Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | // SPDX-License-Identifier: GPL-2.0 /* * linux/mm/page_isolation.c */ #include <linux/mm.h> #include <linux/page-isolation.h> #include <linux/pageblock-flags.h> #include <linux/memory.h> #include <linux/hugetlb.h> #include <linux/page_owner.h> #include <linux/migrate.h> #include "internal.h" #define CREATE_TRACE_POINTS #include <trace/events/page_isolation.h> /* * This function checks whether the range [start_pfn, end_pfn) includes * unmovable pages or not. The range must fall into a single pageblock and * consequently belong to a single zone. * * PageLRU check without isolation or lru_lock could race so that * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable * check without lock_page also may miss some movable non-lru pages at * race condition. So you can't expect this function should be exact. * * Returns a page without holding a reference. If the caller wants to * dereference that page (e.g., dumping), it has to make sure that it * cannot get removed (e.g., via memory unplug) concurrently. * */ static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn, int migratetype, int flags) { struct page *page = pfn_to_page(start_pfn); struct zone *zone = page_zone(page); unsigned long pfn; VM_BUG_ON(pageblock_start_pfn(start_pfn) != pageblock_start_pfn(end_pfn - 1)); if (is_migrate_cma_page(page)) { /* * CMA allocations (alloc_contig_range) really need to mark * isolate CMA pageblocks even when they are not movable in fact * so consider them movable here. */ if (is_migrate_cma(migratetype)) return NULL; return page; } for (pfn = start_pfn; pfn < end_pfn; pfn++) { page = pfn_to_page(pfn); /* * Both, bootmem allocations and memory holes are marked * PG_reserved and are unmovable. We can even have unmovable * allocations inside ZONE_MOVABLE, for example when * specifying "movablecore". */ if (PageReserved(page)) return page; /* * If the zone is movable and we have ruled out all reserved * pages then it should be reasonably safe to assume the rest * is movable. */ if (zone_idx(zone) == ZONE_MOVABLE) continue; /* * Hugepages are not in LRU lists, but they're movable. * THPs are on the LRU, but need to be counted as #small pages. * We need not scan over tail pages because we don't * handle each tail page individually in migration. */ if (PageHuge(page) || PageTransCompound(page)) { struct page *head = compound_head(page); unsigned int skip_pages; if (PageHuge(page)) { if (!hugepage_migration_supported(page_hstate(head))) return page; } else if (!PageLRU(head) && !__PageMovable(head)) { return page; } skip_pages = compound_nr(head) - (page - head); pfn += skip_pages - 1; continue; } /* * We can't use page_count without pin a page * because another CPU can free compound page. * This check already skips compound tails of THP * because their page->_refcount is zero at all time. */ if (!page_ref_count(page)) { if (PageBuddy(page)) pfn += (1 << buddy_order(page)) - 1; continue; } /* * The HWPoisoned page may be not in buddy system, and * page_count() is not 0. */ if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) continue; /* * We treat all PageOffline() pages as movable when offlining * to give drivers a chance to decrement their reference count * in MEM_GOING_OFFLINE in order to indicate that these pages * can be offlined as there are no direct references anymore. * For actually unmovable PageOffline() where the driver does * not support this, we will fail later when trying to actually * move these pages that still have a reference count > 0. * (false negatives in this function only) */ if ((flags & MEMORY_OFFLINE) && PageOffline(page)) continue; if (__PageMovable(page) || PageLRU(page)) continue; /* * If there are RECLAIMABLE pages, we need to check * it. But now, memory offline itself doesn't call * shrink_node_slabs() and it still to be fixed. */ return page; } return NULL; } /* * This function set pageblock migratetype to isolate if no unmovable page is * present in [start_pfn, end_pfn). The pageblock must intersect with * [start_pfn, end_pfn). */ static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags, unsigned long start_pfn, unsigned long end_pfn) { struct zone *zone = page_zone(page); struct page *unmovable; unsigned long flags; unsigned long check_unmovable_start, check_unmovable_end; spin_lock_irqsave(&zone->lock, flags); /* * We assume the caller intended to SET migrate type to isolate. * If it is already set, then someone else must have raced and * set it before us. */ if (is_migrate_isolate_page(page)) { spin_unlock_irqrestore(&zone->lock, flags); return -EBUSY; } /* * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. * We just check MOVABLE pages. * * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock * to avoid redundant checks. */ check_unmovable_start = max(page_to_pfn(page), start_pfn); check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)), end_pfn); unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end, migratetype, isol_flags); if (!unmovable) { unsigned long nr_pages; int mt = get_pageblock_migratetype(page); set_pageblock_migratetype(page, MIGRATE_ISOLATE); zone->nr_isolate_pageblock++; nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE, NULL); __mod_zone_freepage_state(zone, -nr_pages, mt); spin_unlock_irqrestore(&zone->lock, flags); return 0; } spin_unlock_irqrestore(&zone->lock, flags); if (isol_flags & REPORT_FAILURE) { /* * printk() with zone->lock held will likely trigger a * lockdep splat, so defer it here. */ dump_page(unmovable, "unmovable page"); } return -EBUSY; } static void unset_migratetype_isolate(struct page *page, int migratetype) { struct zone *zone; unsigned long flags, nr_pages; bool isolated_page = false; unsigned int order; struct page *buddy; zone = page_zone(page); spin_lock_irqsave(&zone->lock, flags); if (!is_migrate_isolate_page(page)) goto out; /* * Because freepage with more than pageblock_order on isolated * pageblock is restricted to merge due to freepage counting problem, * it is possible that there is free buddy page. * move_freepages_block() doesn't care of merge so we need other * approach in order to merge them. Isolation and free will make * these pages to be merged. */ if (PageBuddy(page)) { order = buddy_order(page); if (order >= pageblock_order && order < MAX_ORDER - 1) { buddy = find_buddy_page_pfn(page, page_to_pfn(page), order, NULL); if (buddy && !is_migrate_isolate_page(buddy)) { isolated_page = !!__isolate_free_page(page, order); /* * Isolating a free page in an isolated pageblock * is expected to always work as watermarks don't * apply here. */ VM_WARN_ON(!isolated_page); } } } /* * If we isolate freepage with more than pageblock_order, there * should be no freepage in the range, so we could avoid costly * pageblock scanning for freepage moving. * * We didn't actually touch any of the isolated pages, so place them * to the tail of the freelist. This is an optimization for memory * onlining - just onlined memory won't immediately be considered for * allocation. */ if (!isolated_page) { nr_pages = move_freepages_block(zone, page, migratetype, NULL); __mod_zone_freepage_state(zone, nr_pages, migratetype); } set_pageblock_migratetype(page, migratetype); if (isolated_page) __putback_isolated_page(page, order, migratetype); zone->nr_isolate_pageblock--; out: spin_unlock_irqrestore(&zone->lock, flags); } static inline struct page * __first_valid_page(unsigned long pfn, unsigned long nr_pages) { int i; for (i = 0; i < nr_pages; i++) { struct page *page; page = pfn_to_online_page(pfn + i); if (!page) continue; return page; } return NULL; } /** * isolate_single_pageblock() -- tries to isolate a pageblock that might be * within a free or in-use page. * @boundary_pfn: pageblock-aligned pfn that a page might cross * @flags: isolation flags * @gfp_flags: GFP flags used for migrating pages * @isolate_before: isolate the pageblock before the boundary_pfn * @skip_isolation: the flag to skip the pageblock isolation in second * isolate_single_pageblock() * @migratetype: migrate type to set in error recovery. * * Free and in-use pages can be as big as MAX_ORDER-1 and contain more than one * pageblock. When not all pageblocks within a page are isolated at the same * time, free page accounting can go wrong. For example, in the case of * MAX_ORDER-1 = pageblock_order + 1, a MAX_ORDER-1 page has two pagelbocks. * [ MAX_ORDER-1 ] * [ pageblock0 | pageblock1 ] * When either pageblock is isolated, if it is a free page, the page is not * split into separate migratetype lists, which is supposed to; if it is an * in-use page and freed later, __free_one_page() does not split the free page * either. The function handles this by splitting the free page or migrating * the in-use page then splitting the free page. */ static int isolate_single_pageblock(unsigned long boundary_pfn, int flags, gfp_t gfp_flags, bool isolate_before, bool skip_isolation, int migratetype) { unsigned long start_pfn; unsigned long isolate_pageblock; unsigned long pfn; struct zone *zone; int ret; VM_BUG_ON(!pageblock_aligned(boundary_pfn)); if (isolate_before) isolate_pageblock = boundary_pfn - pageblock_nr_pages; else isolate_pageblock = boundary_pfn; /* * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid * only isolating a subset of pageblocks from a bigger than pageblock * free or in-use page. Also make sure all to-be-isolated pageblocks * are within the same zone. */ zone = page_zone(pfn_to_page(isolate_pageblock)); start_pfn = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES), zone->zone_start_pfn); if (skip_isolation) { int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock)); VM_BUG_ON(!is_migrate_isolate(mt)); } else { ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype, flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages); if (ret) return ret; } /* * Bail out early when the to-be-isolated pageblock does not form * a free or in-use page across boundary_pfn: * * 1. isolate before boundary_pfn: the page after is not online * 2. isolate after boundary_pfn: the page before is not online * * This also ensures correctness. Without it, when isolate after * boundary_pfn and [start_pfn, boundary_pfn) are not online, * __first_valid_page() will return unexpected NULL in the for loop * below. */ if (isolate_before) { if (!pfn_to_online_page(boundary_pfn)) return 0; } else { if (!pfn_to_online_page(boundary_pfn - 1)) return 0; } for (pfn = start_pfn; pfn < boundary_pfn;) { struct page *page = __first_valid_page(pfn, boundary_pfn - pfn); VM_BUG_ON(!page); pfn = page_to_pfn(page); /* * start_pfn is MAX_ORDER_NR_PAGES aligned, if there is any * free pages in [start_pfn, boundary_pfn), its head page will * always be in the range. */ if (PageBuddy(page)) { int order = buddy_order(page); if (pfn + (1UL << order) > boundary_pfn) { /* free page changed before split, check it again */ if (split_free_page(page, order, boundary_pfn - pfn)) continue; } pfn += 1UL << order; continue; } /* * migrate compound pages then let the free page handling code * above do the rest. If migration is not possible, just fail. */ if (PageCompound(page)) { struct page *head = compound_head(page); unsigned long head_pfn = page_to_pfn(head); unsigned long nr_pages = compound_nr(head); if (head_pfn + nr_pages <= boundary_pfn) { pfn = head_pfn + nr_pages; continue; } #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* * hugetlb, lru compound (THP), and movable compound pages * can be migrated. Otherwise, fail the isolation. */ if (PageHuge(page) || PageLRU(page) || __PageMovable(page)) { int order; unsigned long outer_pfn; int page_mt = get_pageblock_migratetype(page); bool isolate_page = !is_migrate_isolate_page(page); struct compact_control cc = { .nr_migratepages = 0, .order = -1, .zone = page_zone(pfn_to_page(head_pfn)), .mode = MIGRATE_SYNC, .ignore_skip_hint = true, .no_set_skip_hint = true, .gfp_mask = gfp_flags, .alloc_contig = true, }; INIT_LIST_HEAD(&cc.migratepages); /* * XXX: mark the page as MIGRATE_ISOLATE so that * no one else can grab the freed page after migration. * Ideally, the page should be freed as two separate * pages to be added into separate migratetype free * lists. */ if (isolate_page) { ret = set_migratetype_isolate(page, page_mt, flags, head_pfn, head_pfn + nr_pages); if (ret) goto failed; } ret = __alloc_contig_migrate_range(&cc, head_pfn, head_pfn + nr_pages); /* * restore the page's migratetype so that it can * be split into separate migratetype free lists * later. */ if (isolate_page) unset_migratetype_isolate(page, page_mt); if (ret) goto failed; /* * reset pfn to the head of the free page, so * that the free page handling code above can split * the free page to the right migratetype list. * * head_pfn is not used here as a hugetlb page order * can be bigger than MAX_ORDER-1, but after it is * freed, the free page order is not. Use pfn within * the range to find the head of the free page. */ order = 0; outer_pfn = pfn; while (!PageBuddy(pfn_to_page(outer_pfn))) { /* stop if we cannot find the free page */ if (++order >= MAX_ORDER) goto failed; outer_pfn &= ~0UL << order; } pfn = outer_pfn; continue; } else #endif goto failed; } pfn++; } return 0; failed: /* restore the original migratetype */ if (!skip_isolation) unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype); return -EBUSY; } /** * start_isolate_page_range() - make page-allocation-type of range of pages to * be MIGRATE_ISOLATE. * @start_pfn: The lower PFN of the range to be isolated. * @end_pfn: The upper PFN of the range to be isolated. * @migratetype: Migrate type to set in error recovery. * @flags: The following flags are allowed (they can be combined in * a bit mask) * MEMORY_OFFLINE - isolate to offline (!allocate) memory * e.g., skip over PageHWPoison() pages * and PageOffline() pages. * REPORT_FAILURE - report details about the failure to * isolate the range * @gfp_flags: GFP flags used for migrating pages that sit across the * range boundaries. * * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in * the range will never be allocated. Any free pages and pages freed in the * future will not be allocated again. If specified range includes migrate types * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all * pages in the range finally, the caller have to free all pages in the range. * test_page_isolated() can be used for test it. * * The function first tries to isolate the pageblocks at the beginning and end * of the range, since there might be pages across the range boundaries. * Afterwards, it isolates the rest of the range. * * There is no high level synchronization mechanism that prevents two threads * from trying to isolate overlapping ranges. If this happens, one thread * will notice pageblocks in the overlapping range already set to isolate. * This happens in set_migratetype_isolate, and set_migratetype_isolate * returns an error. We then clean up by restoring the migration type on * pageblocks we may have modified and return -EBUSY to caller. This * prevents two threads from simultaneously working on overlapping ranges. * * Please note that there is no strong synchronization with the page allocator * either. Pages might be freed while their page blocks are marked ISOLATED. * A call to drain_all_pages() after isolation can flush most of them. However * in some cases pages might still end up on pcp lists and that would allow * for their allocation even when they are in fact isolated already. Depending * on how strong of a guarantee the caller needs, zone_pcp_disable/enable() * might be used to flush and disable pcplist before isolation and enable after * unisolation. * * Return: 0 on success and -EBUSY if any part of range cannot be isolated. */ int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, int migratetype, int flags, gfp_t gfp_flags) { unsigned long pfn; struct page *page; /* isolation is done at page block granularity */ unsigned long isolate_start = pageblock_start_pfn(start_pfn); unsigned long isolate_end = pageblock_align(end_pfn); int ret; bool skip_isolation = false; /* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */ ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false, skip_isolation, migratetype); if (ret) return ret; if (isolate_start == isolate_end - pageblock_nr_pages) skip_isolation = true; /* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */ ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true, skip_isolation, migratetype); if (ret) { unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype); return ret; } /* skip isolated pageblocks at the beginning and end */ for (pfn = isolate_start + pageblock_nr_pages; pfn < isolate_end - pageblock_nr_pages; pfn += pageblock_nr_pages) { page = __first_valid_page(pfn, pageblock_nr_pages); if (page && set_migratetype_isolate(page, migratetype, flags, start_pfn, end_pfn)) { undo_isolate_page_range(isolate_start, pfn, migratetype); unset_migratetype_isolate( pfn_to_page(isolate_end - pageblock_nr_pages), migratetype); return -EBUSY; } } return 0; } /* * Make isolated pages available again. */ void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, int migratetype) { unsigned long pfn; struct page *page; unsigned long isolate_start = pageblock_start_pfn(start_pfn); unsigned long isolate_end = pageblock_align(end_pfn); for (pfn = isolate_start; pfn < isolate_end; pfn += pageblock_nr_pages) { page = __first_valid_page(pfn, pageblock_nr_pages); if (!page || !is_migrate_isolate_page(page)) continue; unset_migratetype_isolate(page, migratetype); } } /* * Test all pages in the range is free(means isolated) or not. * all pages in [start_pfn...end_pfn) must be in the same zone. * zone->lock must be held before call this. * * Returns the last tested pfn. */ static unsigned long __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, int flags) { struct page *page; while (pfn < end_pfn) { page = pfn_to_page(pfn); if (PageBuddy(page)) /* * If the page is on a free list, it has to be on * the correct MIGRATE_ISOLATE freelist. There is no * simple way to verify that as VM_BUG_ON(), though. */ pfn += 1 << buddy_order(page); else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) /* A HWPoisoned page cannot be also PageBuddy */ pfn++; else if ((flags & MEMORY_OFFLINE) && PageOffline(page) && !page_count(page)) /* * The responsible driver agreed to skip PageOffline() * pages when offlining memory by dropping its * reference in MEM_GOING_OFFLINE. */ pfn++; else break; } return pfn; } /* Caller should ensure that requested range is in a single zone */ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, int isol_flags) { unsigned long pfn, flags; struct page *page; struct zone *zone; int ret; /* * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages * are not aligned to pageblock_nr_pages. * Then we just check migratetype first. */ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { page = __first_valid_page(pfn, pageblock_nr_pages); if (page && !is_migrate_isolate_page(page)) break; } page = __first_valid_page(start_pfn, end_pfn - start_pfn); if ((pfn < end_pfn) || !page) { ret = -EBUSY; goto out; } /* Check all pages are free or marked as ISOLATED */ zone = page_zone(page); spin_lock_irqsave(&zone->lock, flags); pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags); spin_unlock_irqrestore(&zone->lock, flags); ret = pfn < end_pfn ? -EBUSY : 0; out: trace_test_pages_isolated(start_pfn, end_pfn, pfn); return ret; } |