Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | # SPDX-License-Identifier: GPL-2.0 %YAML 1.2 --- $id: http://devicetree.org/schemas/opp/allwinner,sun50i-h6-operating-points.yaml# $schema: http://devicetree.org/meta-schemas/core.yaml# title: Allwinner H6 CPU OPP maintainers: - Chen-Yu Tsai <wens@csie.org> - Maxime Ripard <mripard@kernel.org> description: | For some SoCs, the CPU frequency subset and voltage value of each OPP varies based on the silicon variant in use. Allwinner Process Voltage Scaling Tables defines the voltage and frequency value based on the speedbin blown in the efuse combination. The sun50i-cpufreq-nvmem driver reads the efuse value from the SoC to provide the OPP framework with required information. allOf: - $ref: opp-v2-base.yaml# properties: compatible: const: allwinner,sun50i-h6-operating-points nvmem-cells: description: | A phandle pointing to a nvmem-cells node representing the efuse registers that has information about the speedbin that is used to select the right frequency/voltage value pair. Please refer the for nvmem-cells bindings Documentation/devicetree/bindings/nvmem/nvmem.txt and also examples below. opp-shared: true required: - compatible - nvmem-cells patternProperties: "opp-[0-9]+": type: object properties: opp-hz: true clock-latency-ns: true patternProperties: "opp-microvolt-.*": true required: - opp-hz - opp-microvolt-speed0 - opp-microvolt-speed1 - opp-microvolt-speed2 unevaluatedProperties: false additionalProperties: false examples: - | cpu_opp_table: opp-table { compatible = "allwinner,sun50i-h6-operating-points"; nvmem-cells = <&speedbin_efuse>; opp-shared; opp-480000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <480000000>; opp-microvolt-speed0 = <880000>; opp-microvolt-speed1 = <820000>; opp-microvolt-speed2 = <800000>; }; opp-720000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <720000000>; opp-microvolt-speed0 = <880000>; opp-microvolt-speed1 = <820000>; opp-microvolt-speed2 = <800000>; }; opp-816000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <816000000>; opp-microvolt-speed0 = <880000>; opp-microvolt-speed1 = <820000>; opp-microvolt-speed2 = <800000>; }; opp-888000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <888000000>; opp-microvolt-speed0 = <940000>; opp-microvolt-speed1 = <820000>; opp-microvolt-speed2 = <800000>; }; opp-1080000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <1080000000>; opp-microvolt-speed0 = <1060000>; opp-microvolt-speed1 = <880000>; opp-microvolt-speed2 = <840000>; }; opp-1320000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <1320000000>; opp-microvolt-speed0 = <1160000>; opp-microvolt-speed1 = <940000>; opp-microvolt-speed2 = <900000>; }; opp-1488000000 { clock-latency-ns = <244144>; /* 8 32k periods */ opp-hz = /bits/ 64 <1488000000>; opp-microvolt-speed0 = <1160000>; opp-microvolt-speed1 = <1000000>; opp-microvolt-speed2 = <960000>; }; }; ... |