all the inodes in * sbi->s_fc_q to get the corresponding inode in * ext4_fc_commit_dentry_updates(). */ if (dentry_update->op == EXT4_FC_TAG_CREAT) { WARN_ON(!list_empty(&ei->i_fc_dilist)); list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); } spin_unlock(&sbi->s_fc_lock); mutex_lock(&ei->i_fc_lock); return 0; } void __ext4_fc_track_unlink(handle_t *handle, struct inode *inode, struct dentry *dentry) { struct __track_dentry_update_args args; int ret; args.dentry = dentry; args.op = EXT4_FC_TAG_UNLINK; ret = ext4_fc_track_template(handle, inode, __track_dentry_update, (void *)&args, 0); trace_ext4_fc_track_unlink(handle, inode, dentry, ret); } void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (ext4_fc_disabled(inode->i_sb)) return; if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) return; __ext4_fc_track_unlink(handle, inode, dentry); } void __ext4_fc_track_link(handle_t *handle, struct inode *inode, struct dentry *dentry) { struct __track_dentry_update_args args; int ret; args.dentry = dentry; args.op = EXT4_FC_TAG_LINK; ret = ext4_fc_track_template(handle, inode, __track_dentry_update, (void *)&args, 0); trace_ext4_fc_track_link(handle, inode, dentry, ret); } void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (ext4_fc_disabled(inode->i_sb)) return; if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) return; __ext4_fc_track_link(handle, inode, dentry); } void __ext4_fc_track_create(handle_t *handle, struct inode *inode, struct dentry *dentry) { struct __track_dentry_update_args args; int ret; args.dentry = dentry; args.op = EXT4_FC_TAG_CREAT; ret = ext4_fc_track_template(handle, inode, __track_dentry_update, (void *)&args, 0); trace_ext4_fc_track_create(handle, inode, dentry, ret); } void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (ext4_fc_disabled(inode->i_sb)) return; if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) return; __ext4_fc_track_create(handle, inode, dentry); } /* __track_fn for inode tracking */ static int __track_inode(struct inode *inode, void *arg, bool update) { if (update) return -EEXIST; EXT4_I(inode)->i_fc_lblk_len = 0; return 0; } void ext4_fc_track_inode(handle_t *handle, struct inode *inode) { int ret; if (S_ISDIR(inode->i_mode)) return; if (ext4_fc_disabled(inode->i_sb)) return; if (ext4_should_journal_data(inode)) { ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); return; } if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) return; ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); trace_ext4_fc_track_inode(handle, inode, ret); } struct __track_range_args { ext4_lblk_t start, end; }; /* __track_fn for tracking data updates */ static int __track_range(struct inode *inode, void *arg, bool update) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_lblk_t oldstart; struct __track_range_args *__arg = (struct __track_range_args *)arg; if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { ext4_debug("Special inode %ld being modified\n", inode->i_ino); return -ECANCELED; } oldstart = ei->i_fc_lblk_start; if (update && ei->i_fc_lblk_len > 0) { ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); ei->i_fc_lblk_len = max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - ei->i_fc_lblk_start + 1; } else { ei->i_fc_lblk_start = __arg->start; ei->i_fc_lblk_len = __arg->end - __arg->start + 1; } return 0; } void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, ext4_lblk_t end) { struct __track_range_args args; int ret; if (S_ISDIR(inode->i_mode)) return; if (ext4_fc_disabled(inode->i_sb)) return; if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) return; args.start = start; args.end = end; ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); trace_ext4_fc_track_range(handle, inode, start, end, ret); } static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) { blk_opf_t write_flags = REQ_SYNC; struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; /* Add REQ_FUA | REQ_PREFLUSH only its tail */ if (test_opt(sb, BARRIER) && is_tail) write_flags |= REQ_FUA | REQ_PREFLUSH; lock_buffer(bh); set_buffer_dirty(bh); set_buffer_uptodate(bh); bh->b_end_io = ext4_end_buffer_io_sync; submit_bh(REQ_OP_WRITE | write_flags, bh); EXT4_SB(sb)->s_fc_bh = NULL; } /* Ext4 commit path routines */ /* memcpy to fc reserved space and update CRC */ static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, int len, u32 *crc) { if (crc) *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); return memcpy(dst, src, len); } /* memzero and update CRC */ static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, u32 *crc) { void *ret; ret = memset(dst, 0, len); if (crc) *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); return ret; } /* * Allocate len bytes on a fast commit buffer. * * During the commit time this function is used to manage fast commit * block space. We don't split a fast commit log onto different * blocks. So this function makes sure that if there's not enough space * on the current block, the remaining space in the current block is * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, * new block is from jbd2 and CRC is updated to reflect the padding * we added. */ static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) { struct ext4_fc_tl tl; struct ext4_sb_info *sbi = EXT4_SB(sb); struct buffer_head *bh; int bsize = sbi->s_journal->j_blocksize; int ret, off = sbi->s_fc_bytes % bsize; int remaining; u8 *dst; /* * If 'len' is too long to fit in any block alongside a PAD tlv, then we * cannot fulfill the request. */ if (len > bsize - EXT4_FC_TAG_BASE_LEN) return NULL; if (!sbi->s_fc_bh) { ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); if (ret) return NULL; sbi->s_fc_bh = bh; } dst = sbi->s_fc_bh->b_data + off; /* * Allocate the bytes in the current block if we can do so while still * leaving enough space for a PAD tlv. */ remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; if (len <= remaining) { sbi->s_fc_bytes += len; return dst; } /* * Else, terminate the current block with a PAD tlv, then allocate a new * block and allocate the bytes at the start of that new block. */ tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); tl.fc_len = cpu_to_le16(remaining); ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); ext4_fc_memzero(sb, dst + EXT4_FC_TAG_BASE_LEN, remaining, crc); ext4_fc_submit_bh(sb, false); ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); if (ret) return NULL; sbi->s_fc_bh = bh; sbi->s_fc_bytes += bsize - off + len; return sbi->s_fc_bh->b_data; } /* * Complete a fast commit by writing tail tag. * * Writing tail tag marks the end of a fast commit. In order to guarantee * atomicity, after writing tail tag, even if there's space remaining * in the block, next commit shouldn't use it. That's why tail tag * has the length as that of the remaining space on the block. */ static int ext4_fc_write_tail(struct super_block *sb, u32 crc) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_tl tl; struct ext4_fc_tail tail; int off, bsize = sbi->s_journal->j_blocksize; u8 *dst; /* * ext4_fc_reserve_space takes care of allocating an extra block if * there's no enough space on this block for accommodating this tail. */ dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); if (!dst) return -ENOSPC; off = sbi->s_fc_bytes % bsize; tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc); dst += EXT4_FC_TAG_BASE_LEN; tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); dst += sizeof(tail.fc_tid); tail.fc_crc = cpu_to_le32(crc); ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); dst += sizeof(tail.fc_crc); memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ ext4_fc_submit_bh(sb, true); return 0; } /* * Adds tag, length, value and updates CRC. Returns true if tlv was added. * Returns false if there's not enough space. */ static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, u32 *crc) { struct ext4_fc_tl tl; u8 *dst; dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); if (!dst) return false; tl.fc_tag = cpu_to_le16(tag); tl.fc_len = cpu_to_le16(len); ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc); return true; } /* Same as above, but adds dentry tlv. */ static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, struct ext4_fc_dentry_update *fc_dentry) { struct ext4_fc_dentry_info fcd; struct ext4_fc_tl tl; int dlen = fc_dentry->fcd_name.len; u8 *dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); if (!dst) return false; fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); dst += EXT4_FC_TAG_BASE_LEN; ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); dst += sizeof(fcd); ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc); return true; } /* * Writes inode in the fast commit space under TLV with tag @tag. * Returns 0 on success, error on failure. */ static int ext4_fc_write_inode(struct inode *inode, u32 *crc) { struct ext4_inode_info *ei = EXT4_I(inode); int inode_len = EXT4_GOOD_OLD_INODE_SIZE; int ret; struct ext4_iloc iloc; struct ext4_fc_inode fc_inode; struct ext4_fc_tl tl; u8 *dst; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) inode_len = EXT4_INODE_SIZE(inode->i_sb); else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) inode_len += ei->i_extra_isize; fc_inode.fc_ino = cpu_to_le32(inode->i_ino); tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); ret = -ECANCELED; dst = ext4_fc_reserve_space(inode->i_sb, EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); if (!dst) goto err; if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc)) goto err; dst += EXT4_FC_TAG_BASE_LEN; if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) goto err; dst += sizeof(fc_inode); if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), inode_len, crc)) goto err; ret = 0; err: brelse(iloc.bh); return ret; } /* * Writes updated data ranges for the inode in question. Updates CRC. * Returns 0 on success, error otherwise. */ static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) { ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_map_blocks map; struct ext4_fc_add_range fc_ext; struct ext4_fc_del_range lrange; struct ext4_extent *ex; int ret; mutex_lock(&ei->i_fc_lock); if (ei->i_fc_lblk_len == 0) { mutex_unlock(&ei->i_fc_lock); return 0; } old_blk_size = ei->i_fc_lblk_start; new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; ei->i_fc_lblk_len = 0; mutex_unlock(&ei->i_fc_lock); cur_lblk_off = old_blk_size; ext4_debug("will try writing %d to %d for inode %ld\n", cur_lblk_off, new_blk_size, inode->i_ino); while (cur_lblk_off <= new_blk_size) { map.m_lblk = cur_lblk_off; map.m_len = new_blk_size - cur_lblk_off + 1; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) return -ECANCELED; if (map.m_len == 0) { cur_lblk_off++; continue; } if (ret == 0) { lrange.fc_ino = cpu_to_le32(inode->i_ino); lrange.fc_lblk = cpu_to_le32(map.m_lblk); lrange.fc_len = cpu_to_le32(map.m_len); if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, sizeof(lrange), (u8 *)&lrange, crc)) return -ENOSPC; } else { unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; /* Limit the number of blocks in one extent */ map.m_len = min(max, map.m_len); fc_ext.fc_ino = cpu_to_le32(inode->i_ino); ex = (struct ext4_extent *)&fc_ext.fc_ex; ex->ee_block = cpu_to_le32(map.m_lblk); ex->ee_len = cpu_to_le16(map.m_len); ext4_ext_store_pblock(ex, map.m_pblk); if (map.m_flags & EXT4_MAP_UNWRITTEN) ext4_ext_mark_unwritten(ex); else ext4_ext_mark_initialized(ex); if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, sizeof(fc_ext), (u8 *)&fc_ext, crc)) return -ENOSPC; } cur_lblk_off += map.m_len; } return 0; } /* Submit data for all the fast commit inodes */ static int ext4_fc_submit_inode_data_all(journal_t *journal) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *ei; int ret = 0; spin_lock(&sbi->s_fc_lock); list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); while (atomic_read(&ei->i_fc_updates)) { DEFINE_WAIT(wait); prepare_to_wait(&ei->i_fc_wait, &wait, TASK_UNINTERRUPTIBLE); if (atomic_read(&ei->i_fc_updates)) { spin_unlock(&sbi->s_fc_lock); schedule(); spin_lock(&sbi->s_fc_lock); } finish_wait(&ei->i_fc_wait, &wait); } spin_unlock(&sbi->s_fc_lock); ret = jbd2_submit_inode_data(ei->jinode); if (ret) return ret; spin_lock(&sbi->s_fc_lock); } spin_unlock(&sbi->s_fc_lock); return ret; } /* Wait for completion of data for all the fast commit inodes */ static int ext4_fc_wait_inode_data_all(journal_t *journal) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *pos, *n; int ret = 0; spin_lock(&sbi->s_fc_lock); list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { if (!ext4_test_inode_state(&pos->vfs_inode, EXT4_STATE_FC_COMMITTING)) continue; spin_unlock(&sbi->s_fc_lock); ret = jbd2_wait_inode_data(journal, pos->jinode); if (ret) return ret; spin_lock(&sbi->s_fc_lock); } spin_unlock(&sbi->s_fc_lock); return 0; } /* Commit all the directory entry updates */ static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) __acquires(&sbi->s_fc_lock) __releases(&sbi->s_fc_lock) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; struct inode *inode; struct ext4_inode_info *ei; int ret; if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) return 0; list_for_each_entry_safe(fc_dentry, fc_dentry_n, &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { spin_unlock(&sbi->s_fc_lock); if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { ret = -ENOSPC; goto lock_and_exit; } spin_lock(&sbi->s_fc_lock); continue; } /* * With fcd_dilist we need not loop in sbi->s_fc_q to get the * corresponding inode pointer */ WARN_ON(list_empty(&fc_dentry->fcd_dilist)); ei = list_first_entry(&fc_dentry->fcd_dilist, struct ext4_inode_info, i_fc_dilist); inode = &ei->vfs_inode; WARN_ON(inode->i_ino != fc_dentry->fcd_ino); spin_unlock(&sbi->s_fc_lock); /* * We first write the inode and then the create dirent. This * allows the recovery code to create an unnamed inode first * and then link it to a directory entry. This allows us * to use namei.c routines almost as is and simplifies * the recovery code. */ ret = ext4_fc_write_inode(inode, crc); if (ret) goto lock_and_exit; ret = ext4_fc_write_inode_data(inode, crc); if (ret) goto lock_and_exit; if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { ret = -ENOSPC; goto lock_and_exit; } spin_lock(&sbi->s_fc_lock); } return 0; lock_and_exit: spin_lock(&sbi->s_fc_lock); return ret; } static int ext4_fc_perform_commit(journal_t *journal) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *iter; struct ext4_fc_head head; struct inode *inode; struct blk_plug plug; int ret = 0; u32 crc = 0; ret = ext4_fc_submit_inode_data_all(journal); if (ret) return ret; ret = ext4_fc_wait_inode_data_all(journal); if (ret) return ret; /* * If file system device is different from journal device, issue a cache * flush before we start writing fast commit blocks. */ if (journal->j_fs_dev != journal->j_dev) blkdev_issue_flush(journal->j_fs_dev); blk_start_plug(&plug); if (sbi->s_fc_bytes == 0) { /* * Add a head tag only if this is the first fast commit * in this TID. */ head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); head.fc_tid = cpu_to_le32( sbi->s_journal->j_running_transaction->t_tid); if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), (u8 *)&head, &crc)) { ret = -ENOSPC; goto out; } } spin_lock(&sbi->s_fc_lock); ret = ext4_fc_commit_dentry_updates(journal, &crc); if (ret) { spin_unlock(&sbi->s_fc_lock); goto out; } list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { inode = &iter->vfs_inode; if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) continue; spin_unlock(&sbi->s_fc_lock); ret = ext4_fc_write_inode_data(inode, &crc); if (ret) goto out; ret = ext4_fc_write_inode(inode, &crc); if (ret) goto out; spin_lock(&sbi->s_fc_lock); } spin_unlock(&sbi->s_fc_lock); ret = ext4_fc_write_tail(sb, crc); out: blk_finish_plug(&plug); return ret; } static void ext4_fc_update_stats(struct super_block *sb, int status, u64 commit_time, int nblks, tid_t commit_tid) { struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; ext4_debug("Fast commit ended with status = %d for tid %u", status, commit_tid); if (status == EXT4_FC_STATUS_OK) { stats->fc_num_commits++; stats->fc_numblks += nblks; if (likely(stats->s_fc_avg_commit_time)) stats->s_fc_avg_commit_time = (commit_time + stats->s_fc_avg_commit_time * 3) / 4; else stats->s_fc_avg_commit_time = commit_time; } else if (status == EXT4_FC_STATUS_FAILED || status == EXT4_FC_STATUS_INELIGIBLE) { if (status == EXT4_FC_STATUS_FAILED) stats->fc_failed_commits++; stats->fc_ineligible_commits++; } else { stats->fc_skipped_commits++; } trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); } /* * The main commit entry point. Performs a fast commit for transaction * commit_tid if needed. If it's not possible to perform a fast commit * due to various reasons, we fall back to full commit. Returns 0 * on success, error otherwise. */ int ext4_fc_commit(journal_t *journal, tid_t commit_tid) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); int nblks = 0, ret, bsize = journal->j_blocksize; int subtid = atomic_read(&sbi->s_fc_subtid); int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; ktime_t start_time, commit_time; if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) return jbd2_complete_transaction(journal, commit_tid); trace_ext4_fc_commit_start(sb, commit_tid); start_time = ktime_get(); restart_fc: ret = jbd2_fc_begin_commit(journal, commit_tid); if (ret == -EALREADY) { /* There was an ongoing commit, check if we need to restart */ if (atomic_read(&sbi->s_fc_subtid) <= subtid && commit_tid > journal->j_commit_sequence) goto restart_fc; ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, commit_tid); return 0; } else if (ret) { /* * Commit couldn't start. Just update stats and perform a * full commit. */ ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, commit_tid); return jbd2_complete_transaction(journal, commit_tid); } /* * After establishing journal barrier via jbd2_fc_begin_commit(), check * if we are fast commit ineligible. */ if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { status = EXT4_FC_STATUS_INELIGIBLE; goto fallback; } fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; ret = ext4_fc_perform_commit(journal); if (ret < 0) { status = EXT4_FC_STATUS_FAILED; goto fallback; } nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; ret = jbd2_fc_wait_bufs(journal, nblks); if (ret < 0) { status = EXT4_FC_STATUS_FAILED; goto fallback; } atomic_inc(&sbi->s_fc_subtid); ret = jbd2_fc_end_commit(journal); /* * weight the commit time higher than the average time so we * don't react too strongly to vast changes in the commit time */ commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); return ret; fallback: ret = jbd2_fc_end_commit_fallback(journal); ext4_fc_update_stats(sb, status, 0, 0, commit_tid); return ret; } /* * Fast commit cleanup routine. This is called after every fast commit and * full commit. full is true if we are called after a full commit. */ static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *iter, *iter_n; struct ext4_fc_dentry_update *fc_dentry; if (full && sbi->s_fc_bh) sbi->s_fc_bh = NULL; trace_ext4_fc_cleanup(journal, full, tid); jbd2_fc_release_bufs(journal); spin_lock(&sbi->s_fc_lock); list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { list_del_init(&iter->i_fc_list); ext4_clear_inode_state(&iter->vfs_inode, EXT4_STATE_FC_COMMITTING); if (iter->i_sync_tid <= tid) ext4_fc_reset_inode(&iter->vfs_inode); /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ smp_mb(); #if (BITS_PER_LONG < 64) wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); #else wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); #endif } while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], struct ext4_fc_dentry_update, fcd_list); list_del_init(&fc_dentry->fcd_list); list_del_init(&fc_dentry->fcd_dilist); spin_unlock(&sbi->s_fc_lock); if (fc_dentry->fcd_name.name && fc_dentry->fcd_name.len > DNAME_INLINE_LEN) kfree(fc_dentry->fcd_name.name); kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); spin_lock(&sbi->s_fc_lock); } list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], &sbi->s_fc_dentry_q[FC_Q_MAIN]); list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], &sbi->s_fc_q[FC_Q_MAIN]); if (tid >= sbi->s_fc_ineligible_tid) { sbi->s_fc_ineligible_tid = 0; ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); } if (full) sbi->s_fc_bytes = 0; spin_unlock(&sbi->s_fc_lock); trace_ext4_fc_stats(sb); } /* Ext4 Replay Path Routines */ /* Helper struct for dentry replay routines */ struct dentry_info_args { int parent_ino, dname_len, ino, inode_len; char *dname; }; /* Same as struct ext4_fc_tl, but uses native endianness fields */ struct ext4_fc_tl_mem { u16 fc_tag; u16 fc_len; }; static inline void tl_to_darg(struct dentry_info_args *darg, struct ext4_fc_tl_mem *tl, u8 *val) { struct ext4_fc_dentry_info fcd; memcpy(&fcd, val, sizeof(fcd)); darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); darg->ino = le32_to_cpu(fcd.fc_ino); darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); } static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) { struct ext4_fc_tl tl_disk; memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); tl->fc_len = le16_to_cpu(tl_disk.fc_len); tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); } /* Unlink replay function */ static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl_mem *tl, u8 *val) { struct inode *inode, *old_parent; struct qstr entry; struct dentry_info_args darg; int ret = 0; tl_to_darg(&darg, tl, val); trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, darg.parent_ino, darg.dname_len); entry.name = darg.dname; entry.len = darg.dname_len; inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("Inode %d not found", darg.ino); return 0; } old_parent = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); if (IS_ERR(old_parent)) { ext4_debug("Dir with inode %d not found", darg.parent_ino); iput(inode); return 0; } ret = __ext4_unlink(old_parent, &entry, inode, NULL); /* -ENOENT ok coz it might not exist anymore. */ if (ret == -ENOENT) ret = 0; iput(old_parent); iput(inode); return ret; } static int ext4_fc_replay_link_internal(struct super_block *sb, struct dentry_info_args *darg, struct inode *inode) { struct inode *dir = NULL; struct dentry *dentry_dir = NULL, *dentry_inode = NULL; struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); int ret = 0; dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); if (IS_ERR(dir)) { ext4_debug("Dir with inode %d not found.", darg->parent_ino); dir = NULL; goto out; } dentry_dir = d_obtain_alias(dir); if (IS_ERR(dentry_dir)) { ext4_debug("Failed to obtain dentry"); dentry_dir = NULL; goto out; } dentry_inode = d_alloc(dentry_dir, &qstr_dname); if (!dentry_inode) { ext4_debug("Inode dentry not created."); ret = -ENOMEM; goto out; } ret = __ext4_link(dir, inode, dentry_inode); /* * It's possible that link already existed since data blocks * for the dir in question got persisted before we crashed OR * we replayed this tag and crashed before the entire replay * could complete. */ if (ret && ret != -EEXIST) { ext4_debug("Failed to link\n"); goto out; } ret = 0; out: if (dentry_dir) { d_drop(dentry_dir); dput(dentry_dir); } else if (dir) { iput(dir); } if (dentry_inode) { d_drop(dentry_inode); dput(dentry_inode); } return ret; } /* Link replay function */ static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl_mem *tl, u8 *val) { struct inode *inode; struct dentry_info_args darg; int ret = 0; tl_to_darg(&darg, tl, val); trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, darg.parent_ino, darg.dname_len); inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("Inode not found."); return 0; } ret = ext4_fc_replay_link_internal(sb, &darg, inode); iput(inode); return ret; } /* * Record all the modified inodes during replay. We use this later to setup * block bitmaps correctly. */ static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) { struct ext4_fc_replay_state *state; int i; state = &EXT4_SB(sb)->s_fc_replay_state; for (i = 0; i < state->fc_modified_inodes_used; i++) if (state->fc_modified_inodes[i] == ino) return 0; if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { int *fc_modified_inodes; fc_modified_inodes = krealloc(state->fc_modified_inodes, sizeof(int) * (state->fc_modified_inodes_size + EXT4_FC_REPLAY_REALLOC_INCREMENT), GFP_KERNEL); if (!fc_modified_inodes) return -ENOMEM; state->fc_modified_inodes = fc_modified_inodes; state->fc_modified_inodes_size += EXT4_FC_REPLAY_REALLOC_INCREMENT; } state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; return 0; } /* * Inode replay function */ static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl_mem *tl, u8 *val) { struct ext4_fc_inode fc_inode; struct ext4_inode *raw_inode; struct ext4_inode *raw_fc_inode; struct inode *inode = NULL; struct ext4_iloc iloc; int inode_len, ino, ret, tag = tl->fc_tag; struct ext4_extent_header *eh; size_t off_gen = offsetof(struct ext4_inode, i_generation); memcpy(&fc_inode, val, sizeof(fc_inode)); ino = le32_to_cpu(fc_inode.fc_ino); trace_ext4_fc_replay(sb, tag, ino, 0, 0); inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); if (!IS_ERR(inode)) { ext4_ext_clear_bb(inode); iput(inode); } inode = NULL; ret = ext4_fc_record_modified_inode(sb, ino); if (ret) goto out; raw_fc_inode = (struct ext4_inode *) (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); ret = ext4_get_fc_inode_loc(sb, ino, &iloc); if (ret) goto out; inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); raw_inode = ext4_raw_inode(&iloc); memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, inode_len - off_gen); if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); if (eh->eh_magic != EXT4_EXT_MAGIC) { memset(eh, 0, sizeof(*eh)); eh->eh_magic = EXT4_EXT_MAGIC; eh->eh_max = cpu_to_le16( (sizeof(raw_inode->i_block) - sizeof(struct ext4_extent_header)) / sizeof(struct ext4_extent)); } } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { memcpy(raw_inode->i_block, raw_fc_inode->i_block, sizeof(raw_inode->i_block)); } /* Immediately update the inode on disk. */ ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); if (ret) goto out; ret = sync_dirty_buffer(iloc.bh); if (ret) goto out; ret = ext4_mark_inode_used(sb, ino); if (ret) goto out; /* Given that we just wrote the inode on disk, this SHOULD succeed. */ inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("Inode not found."); return -EFSCORRUPTED; } /* * Our allocator could have made different decisions than before * crashing. This should be fixed but until then, we calculate * the number of blocks the inode. */ if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) ext4_ext_replay_set_iblocks(inode); inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); ext4_reset_inode_seed(inode); ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); sync_dirty_buffer(iloc.bh); brelse(iloc.bh); out: iput(inode); if (!ret) blkdev_issue_flush(sb->s_bdev); return 0; } /* * Dentry create replay function. * * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the * inode for which we are trying to create a dentry here, should already have * been replayed before we start here. */ static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl_mem *tl, u8 *val) { int ret = 0; struct inode *inode = NULL; struct inode *dir = NULL; struct dentry_info_args darg; tl_to_darg(&darg, tl, val); trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, darg.parent_ino, darg.dname_len); /* This takes care of update group descriptor and other metadata */ ret = ext4_mark_inode_used(sb, darg.ino); if (ret) goto out; inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("inode %d not found.", darg.ino); inode = NULL; ret = -EINVAL; goto out; } if (S_ISDIR(inode->i_mode)) { /* * If we are creating a directory, we need to make sure that the * dot and dot dot dirents are setup properly. */ dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); if (IS_ERR(dir)) { ext4_debug("Dir %d not found.", darg.ino); goto out; } ret = ext4_init_new_dir(NULL, dir, inode); iput(dir); if (ret) { ret = 0; goto out; } } ret = ext4_fc_replay_link_internal(sb, &darg, inode); if (ret) goto out; set_nlink(inode, 1); ext4_mark_inode_dirty(NULL, inode); out: iput(inode); return ret; } /* * Record physical disk regions which are in use as per fast commit area, * and used by inodes during replay phase. Our simple replay phase * allocator excludes these regions from allocation. */ int ext4_fc_record_regions(struct super_block *sb, int ino, ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) { struct ext4_fc_replay_state *state; struct ext4_fc_alloc_region *region; state = &EXT4_SB(sb)->s_fc_replay_state; /* * during replay phase, the fc_regions_valid may not same as * fc_regions_used, update it when do new additions. */ if (replay && state->fc_regions_used != state->fc_regions_valid) state->fc_regions_used = state->fc_regions_valid; if (state->fc_regions_used == state->fc_regions_size) { struct ext4_fc_alloc_region *fc_regions; fc_regions = krealloc(state->fc_regions, sizeof(struct ext4_fc_alloc_region) * (state->fc_regions_size + EXT4_FC_REPLAY_REALLOC_INCREMENT), GFP_KERNEL); if (!fc_regions) return -ENOMEM; state->fc_regions_size += EXT4_FC_REPLAY_REALLOC_INCREMENT; state->fc_regions = fc_regions; } region = &state->fc_regions[state->fc_regions_used++]; region->ino = ino; region->lblk = lblk; region->pblk = pblk; region->len = len; if (replay) state->fc_regions_valid++; return 0; } /* Replay add range tag */ static int ext4_fc_replay_add_range(struct super_block *sb, struct ext4_fc_tl_mem *tl, u8 *val) { struct ext4_fc_add_range fc_add_ex; struct ext4_extent newex, *ex; struct inode *inode; ext4_lblk_t start, cur; int remaining, len; ext4_fsblk_t start_pblk; struct ext4_map_blocks map; struct ext4_ext_path *path = NULL; int ret; memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); ex = (struct ext4_extent *)&fc_add_ex.fc_ex; trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), ext4_ext_get_actual_len(ex)); inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("Inode not found."); return 0; } ret = ext4_fc_record_modified_inode(sb, inode->i_ino); if (ret) goto out; start = le32_to_cpu(ex->ee_block); start_pblk = ext4_ext_pblock(ex); len = ext4_ext_get_actual_len(ex); cur = start; remaining = len; ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", start, start_pblk, len, ext4_ext_is_unwritten(ex), inode->i_ino); while (remaining > 0) { map.m_lblk = cur; map.m_len = remaining; map.m_pblk = 0; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) goto out; if (ret == 0) { /* Range is not mapped */ path = ext4_find_extent(inode, cur, NULL, 0); if (IS_ERR(path)) goto out; memset(&newex, 0, sizeof(newex)); newex.ee_block = cpu_to_le32(cur); ext4_ext_store_pblock( &newex, start_pblk + cur - start); newex.ee_len = cpu_to_le16(map.m_len); if (ext4_ext_is_unwritten(ex)) ext4_ext_mark_unwritten(&newex); down_write(&EXT4_I(inode)->i_data_sem); ret = ext4_ext_insert_extent( NULL, inode, &path, &newex, 0); up_write((&EXT4_I(inode)->i_data_sem)); ext4_free_ext_path(path); if (ret) goto out; goto next; } if (start_pblk + cur - start != map.m_pblk) { /* * Logical to physical mapping changed. This can happen * if this range was removed and then reallocated to * map to new physical blocks during a fast commit. */ ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, ext4_ext_is_unwritten(ex), start_pblk + cur - start); if (ret) goto out; /* * Mark the old blocks as free since they aren't used * anymore. We maintain an array of all the modified * inodes. In case these blocks are still used at either * a different logical range in the same inode or in * some different inode, we will mark them as allocated * at the end of the FC replay using our array of * modified inodes. */ ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); goto next; } /* Range is mapped and needs a state change */ ext4_debug("Converting from %ld to %d %lld", map.m_flags & EXT4_MAP_UNWRITTEN, ext4_ext_is_unwritten(ex), map.m_pblk); ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, ext4_ext_is_unwritten(ex), map.m_pblk); if (ret) goto out; /* * We may have split the extent tree while toggling the state. * Try to shrink the extent tree now. */ ext4_ext_replay_shrink_inode(inode, start + len); next: cur += map.m_len; remaining -= map.m_len; } ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> sb->s_blocksize_bits); out: iput(inode); return 0; } /* Replay DEL_RANGE tag */ static int ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl_mem *tl, u8 *val) { struct inode *inode; struct ext4_fc_del_range lrange; struct ext4_map_blocks map; ext4_lblk_t cur, remaining; int ret; memcpy(&lrange, val, sizeof(lrange)); cur = le32_to_cpu(lrange.fc_lblk); remaining = le32_to_cpu(lrange.fc_len); trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, le32_to_cpu(lrange.fc_ino), cur, remaining); inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); return 0; } ret = ext4_fc_record_modified_inode(sb, inode->i_ino); if (ret) goto out; ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", inode->i_ino, le32_to_cpu(lrange.fc_lblk), le32_to_cpu(lrange.fc_len)); while (remaining > 0) { map.m_lblk = cur; map.m_len = remaining; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) goto out; if (ret > 0) { remaining -= ret; cur += ret; ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); } else { remaining -= map.m_len; cur += map.m_len; } } down_write(&EXT4_I(inode)->i_data_sem); ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), le32_to_cpu(lrange.fc_lblk) + le32_to_cpu(lrange.fc_len) - 1); up_write(&EXT4_I(inode)->i_data_sem); if (ret) goto out; ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> sb->s_blocksize_bits); ext4_mark_inode_dirty(NULL, inode); out: iput(inode); return 0; } static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) { struct ext4_fc_replay_state *state; struct inode *inode; struct ext4_ext_path *path = NULL; struct ext4_map_blocks map; int i, ret, j; ext4_lblk_t cur, end; state = &EXT4_SB(sb)->s_fc_replay_state; for (i = 0; i < state->fc_modified_inodes_used; i++) { inode = ext4_iget(sb, state->fc_modified_inodes[i], EXT4_IGET_NORMAL); if (IS_ERR(inode)) { ext4_debug("Inode %d not found.", state->fc_modified_inodes[i]); continue; } cur = 0; end = EXT_MAX_BLOCKS; if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { iput(inode); continue; } while (cur < end) { map.m_lblk = cur; map.m_len = end - cur; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) break; if (ret > 0) { path = ext4_find_extent(inode, map.m_lblk, NULL, 0); if (!IS_ERR(path)) { for (j = 0; j < path->p_depth; j++) ext4_mb_mark_bb(inode->i_sb, path[j].p_block, 1, 1); ext4_free_ext_path(path); } cur += ret; ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 1); } else { cur = cur + (map.m_len ? map.m_len : 1); } } iput(inode); } } /* * Check if block is in excluded regions for block allocation. The simple * allocator that runs during replay phase is calls this function to see * if it is okay to use a block. */ bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) { int i; struct ext4_fc_replay_state *state; state = &EXT4_SB(sb)->s_fc_replay_state; for (i = 0; i < state->fc_regions_valid; i++) { if (state->fc_regions[i].ino == 0 || state->fc_regions[i].len == 0) continue; if (in_range(blk, state->fc_regions[i].pblk, state->fc_regions[i].len)) return true; } return false; } /* Cleanup function called after replay */ void ext4_fc_replay_cleanup(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); sbi->s_mount_state &= ~EXT4_FC_REPLAY; kfree(sbi->s_fc_replay_state.fc_regions); kfree(sbi->s_fc_replay_state.fc_modified_inodes); } static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, int tag, int len) { switch (tag) { case EXT4_FC_TAG_ADD_RANGE: return len == sizeof(struct ext4_fc_add_range); case EXT4_FC_TAG_DEL_RANGE: return len == sizeof(struct ext4_fc_del_range); case EXT4_FC_TAG_CREAT: case EXT4_FC_TAG_LINK: case EXT4_FC_TAG_UNLINK: len -= sizeof(struct ext4_fc_dentry_info); return len >= 1 && len <= EXT4_NAME_LEN; case EXT4_FC_TAG_INODE: len -= sizeof(struct ext4_fc_inode); return len >= EXT4_GOOD_OLD_INODE_SIZE && len <= sbi->s_inode_size; case EXT4_FC_TAG_PAD: return true; /* padding can have any length */ case EXT4_FC_TAG_TAIL: return len >= sizeof(struct ext4_fc_tail); case EXT4_FC_TAG_HEAD: return len == sizeof(struct ext4_fc_head); } return false; } /* * Recovery Scan phase handler * * This function is called during the scan phase and is responsible * for doing following things: * - Make sure the fast commit area has valid tags for replay * - Count number of tags that need to be replayed by the replay handler * - Verify CRC * - Create a list of excluded blocks for allocation during replay phase * * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP * to indicate that scan has finished and JBD2 can now start replay phase. * It returns a negative error to indicate that there was an error. At the end * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set * to indicate the number of tags that need to replayed during the replay phase. */ static int ext4_fc_replay_scan(journal_t *journal, struct buffer_head *bh, int off, tid_t expected_tid) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_replay_state *state; int ret = JBD2_FC_REPLAY_CONTINUE; struct ext4_fc_add_range ext; struct ext4_fc_tl_mem tl; struct ext4_fc_tail tail; __u8 *start, *end, *cur, *val; struct ext4_fc_head head; struct ext4_extent *ex; state = &sbi->s_fc_replay_state; start = (u8 *)bh->b_data; end = start + journal->j_blocksize; if (state->fc_replay_expected_off == 0) { state->fc_cur_tag = 0; state->fc_replay_num_tags = 0; state->fc_crc = 0; state->fc_regions = NULL; state->fc_regions_valid = state->fc_regions_used = state->fc_regions_size = 0; /* Check if we can stop early */ if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) != EXT4_FC_TAG_HEAD) return 0; } if (off != state->fc_replay_expected_off) { ret = -EFSCORRUPTED; goto out_err; } state->fc_replay_expected_off++; for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { ext4_fc_get_tl(&tl, cur); val = cur + EXT4_FC_TAG_BASE_LEN; if (tl.fc_len > end - val || !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -ECANCELED; goto out_err; } ext4_debug("Scan phase, tag:%s, blk %lld\n", tag2str(tl.fc_tag), bh->b_blocknr); switch (tl.fc_tag) { case EXT4_FC_TAG_ADD_RANGE: memcpy(&ext, val, sizeof(ext)); ex = (struct ext4_extent *)&ext.fc_ex; ret = ext4_fc_record_regions(sb, le32_to_cpu(ext.fc_ino), le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), ext4_ext_get_actual_len(ex), 0); if (ret < 0) break; ret = JBD2_FC_REPLAY_CONTINUE; fallthrough; case EXT4_FC_TAG_DEL_RANGE: case EXT4_FC_TAG_LINK: case EXT4_FC_TAG_UNLINK: case EXT4_FC_TAG_CREAT: case EXT4_FC_TAG_INODE: case EXT4_FC_TAG_PAD: state->fc_cur_tag++; state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, EXT4_FC_TAG_BASE_LEN + tl.fc_len); break; case EXT4_FC_TAG_TAIL: state->fc_cur_tag++; memcpy(&tail, val, sizeof(tail)); state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, EXT4_FC_TAG_BASE_LEN + offsetof(struct ext4_fc_tail, fc_crc)); if (le32_to_cpu(tail.fc_tid) == expected_tid && le32_to_cpu(tail.fc_crc) == state->fc_crc) { state->fc_replay_num_tags = state->fc_cur_tag; state->fc_regions_valid = state->fc_regions_used; } else { ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -EFSBADCRC; } state->fc_crc = 0; break; case EXT4_FC_TAG_HEAD: memcpy(&head, val, sizeof(head)); if (le32_to_cpu(head.fc_features) & ~EXT4_FC_SUPPORTED_FEATURES) { ret = -EOPNOTSUPP; break; } if (le32_to_cpu(head.fc_tid) != expected_tid) { ret = JBD2_FC_REPLAY_STOP; break; } state->fc_cur_tag++; state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, EXT4_FC_TAG_BASE_LEN + tl.fc_len); break; default: ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -ECANCELED; } if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) break; } out_err: trace_ext4_fc_replay_scan(sb, ret, off); return ret; } /* * Main recovery path entry point. * The meaning of return codes is similar as above. */ static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, enum passtype pass, int off, tid_t expected_tid) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_tl_mem tl; __u8 *start, *end, *cur, *val; int ret = JBD2_FC_REPLAY_CONTINUE; struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; struct ext4_fc_tail tail; if (pass == PASS_SCAN) { state->fc_current_pass = PASS_SCAN; return ext4_fc_replay_scan(journal, bh, off, expected_tid); } if (state->fc_current_pass != pass) { state->fc_current_pass = pass; sbi->s_mount_state |= EXT4_FC_REPLAY; } if (!sbi->s_fc_replay_state.fc_replay_num_tags) { ext4_debug("Replay stops\n"); ext4_fc_set_bitmaps_and_counters(sb); return 0; } #ifdef CONFIG_EXT4_DEBUG if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { pr_warn("Dropping fc block %d because max_replay set\n", off); return JBD2_FC_REPLAY_STOP; } #endif start = (u8 *)bh->b_data; end = start + journal->j_blocksize; for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { ext4_fc_get_tl(&tl, cur); val = cur + EXT4_FC_TAG_BASE_LEN; if (state->fc_replay_num_tags == 0) { ret = JBD2_FC_REPLAY_STOP; ext4_fc_set_bitmaps_and_counters(sb); break; } ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); state->fc_replay_num_tags--; switch (tl.fc_tag) { case EXT4_FC_TAG_LINK: ret = ext4_fc_replay_link(sb, &tl, val); break; case EXT4_FC_TAG_UNLINK: ret = ext4_fc_replay_unlink(sb, &tl, val); break; case EXT4_FC_TAG_ADD_RANGE: ret = ext4_fc_replay_add_range(sb, &tl, val); break; case EXT4_FC_TAG_CREAT: ret = ext4_fc_replay_create(sb, &tl, val); break; case EXT4_FC_TAG_DEL_RANGE: ret = ext4_fc_replay_del_range(sb, &tl, val); break; case EXT4_FC_TAG_INODE: ret = ext4_fc_replay_inode(sb, &tl, val); break; case EXT4_FC_TAG_PAD: trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, tl.fc_len, 0); break; case EXT4_FC_TAG_TAIL: trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0, tl.fc_len, 0); memcpy(&tail, val, sizeof(tail)); WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); break; case EXT4_FC_TAG_HEAD: break; default: trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); ret = -ECANCELED; break; } if (ret < 0) break; ret = JBD2_FC_REPLAY_CONTINUE; } return ret; } void ext4_fc_init(struct super_block *sb, journal_t *journal) { /* * We set replay callback even if fast commit disabled because we may * could still have fast commit blocks that need to be replayed even if * fast commit has now been turned off. */ journal->j_fc_replay_callback = ext4_fc_replay; if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) return; journal->j_fc_cleanup_callback = ext4_fc_cleanup; } static const char * const fc_ineligible_reasons[] = { [EXT4_FC_REASON_XATTR] = "Extended attributes changed", [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", [EXT4_FC_REASON_NOMEM] = "Insufficient memory", [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", [EXT4_FC_REASON_RESIZE] = "Resize", [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", }; int ext4_fc_info_show(struct seq_file *seq, void *v) { struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); struct ext4_fc_stats *stats = &sbi->s_fc_stats; int i; if (v != SEQ_START_TOKEN) return 0; seq_printf(seq, "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", stats->fc_num_commits, stats->fc_ineligible_commits, stats->fc_numblks, div_u64(stats->s_fc_avg_commit_time, 1000)); seq_puts(seq, "Ineligible reasons:\n"); for (i = 0; i < EXT4_FC_REASON_MAX; i++) seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], stats->fc_ineligible_reason_count[i]); return 0; } int __init ext4_fc_init_dentry_cache(void) { ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, SLAB_RECLAIM_ACCOUNT); if (ext4_fc_dentry_cachep == NULL) return -ENOMEM; return 0; } void ext4_fc_destroy_dentry_cache(void) { kmem_cache_destroy(ext4_fc_dentry_cachep); } |